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Quantum percolation problem on 3D simple cubic lattice under influ-
ence of external magnetic field is discussed. Results of numerical simula-
tions of magnetoconductance and its dependence on both the system size
(temperature) and the concentration of metallic component p are presented.
Qualitative agreement with theory for metals is obtained for large p, when
the system is delocalized. For small p, when the system is localized, the
agreement with weak localization theory predictions is successfully verified
as well.
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1. Introduction

Electron motion may occur without diffusion, first time suggested by An-
derson [1]|, which takes place under some circumstances causing localization
of electron waves which in turn manifests itself in vanishing electrical con-
ductivity at temperature T' = 0 K. Nevertheless the electron transport is still
possible in localized systems and is experimentally often observed in weak lo-
calization region [2], in which localization length is large enough as compared
with relevant length scales. According to one parameter scaling theory of
localization [3] electron in noninteracting disordered systems of one and two
dimensions (1D and 2D) is always localized for every strength of the disorder.
In three dimensional system (3D) there exists a transition point, which sep-
arates localized states region from delocalized one. In the latter the electron
waves can spread out over the whole system resulting in metallic behav-
ior (large conductivity) and thus this transition is called metal-insulator or
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Anderson transition. Both the energy and disorder can drive the transition
around critical point.

At sufficiently low temperatures electron can travel coherently over long
distance. This may lead to constructive interference which manifests in
backscattering effect. It is observed experimentally as negative temperature
correction to the conductivity. External magnetic field B destroys the latter
contributing in that way to positive magnetoconductivity Ao (B). The for-
mula for Ao (B) in 3D originally given by Kawabata [4,5] predicts for weak
magnetic field the behavior Ao (B) « B? and Ao (B) « B'/? for strong
magnetic field. It is often used to fit experimental data in low temperatures
and weak magnetic field to extract relevant time scales of the system being
considered. In general, scattering processes that concern spin, spin—orbit
and e—e interactions obscure weak localization. In contrast to weak localiza-
tion, magnetoconductivity in metallic systems is negative and for small B
follows Kohler’s rule [6], Ao (B) o —B2.

The aim of this paper is to present new results concerning the influence
of the magnetic field on the quantum conductance in 3D percolation model.
The motivation for this work is twofold. First, we seek a model with quan-
tum effects which could explain experimentally observed very small mag-
netoconductance in real metal-insulator nanocomposities like RuOs-glass
thick films [7]. Second, is a desire to report on studies, being the result of
systematic development, our earlier works concerning electrical properties
of disordered systems near the metal-insulator transition in the framework
of quantum percolation. We present here the influence of temperature and
magnetic field on quantum conductance in percolation model in both weak
localization (small p) and metallic (p close to 1) regimes. This opens an
interesting question about the role of volume fraction of metallic component
in metal-insulator nanocomposities with respect to temperature behavior of
magnetoconductance.

The paper is organized as follows. Model and description of numerical
procedure are described in the following section. Then results obtained from
numerical simulations are presented in Section 3. Finally Section 4 includes
conclusions.

2. Model and numerical approach

We consider 3D site-percolation problem on a simple cubic lattice de-
scribed by tight-binding one-electron Hamiltonian with diagonal disorder of
the form

H=H)+V =) |n)en(n|+ ) |n)Vam(m]|. (1)

n,m
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The transfer energy Vym, vanishes unless n, m are nearest neighbors. In
quantum percolation model the onsite energy has a binary probability dis-
tribution

P(en)=pd(en —ca)+ (1 —p)d(en —eB)

where €4 = 0 and egp = oo and p (1 — p) is the concentration of metallic
(insulating) component.

The homogeneous magnetic field B applied in the direction z is intro-
duced into the Hamiltonian by modification of the hopping elements which
acquire phase factors [8|. Namely,

21

Voam =1t exp ——/Adl ,

where £ is taken to be unit of energy, A is vector potential in Landau gauge,
A = (0,Bz,0), = is the direction of current flow I is the path between sites
m and n on which the electron is exposed to the magnetic field, and ¢g is
the quantum flux. Recalling that Vi, # 0 only for m and n being nearest
neighbors, one arrives at Vpy, = texp (+2miaz), where a = Ba?/¢y is the
fraction of quantum flux per unit cell, and a = 1 is lattice spacing.

In order to calculate dimensionless conductance g we attach two per-
fect leads to the opposite sides of the sample. g is then evaluated using
multichannel Biittiker-Landauer formula [9]

ea/h—‘l(ZT) (Zv )(i +Ri—n)v;1>l, (2)

=1

where summations are over all Ny propagating quantum-mechanical chan-
nels in the leads. This number is determined as the number of real solutions
of the dispersion relation in the leads, £ =2t 3 cos (kja), where k; is the
J=2:Y,2
component of wave vector k in j direction. At a given channel ¢, the velocity
v; is calculated as v; = gTE A = —2tsin (ky (7) a), where k; (i) is a real
T lky=ky (2
solution of the dispersion relation. Transmission and reflection probabilities
T; and R; are calculated from the Fisher—Lee relations [10]

No
T; =) vw; |Gy (R.L)*, Ri= Z\ i/ Gij (L, L) — 35,
Jj=1 j=1

where G (r',r) is the one particle retarded Green’s function (matrix) be-
tween the source at the position r in channel j and the destination 7’ in
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channel 7. In fact, R and L denotes blocks of the full Green’s matrix related
to sites in right (outgoing) and left (incoming) leads, respectively. Dyson
equation in the form G = (I — GoV) ' Gy is used to evaluate the Green’s
function, where Gy = (EI — Hg) ' is the resolvent of the unperturbed
system, which is convenient to be evaluated analytically.

