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SCALING CONDUCTANCE ON RANDOM FRACTAL*

A. KOLEK, G. HALDAS AND A.W. STADLER

Department of Electronics Fundamentals, Rzeszéw University of Technology
W. Pola 2, 35-959 Rzeszow, Poland

(Received October 31, 2000)

In the paper we use numerical simulations to show that superlocaliza-
tion of electronic wave functions takes place on fractal objects also for en-
ergies E from the band. Finite size scaling of conductance g versus system
size L reveals that (In g) scales as L. The values of localization exponent
dy we found in 2D are 1.138(3) for the state in the middle of the band
E = 0.5t, and 1.144(3) for the state near the lower band edge F = —3.5¢.
These values are in good agreement with the conjecture dy = (;, where
is the chemical length exponent.

PACS numbers: 72.15.Rn, 73.23.-b

1. Introduction

A lot of physical systems exhibit fractal geometry at least over a limited
range of length scales. One important example is the percolation cluster,
which within the scale ¢, — the percolation correlation length — behaves
as a fractal. As the percolation threshold is approached, ¢, diverges and
the system has the fractal geometry even up to macroscopic scales. In 1987
Levy and Souillard [1] suggested that tortuous fractal geometry makes the
spatial decaying of wave functions stronger than in Euclidean geometries.
Namely, the mean amplitudes behave like

—pds

|4 (r)] ~ exp g (1)

where r is the distance from the center of the wave function 1, & is the
localization length and dy is the localization exponent. It was then proven
theoretically that for percolation cluster the localization exponent should
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lie inside the interval 1 < dg < (; [2]. The upper bound of this interval is
the exponent ¢; which describes scaling of the average chemical length (the
shortest path) [ measured along the fractal between two points separated by
Euclidean distance r

(1) ~ et (2)

The physical meaning of Eq. (1) is now more clear. Rewriting Eq. (1) as
|1h(r)| ~ exp(—(l)/&) we conclude that electron, when put onto the fractal
object, “feels” topological distance [ rather then “air” distance r. This was
rigorously proven for deep states on the percolation cluster for which the re-
lation dg = (; is expected [2]. For states within the band only the inequality
1 <dg < (; holds [2|. Less agreement concerns numerically obtained values
of this exponent. Most numerical simulations are in accord with dy =1 i.e.
no superlocalization is observed [3-5|. The only exception is that of Lambert
and Hughes [6] which gives dy = (;. It is now believed that this disagreement
is caused by different kind of averages used by different authors [7-10]. Most
of them use arithmetic averaging (|1|), whereas the proper average in order
to observe superlocalization is either logarithmic average (In |1)|) or average
over few (typical) cluster configurations. Indeed in Ref. [6] the averaging
of fractons was used. However, the typical average over few configurations
taken by deVries et al. [3] still gives dy = 1.

Almost all numerical studies use direct calculations of electron or frac-
ton wave functions. Superlocalized wave functions make conductance “su-
perlocalized”

—9pds

3 (3)

and one would expect that it is possible to study this phenomenon via cal-
culations of the conductance. The only such approach was by Zhang and
Sheng [11]. They used the finite size scaling method but did not find any evi-
dence of superlocalization: dg = 1 was obtained. On the one hand this result
is not in contradiction to the theory since the calculations were performed
for E' = 0.5t i.e. within the bound, where the theory says only 1 < dg. On
the other hand the direct calculations of fractons inside the band by Bunde
et al. [8] are consistent with dg = (.
Summing up the still open questions are:

g~ (r)]* ~ exp

1) Is it possible to find superlocalization via calculations of the conduc-
p p
tance?

(i) Do states within the band obey or not the phenomenon of superlocal-
ization? And if so,

(iii) how the energy influences the value of the localization exponent dgy?



Scaling Conductance on Random Fractal 469

These are also the main topics of our paper. We use numerical simula-
tions to answer the above questions. The paper is organized as follows. In
the next section we describe details of numerical calculation. In Section 3
results of large-scale simulations performed on two dimensional percolation
cluster are reported. Eventually, we end up with the concluding section.

