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RESISTANCE OF ATOMIC SODIUM WIRES*

RAFAEL GUTIERREZ, FRANK GROSSMANN AND RUDIGER SCHMIDT

Institut fiir Theoretische Physik, Technische Universitéit Dresden
D-01062 Dresden, Germany

(Received November 2, 2000)

We systematically study the electrical transport through atomic sodium
wires connected to two semi-infinite electrodes. The dependence of the
resistance on the wire length and on the wire—electrode separation is in-
vestigated. For small wire—electrode distances the single sodium atom can
show a larger resistance than the Na-dimer, confirming recent ab initio cal-
culations [N.D. Lang, Phys. Rev. Lett. 79, 1357 (1997)]. In our density
functional theory based Landauer approach, this anomalous behaviour is
shown to be dependent on the level of description of the wire (number of
basis functions per atom) as well as on the strength of the electrode-wire
coupling.

PACS numbers: 36.20.Hb, 36.20.Kd, 36.40.Cg, 61.46.+w

1. Introduction

The low temperature resistance of atomic wires is the subject of intense
theoretical and experimental investigations [1-5]. Well defined experimental
conditions with 1 or two atoms in the wire have been established in STM
experiments of Yazdani et al. [1] for the case of Xenon atoms. Moreover, a
theoretical study of atomic sodium chains between uniform jellium modelled
metal electrodes has revealed counter-intuitive behaviour as a function of the
number of sodium atoms contained in the chain [3]. It has been argued that
there is an anomalous resistance dependence with large resistances (of the
order of 30 k2) for the 1 atom case decreasing to about half that value for
two atoms.

In the following we will investigate this behaviour in detail. The theo-
retical methodology we use is based on the Landauer formalism as applied
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to molecular chain conductance calculations [6-8| combined with a Linear-
Combination of Atomic-Orbitals (LCAQO) approach based on Density Func-
tional Theory (DFT) within the Local-Density-Approximation (LDA) [10].
Here we apply this methodology to the benchmark problem of atomic sodium
chains, where analytical results for a single basis function per atom [8] as well
as results from other numerical approaches are available. Anticipating the
findings of this paper, the crucial parameter with respect to the anomalous
behaviour mentioned above is the distance between the atomic wire and the
metallic electrodes. We will show that if this distance is varied, both, the
“anomalous” behaviour and the “normal” behaviour can be observed. Fur-
thermore, also the basis set used to calculate the electronic structure of the
wire has an influence on the predicted transport properties. The theoretical
method is shortly outlined in Sec. 2. Numerical results and their discussion
are given in Sec. 3.

2. Theoretical method

For calculating the linear conductance of atomic wires we will use the
Landauer formalism [9]. The linear conductance G of an object coupled to
two semi-infinite electrodes (L and R) is given at zero-temperature by

2¢?
g= TT(Ef), (2.1)

where T'(Ey) is the transmission function of the object evaluated at the
equilibrium Fermi energy of the reservoirs. It is defined by

T(E) = To(GH(E)Tw(E)G(B)T1.(E)). (2.2)

The retarded Green’s function G(E) is to be determined by solving the
Dyson equation

(28 —H - 21(2) - Zr(2))G(2) =1, z=FE+in, n—0", (2.3)

where H and S are the Hamiltonian and overlap matrices for the object
and X(z) is a self-energy resulting from the coupling to the electrodes. The
self-energy has the form

(%) = V] zgrr(?)Vig. (2.4)

Here, the matrices VT, V' describe the object—electrode interaction and g(z)
is the electrode Green’s function. Finally, the spectral functions are defined
via the self-energies as

Iy j(E) =i(Z1r(E+1in) — BLr(E —in)) n— 0" (2.5)
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In order to apply this approach to a specific system, one has to de-
fine a procedure to determine (i) the Hamiltonian and overlap matrices of
the object, (i1) the interaction matrices appearing in the self-energy and
(7i) a model for the electrodes. Concerning points (i) and (4i) we will use
the LCAO-DFT-LDA approach [10], including sp® valence orbitals in the
electronic structure calculations. The electrodes will be modelled by semi-
infinite tight-binding metallic chains with one atomic orbital with energy e
per lattice site and lattice constant a, for which an analytic Green’s function
is available [11].

From the dispersion relation of this model, E(k) = e+ 2t cos ka it follows
that the Fermi energy lies at E; = ¢ at half-filling. The band parameters
are fixed at ¢ = —4 eV and ty = —2.7 eV, values which are obtained from
our LCAO-DFT-LDA approach.

Besides the usage of an sp® basis set, we will also study what happens
if the electrons are described by a single basis function per atom only. In
this case, analytical results are available for the transmission in Eq. (2.2) [8].
Denoting the relevant matrix elements of the spectral function Eq. (2.5) by
2A and the hopping integral in the wire by 5 the results for the one and two
atom chains are

4A?
Tl(E) - (E_EM)2+4A27 (26)
44?32
T(E) = [(E— En)? — A% — B2)2 + A(E — Epp)2 A% 27)

where Fj\; is the “molecular” energy, i.e. the diagonal matrix element of the
unperturbed molecular Hamiltonian.