It should be mentioned at this point that in this approach the electron is
restricted to be scattered elastically everywhere inside the model. It looses
its phase information only as it enters the leads. The latter are a distance
L away, which in that way becomes a phase coherence length Ly — the
distance over which the electron keeps its phase. Since Ly is known to be
a strong function of temperature, Ly oc T77, where the exponent v is of
the order of unity and characterizes the dominant scattering mechanism,
varying the size of the model corresponds to changes in temperature.

Quantum conductance needs to be averaged over the number of real-
izations of the system since it is the random variable. Therefore 1000 re-
alizations of the system with randomly distributed scattering centers were
generated for every set of parameter like magnetic field B, concentration p,
and size of the model L.

3. Results

Results of numerical simulations performed at fixed energy of electron
E = 0.5 for magnetic flux a from 0.001 up to 0.5 and for sizes L of the system
from 3 up to 12 are depicted in Fig. 1. The concentration p changes from
0.4 up to 0.9. Such range of p was chosen in order to cover both regimes of
localized states, for p < pq = 0.44 and of delocalized states for p > pq, where
Pq is the quantum percolation threshold [11]. For extreme values of concen-
tration (Figs 1(b) and 1(c)) where magnetoconductance Ag keeps its sign,
and hence log-log scale is possible to use, additional lines marked asymp-
totic behavior predicted by theories are added as a reference. Furthermore,
arrows denoted by T point the tendency while temperature increases. It can
be seen from Fig. 1(a) that for p = 0.4 < p, magnetoconductance Ag is
positive and in the low field limit it follows the relation Ag x B? whereas
for larger magnetic flux it tends to Ag B'/2_ The apparent behavior is in
accordance with weak localization theory. In contrast to that, magnetocon-
ductance is negative for high concentration of metallic phase (see Fig. 1(d)),
p = 0.9, and it follows Kohler’s rule Ag ox —B? at least for small B. Tt
may be expected that for intermediate values of p behavior of Ag would be
superposition of the above two. Indeed, for p = 0.6 (Fig. 1(b)) and p = 0.7
(Fig. 1(c)) the magnetoconductance changes its sign when magnetic flux
increases. The value of a at which this change takes place depends on p.
Namely, the larger p the smaller a at which Ag changes its sign. In these
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Fig.1. Magnetoconductance Ag versus magnetic flux « for various content of
metallic phase: (a) p = 04, (b) p = 0.6, (¢) p = 0.7, (d) p = 0.9. Series for
different sizes L of the system are shown. Lines marked as being proportional to

B? and B'/? are included as a reference. Arrows point tendency when temperature

T increases. Magnetoconductance is positive for p = 0.4 (Fig. 1(a)) and negative
for p = 0.9 (Fig. 1(d)) in studied span of magnetic flux. It changes its sign for
intermediate values of concentration p (Figs 1(b) and 1(c)) hence the scales are
linear in these cases. Lines connecting points are added to guide an eye.
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two cases (Figs 1(b) and 1(c)) localized-like behavior is observed for small «
whereas for large o metallic-like behavior is dominated. Such behavior man-
ifests due to the fact that magnetic field destroys constructive interference
and because of that localization disappears as well.

4. Conclusions

We have shown that quantum-percolation model gives result in accor-
dance to weak localization theory. Namely for small values of metallic phase
content, the relation Ao o« B2 and Ao « B'/? hold for small and large
B, respectively. On the other hand for high metal concentration, p = 1,
magnetoconductance follows Kohler’s rule, Ao o< —B2.

As it was mentioned earlier, the larger L the smaller the temperature
(Fig. 1). Therefore it is interesting to find size dependence of magnetocon-
ductance. Fig. 2 presents Ag versus L for p = 0.4 (a) and p = 0.6 (b)
depicted for various (but small) magnetic fluxes. The strength of this re-
lationship is expressed as a slope of linear approximation in log—log scale
for a = 0.001. Note that this value of a was chosen in order to illustrate
behavior of the system in weakly localized regime. We get the slope of 3.3
for p = 0.4 and 4.4 for p = 0.6. These values bring us up to on interesting
conclusion. Provided that for both concentrations the exponent in Ly on T
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Fig. 2. Magnetoconductance Ag versus system size L for different content of metal-
lic phase: (a) p = 0.4, (b) p = 0.6. Results for various magnetic fluxes « are shown.
Data for a = 0.001 (weak magnetic field) are fitted by the straight line. The slopes
of the fitting lines are: 3.3 for p = 0.4, 4.4 for p = 0.6.
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dependence is kept the same, we conclude that for smaller p the influence of
temperature on magnetoconductance is weaker. It may be useful in practical
applications since it points out the direction in development of temperature
and/or magnetic field sensors based on highly disordered materials.

The author is indebted to A. Kolek for helpful discussions. The work
was supported by the Polish State Committee for Scientific Research (KBN)
grant No. 8T11B05515.
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