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In this article we present the results of our investigations on the ground
and the first excited states of a polaron in a polar semiconductor quantum
dot in both two and three dimensions. We have also discussed the stability
of a strong-coupling bipolaron in quantum dots. We have shown that below
a critical value of the confinement length the bipolaron becomes unstable
in a quantum dot and breaks up into two individual polarons. We have
finally shown that the phonon-induced Zeeman splitting of the first excited
level of a two-dimensional parabolic quantum dot becomes strongly size
dependent below a certain size and decreases very rapidly with decreasing
dot size.

PACS numbers: 68.65.+g, 71.38.+i

1. Introduction

With the recent advent of modern fabrication techniques such as molecu-
lar beam epitaxy, nanolithographic and etching techniques and selective ion
implantation, the study of low dimensional systems has undergone a renais-
sance. It is now possible to realize ultra-small semiconductor structures with
quantum confinement of carriers in all the spatial directions. These struc-
tures are typically of the order of a few nanometers in size and are commonly
referred to as zero-dimensional objects or more technically as quantum dots.

Quantum dots contain a discrete number of electrons confined in a poten-
tial well which is generally referred to as the confining potential and possess
discrete spectra of energy levels [1-3]. If the size of the dot (d) is smaller
than the bulk Bohr exciton radius (ap), the confinement is considered to be
strong while the condition d > ap refers to the weak confinement regime [4].
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Interest in the subject of quantum dots has continued unabated for more
than a decade or so primarily for two reasons. First, it has an intrinsic
appeal because the natural length scales involved in it are of the order of
a few nanometers where the quantum effects show up in their full glory
and therefore the issues of interest in the quantum dot problems are of
fundamental nature from the point of view of basic physics. In fact, quantum
dot systems can provide excellent grounds for testing quantum mechanics.
Secondly, and perhaps more importantly, the quantum dot systems exhibit
very many new physical effects which are very interesting and are also quite
different from those of their bulk counterparts. Furthermore, quantum dot
structures can be realized in both two and three dimensions and can also be
fabricated in different shapes and sizes. This design flexibility and the novel
physical effects make quantum dot structures technologically very promising
in microelectronic devices which are ultrafast systems.

A quantum dot can be regarded as a giant atom and can hold many real
atoms and has primarily two energy scales: the confinement energy and the
repulsive Coulomb energy. As the size of an atom increases, the differences
in the energy levels due to confinement decrease faster than the Coulomb
energy. Therefore, it is expected that electron—electron interaction will be
more important in a quantum dot than in a small natural atom [3]. In a
quantum dot both the valence bond and the conduction band have discrete
energy levels. The valence band maximum can be called as the Highest
Occupied Molecular Orbital (HOMO) and the conduction band minimum
can be called as the Lowest Unoccupied Molecular Orbital (LUMO) and the
HOMO-LUMO gap is the band gap which depends on the size of the quan-
tum dot [4]. It turns out, quite expectedly, that various physical properties
of a quantum dot depend on its size. For example, smaller sized nanocrys-
tallites have higher intensity of luminescence and highly enhanced radiative
rates. Another important feature of quantum dots is that in these systems
surface effects are very important because the smaller the size of a dot, the
larger is the proportion of atoms on the surface.

As we have already mentioned, in a quantum dot the electrons do not
have any free directions. Furthermore, the de Broglie wavelength of the
electrons is of the same length scale as the confinement length. If the con-
finement lengths of a quantum dot are of the same order in all the three
directions, it is called a quasi-three-dimensional quantum dot or simply a
three-dimensional (3D) quantum dot. If the confinement length in one par-
ticular direction (say z) happens to be much smaller as compared to those
in the other two directions, then the resulting system is referred to as a
quasi-two-dimensional quantum dot. Theoretically, sometimes a quasi-two-
dimensional quantum dot is treated as a purely two-dimensional (2D) quan-
tum dot for the sake of mathematical simplicity. This approximation would
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be valid if the confinement length in the z-direction is extremely small which
may be possible if the material is extremely thin in this direction. It turns
out that the nature and details of the confining potential can be varied and
one can have desired electronic energy spectra to a great extent. The reduced
dimensionality with enormous design flexibility, the finite particle number
and the presence of comparable energy scales have made this new area of
mesoscopic systems extremely fascinating with lots of challenges and have
opened up a new frontier in condensed matter research with tremendous
potentiality to revolutionize technology.

