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MAGNETOCONDUCTANCE IN QUANTUMPERCOLATION�Adam Witold StadlerDepartment of Eletronis Fundamentals, Rzeszów University of TehnologyW. Pola 2, 35-959 Rzeszów, Poland(Reeived Otober 31, 2000)Quantum perolation problem on 3D simple ubi lattie under in�u-ene of external magneti �eld is disussed. Results of numerial simula-tions of magnetoondutane and its dependene on both the system size(temperature) and the onentration of metalli omponent p are presented.Qualitative agreement with theory for metals is obtained for large p, whenthe system is deloalized. For small p, when the system is loalized, theagreement with weak loalization theory preditions is suessfully veri�edas well.PACS numbers: 05.70.Jk, 71.30.+h, 72.15.Rn1. IntrodutionEletron motion may our without di�usion, �rst time suggested by An-derson [1℄, whih takes plae under some irumstanes ausing loalizationof eletron waves whih in turn manifests itself in vanishing eletrial on-dutivity at temperature T = 0 K. Nevertheless the eletron transport is stillpossible in loalized systems and is experimentally often observed in weak lo-alization region [2℄, in whih loalization length is large enough as omparedwith relevant length sales. Aording to one parameter saling theory ofloalization [3℄ eletron in noninterating disordered systems of one and twodimensions (1D and 2D) is always loalized for every strength of the disorder.In three dimensional system (3D) there exists a transition point, whih sep-arates loalized states region from deloalized one. In the latter the eletronwaves an spread out over the whole system resulting in metalli behav-ior (large ondutivity) and thus this transition is alled metal�insulator or� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (459)



460 A.W. StadlerAnderson transition. Both the energy and disorder an drive the transitionaround ritial point.At su�iently low temperatures eletron an travel oherently over longdistane. This may lead to onstrutive interferene whih manifests inbaksattering e�et. It is observed experimentally as negative temperatureorretion to the ondutivity. External magneti �eld B destroys the latterontributing in that way to positive magnetoondutivity �� (B). The for-mula for �� (B) in 3D originally given by Kawabata [4,5℄ predits for weakmagneti �eld the behavior �� (B) / B2 and �� (B) / B1=2 for strongmagneti �eld. It is often used to �t experimental data in low temperaturesand weak magneti �eld to extrat relevant time sales of the system beingonsidered. In general, sattering proesses that onern spin, spin�orbitand e�e interations obsure weak loalization. In ontrast to weak loaliza-tion, magnetoondutivity in metalli systems is negative and for small Bfollows Kohler's rule [6℄, �� (B) / �B2.The aim of this paper is to present new results onerning the in�ueneof the magneti �eld on the quantum ondutane in 3D perolation model.The motivation for this work is twofold. First, we seek a model with quan-tum e�ets whih ould explain experimentally observed very small mag-netoondutane in real metal�insulator nanoomposities like RuO2-glassthik �lms [7℄. Seond, is a desire to report on studies, being the result ofsystemati development, our earlier works onerning eletrial propertiesof disordered systems near the metal�insulator transition in the frameworkof quantum perolation. We present here the in�uene of temperature andmagneti �eld on quantum ondutane in perolation model in both weakloalization (small p) and metalli (p lose to 1) regimes. This opens aninteresting question about the role of volume fration of metalli omponentin metal�insulator nanoomposities with respet to temperature behavior ofmagnetoondutane.The paper is organized as follows. Model and desription of numerialproedure are desribed in the following setion. Then results obtained fromnumerial simulations are presented in Setion 3. Finally Setion 4 inludesonlusions. 2. Model and numerial approahWe onsider 3D site-perolation problem on a simple ubi lattie de-sribed by tight-binding one-eletron Hamiltonian with diagonal disorder ofthe form H =H0 + V =Xn jni "n hnj+Xn;m jni Vnm hmj : (1)



Magnetoondutane in Quantum Perolation 461The transfer energy Vnm vanishes unless n, m are nearest neighbors. Inquantum perolation model the onsite energy has a binary probability dis-tribution P ("n) = pÆ ("n � "A) + (1� p) Æ ("n � "B)where "A = 0 and "B = 1 and p (1 � p) is the onentration of metalli(insulating) omponent.The homogeneous magneti �eld B applied in the diretion z is intro-dued into the Hamiltonian by modi�ation of the hopping elements whihaquire phase fators [8℄. Namely,Vnm = t exp0��2�i�0 mZn A�dl1A ;where t is taken to be unit of energy, A is vetor potential in Landau gauge,A = (0; Bx; 0), x is the diretion of urrent �ow l is the path between sitesm and n on whih the eletron is exposed to the magneti �eld, and �0 isthe quantum �ux. Realling that Vnm 6= 0 only for m and n being nearestneighbors, one arrives at Vnm = t exp (�2�i�x), where � = Ba2=�0 is thefration of quantum �ux per unit ell, and a � 1 is lattie spaing.In order to alulate dimensionless ondutane g we attah two per-fet leads to the opposite sides of the sample. g is then evaluated usingmultihannel Büttiker�Landauer formula [9℄g � Ge2=h = 4 N0Xi=1 Ti! N0Xi=1 v�1i ! N0Xi=1 (1 +Ri � Ti) v�1i !�1 ; (2)where summations are over all N0 propagating quantum-mehanial han-nels in the leads. This number is determined as the number of real solutionsof the dispersion relation in the leads, E = 2t Pj=x;y;z os (kja), where kj is theomponent of wave vetor k in j diretion. At a given hannel i, the veloityvi is alulated as vi � �E�kx ���kx=kx(i) = �2t sin (kx (i) a), where kx (i) is a realsolution of the dispersion relation. Transmission and re�etion probabilitiesTi and Ri are alulated from the Fisher�Lee relations [10℄Ti = N0Xj=1 vivj jGij (R;L)j2 ; Ri = N0Xj=1 ��ipvivjGij (L;L)� Æij��2 ;where Gij (r0; r) is the one partile retarded Green's funtion (matrix) be-tween the soure at the position r in hannel j and the destination r0 in



