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SCALING CONDUCTANCE ON RANDOM FRACTAL�A. Kolek, G. Haªda± and A.W. StadlerDepartment of Eletronis Fundamentals, Rzeszów University of TehnologyW. Pola 2, 35-959 Rzeszów, Poland(Reeived Otober 31, 2000)In the paper we use numerial simulations to show that superloaliza-tion of eletroni wave funtions takes plae on fratal objets also for en-ergies E from the band. Finite size saling of ondutane g versus systemsize L reveals that hln gi sales as Ld� . The values of loalization exponentd� we found in 2D are 1:138(3) for the state in the middle of the bandE = 0:5t, and 1:144(3) for the state near the lower band edge E = �3:5t:These values are in good agreement with the onjeture d� = �l, where �lis the hemial length exponent.PACS numbers: 72.15.Rn, 73.23.�b1. IntrodutionA lot of physial systems exhibit fratal geometry at least over a limitedrange of length sales. One important example is the perolation luster,whih within the sale �p � the perolation orrelation length � behavesas a fratal. As the perolation threshold is approahed, �p diverges andthe system has the fratal geometry even up to marosopi sales. In 1987Levy and Souillard [1℄ suggested that tortuous fratal geometry makes thespatial deaying of wave funtions stronger than in Eulidean geometries.Namely, the mean amplitudes behave likej (r)j s exp �rd��l ; (1)where r is the distane from the enter of the wave funtion  , �l is theloalization length and d� is the loalization exponent. It was then proventheoretially that for perolation luster the loalization exponent should� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (467)



468 A. Kolek, G. Haªda±, A.W. Stadlerlie inside the interval 1 � d� � �l [2℄. The upper bound of this interval isthe exponent �l whih desribes saling of the average hemial length (theshortest path) l measured along the fratal between two points separated byEulidean distane r hli s r�l : (2)The physial meaning of Eq. (1) is now more lear. Rewriting Eq. (1) asj (r)j s exp(�hli=�l) we onlude that eletron, when put onto the fratalobjet, �feels� topologial distane l rather then �air� distane r. This wasrigorously proven for deep states on the perolation luster for whih the re-lation d� = �l is expeted [2℄. For states within the band only the inequality1 � d� � �l holds [2℄. Less agreement onerns numerially obtained valuesof this exponent. Most numerial simulations are in aord with d� = 1 i.e.no superloalization is observed [3�5℄. The only exeption is that of Lambertand Hughes [6℄ whih gives d� = �l. It is now believed that this disagreementis aused by di�erent kind of averages used by di�erent authors [7�10℄. Mostof them use arithmeti averaging hj ji, whereas the proper average in orderto observe superloalization is either logarithmi average hln j ji or averageover few (typial) luster on�gurations. Indeed in Ref. [6℄ the averagingof fratons was used. However, the typial average over few on�gurationstaken by deVries et al. [3℄ still gives d� = 1.Almost all numerial studies use diret alulations of eletron or fra-ton wave funtions. Superloalized wave funtions make ondutane �su-perloalized� g s j (r)j2 s exp �2rd��l (3)and one would expet that it is possible to study this phenomenon via al-ulations of the ondutane. The only suh approah was by Zhang andSheng [11℄. They used the �nite size saling method but did not �nd any evi-dene of superloalization: d� = 1 was obtained. On the one hand this resultis not in ontradition to the theory sine the alulations were performedfor E = 0:5t i.e. within the bound, where the theory says only 1 � d�. Onthe other hand the diret alulations of fratons inside the band by Bundeet al. [8℄ are onsistent with d� = �l.Summing up the still open questions are:(i) Is it possible to �nd superloalization via alulations of the ondu-tane?(ii) Do states within the band obey or not the phenomenon of superloal-ization? And if so,(iii) how the energy in�uenes the value of the loalization exponent d�?



Saling Condutane on Random Fratal 469These are also the main topis of our paper. We use numerial simula-tions to answer the above questions. The paper is organized as follows. Inthe next setion we desribe details of numerial alulation. In Setion 3results of large-sale simulations performed on two dimensional perolationluster are reported. Eventually, we end up with the onluding setion.2. Method of alulationsWe onsider site perolation on the square lattie in d = 2 spae. Thefration p = p = 0:593 of the sites is randomly oupied by zero energieswhereas the rest of them are removed. Linear size of the sample L is mea-sured in units of lattie spaing. Perfet metalli eletrodes are attahedto opposite edges of the sample. Hard walls are assumed on the remainingtwo edges. For suh a model one-eletron tight-binding Hamiltonian is asfollows: H =Xn jni"nhnj+Xn;m jnithmj ; (4)where the seond sum runs only over oupied nearest neighbor sites n andm and t is the hopping element. To alulate dimensionless ondutane ofthe sample we use multihannel Landauer�Büttiker formula [12, 13℄g = 4 Pmi=1 TiPmi=1 v�1iPmi=1(1 +Ri � Ti)v�1i ; (5)where m is the number of quantum hannels (modes) in the leads, Ti and Riare alulated by summation the transmission and re�etion matries over mand vi is veloity in the hannel i. The transmission and re�etion matrieshave been alulated with the help of Green's funtion method [14℄.3. Finite size salingThe alulations we have performed use the �nite size saling tehnique.The ondutane g was alulated for inreasing lattie size L. The alu-lations have been done for two energies inside the band, one in the middleof the band, E = 0:5t, and the other for deeper states near the lower bandedge, E = �3:5t. The population of the samples in both ases was 50000,so it took more than a week to ollet one set of the data in the range fromL = 4 to L = 80 with unit step. Results of these simulations are shownin Fig. 1 where hln gi is plotted versus L. The urvature one may observein these plots indiates deviations from �pure� exponential loalization. In-deed, �tting with Eq. (3) gives loalization exponent: d� = 1:144(3) forE = �3:5t and d� = 0:138(3) for E = 0:5t. In order to ensure whether
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Fig. 1. Averaged logarithm of ondutane hln gi versus size L of the lattie. Cal-ulations are made for for E = �3:5t (irles) and for E = 0:5t (squares). In bothases the population of the samples was 50000. Lines are the �t to Eq. (3). The �t-ting parameters are d� = 1:144(3), �l = 0:68(1), for E = �3:5t and d� = 0:138(3),�l = 5:13(6), for E = 0:5t.the measured exponents are not the e�et of �nite size of our samples wehave repeated the �ttings in the ranges L > 20 and L > 30. In both asesthe hange of d� was less than 5%. This strongly supports the existeneof superloalization on perolation luster and proves that it is possible toobserve it via alulations of ondutane.Our estimates of exponent d� are very lose to the upper bound �l oftheoretially aeptable values of this exponent. For the latter the reentestimates are �l = 1:13 [15℄, and 1:15 [16, 17℄. Thus we may onlude thatthe onjeture d� = �l is valid also for the states inside the band.The ase of E = 0:5t was also the matter of alulations of Zhang andSheng [11℄. So the diret omparison of numerial data is possible. Ingeneral their data, while the same as ours for small sizes, (for L = 15 boththey and we have hln gi ' �2:8) are a bit larger than ours for large sizes. ForL = 75 they have hln gi ' �21:5 whereas our value is �24. This is re�etedin slightly di�erent values of loalization length alulated from the data.They found �l = 3:30 omparing to our value of �l = 5:13. As we havealready mentioned also the values of exponent d� are di�erent. We thinkthat these disrepanies are aused mainly by relatively small population ofthe samples they used to alulate the averages.
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