3. Results

We present in this section the numerical results for the resistance
R = 1/G of sodium atomic wires as a function of the electrode—wire sepa-
ration d and of the wire length. The bond length in the wires was fixed at
6.00 ap, which approximately corresponds to the equilibrium distance of a
Na-dimer (deq=5.67 ap). For wires with more than four atoms dimerization
of the wire is expected due to a Peierls transition. Such effects will not be
considered here.

In Fig. 1, the dependence of the resistance R = 1/G on the number of
atoms in the chain is displayed for three different values of d. For compari-
son the wire resistance was also calculated using a single 3s valence orbital
for each sodium atom in the wire. The result of Lang, who stated that
RN=1 > Rn=2 [3], in our approach is only found in the case of the sp?
basis and in addition only for strong coupling between the chain and the
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Fig.1. Dependence of the resistance on the length of the atomic sodium wire
for different electrode—wire separations. Dashed lines (connecting the squares)
correspond to a resistance calculated with only the 3s-valence orbitals in the wire.

electrode. Concerning the coupling strength there exists a critical value dcrit
where both, the single atom and the dimer, have approximately the same
resistance. This can be seen in Fig. 2 where Ry—1 and Ry—o are plotted
versus d. The critical value lies at about 6.50 ap, (for comparison, the dis-
tance considered by Lang [3] is about 5.7 ap). For d > dq;; the resistance of
the dimer increases almost exponentially. The resistance of the single atom
will also increase exponentially but at much larger electrode-atom separa-
tions (not shown). With respect to the basis set size, for an s-basis set only,
the “normal” behaviour (Ry—1 < Rn=2) is recovered with values of R very
close to the resistance quantum of 12.9 k(2 for wires with an odd number of
electrons. That this must be the case can be easily seen by considering the
analytical results, Egs. (2.6), (2.7), reviewed at the end of the last Section.
For one atom connected to leads of the same material we have to consider
the transmission at a Fermi energy which equals Ey;. Thus T'(Ey) is always
equal to unity resulting in the universal contact resistance of 12.9 k2. For
two atoms, at E = Ey, the result for T(Ef) depends on the relative mag-
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nitude of f and A, however, and can only be smaller than or equal to the
one atom result. As expected from Eq. (6), the resistance of the single atom
with an s-state is independent of the electrode—wire separation. This can
be seen in Fig. 2(a). Thus the s-level basically acts like an ideal conduction
channel.

For an sp® basis the behaviour displayed in Figs. 1 and 2 can be better
understood by inspecting the transmission spectrum, as shown in Fig. 3.
The value the linear resistance of the wire acquires, depends sensitively on
the position of the Fermi level E; with respect to the modified eigenener-
gies of the wire. In order to distinguish between the bare eigenenergies we
have displayed the free wire density of states (DOS) together with the cor-
responding T'(E) for two different values of the electrode-wire separation.
Intuitively one would expect that Ey lies in the HOMO-LUMO gap for a
Na-dimer (the HOMO is twice occupied) and would almost touch the singly
occupied HOMO in the one atom case. This picture is however only valid
in the case of a weak coupling to the electrodes, where the position of the
eigenvalues of the wire remains approximately the same as for an isolated
wire and the broadening induced by the coupling is smaller than the energy
spacing between the eigenvalues.
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Fig.2. Dependence of the resistances of the one and two-atom chains on the sep-
aration d to the reservoirs. The electronic structure of the wires was determined
using (a) an s and (b) an sp® valence basis set.
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Fig. 3. The transmission coefficient as a function of energy for one and two atoms
(using an sp? basis) between the electrodes for two different electrode—wire separa-
tions. The lowest panel shows the DOS of the isolated wires. Only the low-energy
part of the spectra is shown.

For d = 6.2 ap, the eigenstates of Na; and Nay are strongly broadened
and shifted by the coupling to the leads, however. The HOMO and LUMO
(3-fold degenerate) of the single atom cannot be clearly resolved any more
but evolve into a rather broad single peak. Especially at Ey the transmis-
sion for a single atom becomes smaller than for the dimer. With increasing
distance the coupling to the electrodes is reduced and thus the renormaliza-
tion and broadening of the eigenstates become weaker. At d = 7.0 ap, the
“HOMO” and “LUMO” of the dimer are already “resolved” and the trans-
mission T'(Ey) within the gap is reduced.

In conclusion, we have studied the electrical transport trough an atomic
sodium wire as a function of the wire length and of the electrode—wire sep-
aration. The “anomalous” resistance dependence found by Lang has been
reproduced. It turns out, however, that this effect sensitively depends on
the electrode—wire separation and hence on the strength of the coupling to
the electrodes as well as on the basis set used for describing the electronic
structure of the wires. In our model the “anomalous” behaviour has been



Resistance of Atomic Sodium Wires 449

shown to be present in the strong coupling regime where renormalization of
the wire eigenvalues becomes relevant.
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