2. Method of calculations

We consider site percolation on the square lattice in d = 2 space. The
fraction p = p. = 0.593 of the sites is randomly occupied by zero energies
whereas the rest of them are removed. Linear size of the sample L is mea-
sured in units of lattice spacing. Perfect metallic electrodes are attached
to opposite edges of the sample. Hard walls are assumed on the remaining
two edges. For such a model one-electron tight-binding Hamiltonian is as

follows:
H="Y"|n)enln| + > In)t(ml, (4)

where the second sum runs only over occupied nearest neighbor sites n and
m and ¢ is the hopping element. To calculate dimensionless conductance of
the sample we use multichannel Landauer—Biittiker formula [12,13]

ZfLTzZ?L U;1 (5)
S+ Ri =T,

where m is the number of quantum channels (modes) in the leads, T; and R;
are calculated by summation the transmission and reflection matrices over m
and wv; is velocity in the channel 7. The transmission and reflection matrices
have been calculated with the help of Green’s function method [14].

3. Finite size scaling

The calculations we have performed use the finite size scaling technique.
The conductance g was calculated for increasing lattice size L. The calcu-
lations have been done for two energies inside the band, one in the middle
of the band, ' = 0.5¢, and the other for deeper states near the lower band
edge, £ = —3.5t. The population of the samples in both cases was 50000,
so it took more than a week to collect one set of the data in the range from
L = 4 to L = 80 with unit step. Results of these simulations are shown
in Fig. 1 where (Ing) is plotted versus L. The curvature one may observe
in these plots indicates deviations from “pure” exponential localization. In-
deed, fitting with Eq. (3) gives localization exponent: dy, = 1.144(3) for
E = —3.5t and dy = 0.138(3) for & = 0.5¢. In order to ensure whether
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Fig. 1. Averaged logarithm of conductance (In g) versus size L of the lattice. Cal-

culations are made for for E = —3.5¢ (circles) and for E = 0.5¢ (squares). In both

cases the population of the samples was 50000. Lines are the fit to Eq. (3). The fit-

ting parameters are dg = 1.144(3), & = 0.68(1), for E = —3.5¢ and dg = 0.138(3),

& = 5.13(6), for E = 0.5¢.

the measured exponents are not the effect of finite size of our samples we
have repeated the fittings in the ranges L > 20 and L > 30. In both cases
the change of dy was less than 5%. This strongly supports the existence
of superlocalization on percolation cluster and proves that it is possible to
observe it via calculations of conductance.

Our estimates of exponent dy are very close to the upper bound ¢; of
theoretically acceptable values of this exponent. For the latter the recent
estimates are (; = 1.13 [15], and 1.15 [16,17|. Thus we may conclude that
the conjecture dy = (; is valid also for the states inside the band.

The case of E = 0.5¢ was also the matter of calculations of Zhang and
Sheng [11]. So the direct comparison of numerical data is possible. In
general their data, while the same as ours for small sizes, (for L = 15 both
they and we have (In g) ~ —2.8) are a bit larger than ours for large sizes. For
L =75 they have (Ing) ~ —21.5 whereas our value is —24. This is reflected
in slightly different values of localization length calculated from the data.
They found & = 3.30 comparing to our value of & = 5.13. As we have
already mentioned also the values of exponent dy are different. We think
that these discrepancies are caused mainly by relatively small population of
the samples they used to calculate the averages.
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4. Conclusions

The main conclusion is that the conjecture dy = (;, which originally
was derived for the states that are deep below the band of extended states,
holds also for the states inside the band. Another conclusion is that the
phenomenon of superlocalization can be observed in the size dependence
of the conductance. To our knowledge our simulations are the first which
confirm these conclusions so clearly. To end up let us mention that the
phenomenon we have discussed above is not of minor importance. This is
because of its relevance to variable range hopping (VRH). The superlocalized
behavior of electronic wave functions leads to the conclusions that VRH
on fractal objects is described by the relation o ~ exp(—(Tp/T)") with
v = dg/(dy + D), D is the fractal dimension [18] rather than ordinary
Mott’s law with exponent v = 1/(1 + d).

The work was supported by the Polish State Committee for Scientific
Research (KBN) grant No. 8T11B05515.
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