462 A.W. Stadlerhannel i. In fat, R and L denotes bloks of the full Green's matrix relatedto sites in right (outgoing) and left (inoming) leads, respetively. Dysonequation in the form G = (I �G0V )�1G0 is used to evaluate the Green'sfuntion, where G0 = (EI �H0)�1 is the resolvent of the unperturbedsystem, whih is onvenient to be evaluated analytially.It should be mentioned at this point that in this approah the eletron isrestrited to be sattered elastially everywhere inside the model. It loosesits phase information only as it enters the leads. The latter are a distaneL away, whih in that way beomes a phase oherene length L� � thedistane over whih the eletron keeps its phase. Sine L� is known to bea strong funtion of temperature, L� / T� , where the exponent  is ofthe order of unity and haraterizes the dominant sattering mehanism,varying the size of the model orresponds to hanges in temperature.Quantum ondutane needs to be averaged over the number of real-izations of the system sine it is the random variable. Therefore 1000 re-alizations of the system with randomly distributed sattering enters weregenerated for every set of parameter like magneti �eld B, onentration p,and size of the model L. 3. ResultsResults of numerial simulations performed at �xed energy of eletronE = 0:5 for magneti �ux � from 0:001 up to 0:5 and for sizes L of the systemfrom 3 up to 12 are depited in Fig. 1. The onentration p hanges from0:4 up to 0:9. Suh range of p was hosen in order to over both regimes ofloalized states, for p < pq �= 0:44 and of deloalized states for p > pq, wherepq is the quantum perolation threshold [11℄. For extreme values of onen-tration (Figs 1(b) and 1()) where magnetoondutane �g keeps its sign,and hene log�log sale is possible to use, additional lines marked asymp-toti behavior predited by theories are added as a referene. Furthermore,arrows denoted by T point the tendeny while temperature inreases. It anbe seen from Fig. 1(a) that for p = 0:4 < pq magnetoondutane �g ispositive and in the low �eld limit it follows the relation �g / B2 whereasfor larger magneti �ux it tends to �g / B1=2. The apparent behavior is inaordane with weak loalization theory. In ontrast to that, magnetoon-dutane is negative for high onentration of metalli phase (see Fig. 1(d)),p = 0:9, and it follows Kohler's rule �g / �B2 at least for small B. Itmay be expeted that for intermediate values of p behavior of �g would besuperposition of the above two. Indeed, for p = 0:6 (Fig. 1(b)) and p = 0:7(Fig. 1()) the magnetoondutane hanges its sign when magneti �uxinreases. The value of � at whih this hange takes plae depends on p.Namely, the larger p the smaller � at whih �g hanges its sign. In these
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�Fig. 1. Magnetoondutane �g versus magneti �ux � for various ontent ofmetalli phase: (a) p = 0:4, (b) p = 0:6, () p = 0:7, (d) p = 0:9. Series fordi�erent sizes L of the system are shown. Lines marked as being proportional toB2 and B1=2 are inluded as a referene. Arrows point tendeny when temperatureT inreases. Magnetoondutane is positive for p = 0:4 (Fig. 1(a)) and negativefor p = 0:9 (Fig. 1(d)) in studied span of magneti �ux. It hanges its sign forintermediate values of onentration p (Figs 1(b) and 1()) hene the sales arelinear in these ases. Lines onneting points are added to guide an eye.



464 A.W. Stadlertwo ases (Figs 1(b) and 1()) loalized-like behavior is observed for small �whereas for large � metalli-like behavior is dominated. Suh behavior man-ifests due to the fat that magneti �eld destroys onstrutive interfereneand beause of that loalization disappears as well.4. ConlusionsWe have shown that quantum-perolation model gives result in aor-dane to weak loalization theory. Namely for small values of metalli phaseontent, the relation �� / B2 and �� / B1=2 hold for small and largeB, respetively. On the other hand for high metal onentration, p � 1,magnetoondutane follows Kohler's rule, �� / �B2.As it was mentioned earlier, the larger L the smaller the temperature(Fig. 1). Therefore it is interesting to �nd size dependene of magnetoon-dutane. Fig. 2 presents �g versus L for p = 0:4 (a) and p = 0:6 (b)depited for various (but small) magneti �uxes. The strength of this re-lationship is expressed as a slope of linear approximation in log�log salefor � = 0:001. Note that this value of � was hosen in order to illustratebehavior of the system in weakly loalized regime. We get the slope of 3:3for p = 0:4 and 4:4 for p = 0:6. These values bring us up to on interestingonlusion. Provided that for both onentrations the exponent in L� on T
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