2. Confining potential

A large number of experiments have been performed in the last few
years to explore various physical properties of quantum dot structures to
yield a wealth of data which have contributed to our understanding of these
systems in a profound way. The optical experiments of Sikorski and Merkt [5]
and Meurer et al. [6] on semiconductor quantum dots show that resonance
frequencies are more or less independent of the number of electrons (V)
in a dot which essentially implies that excitation spectrum of a quantum
dot is not influenced by the electron—electron interaction. This seems to
be a generalization of Kohn’s theorem [7] which states that the cyclotron
frequency in a translationally invariant electron system is independent of the
electron density and of the form of the electron—electron interaction. This
theorem has been found valid for quantum dots in which the confinement
potential is harmonic. We shall present here this generalized Kohn’s theorem
which is due to Peeters [8]. Let us consider a 2D parabolic quantum dot
with N electrons. The Hamiltonian of the system can be written as

H=Hy+V (2.1)
with
N o Y
25L+§z:wm+%ﬁ% (2.2)
i=1 i=1
and

N
= > u —7), (2.3)
i<j=1

where z; and y; are respectively the  and y component of the position vector
7; of the ¢-th electron, p; is the momentum of the i-th electron, w, and w,
are the frequencies of the confining parabolic potential in £ and y directions,
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respectively, and u(7; — ;) represents the Coulomb interaction between the
i-th and the j-th electrons. The noninteracting system described by Hy can
be diagonalized exactly and we get

Ho = hw, (C Cy + %) + hwy (CFC +3) (2.4)

where

7=1 7=1
N N
o= = Z _Z(mwm)1/2 '+.pj7m (26)
. = Ciw = o, xj Z—mwx , .
7=1 7=1

and we have similar expressions for C; and C,". The eigenfunctions

(LP,(lg),ny (z,y)) and eigenvalues (Er(z(i),ny) of Hy are well-known.
We have
EQ, = huwy (ng + §) + hwy (ny + 1) . (2.7)
It is easy to prove that
v.Ccx,] =0 (2.8)

for any V that depends only on the relative distance between any two par-
ticles. As a consequence of (2.8) we obtain

[H,C3,)) = £hw, ,CF, (2.9)

which implies that if ¥, ,, is an eigenstate of H with energy F,_ 5, , then
C;ELZ?M’% are also eigenstates of H with energies F, + Aw, and Cy%d?nm’ny
are eigenstates with energies E,, , =+ hwy. Thus one would conclude that
the excitation spectrum of an interacting electron system in a 2D parabolic
quantum dot consists of two sets of equidistant levels with separation equal
to the bare harmonic oscillator frequencies wg,w,. In the presence of a

uniform magnetic field B in the z-direction, we have to replace p; in (2.2) by

m7ny

i + %ffl, where A is the vector potential. In the symmetric gauge, we take

A4 = (—yi, x;,0)B/2. It is easy to show that Hy can still be diagonalized.
We get

Ho = hwy (D{ Dy + 3) + hws (D3 Dy + 3) | (2.10)
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where
ot = b{lt e £ [+ a ) -]} )
N
+ +
Dy, = Z ai 5 (), (2.12)
j=1
+ pj,
aio(d) = w12 {mj (—wis+ w; + %‘*’2) + ZmZ;; (—w%2 + w;)
. We 2 2 Pjy
+ Zy]m (w172 + (/Jy) — ch} s (213)
with
mw 1/2 9
Ul = ( 27;’2> [(wiQ - wz) + wzwgﬂ , (2.14)
and
B
We = e_ . (2.15)
mc

[a; (j) . af (4)] ; 1, fors=1,2. (2.17)
Now again one can show that
[V, ng] ~0, (2.18)
so that we get
|1, Dy | = % 2 DF, (2.19)

Thus also in the presence of a magnetic field the separation of the energy
levels of a system of interacting electrons in a parabolic quantum dot is
identical to that in the absence of the Coulomb interaction. This seems
to be true only for parabolic confinement. Therefore, the electron-number
independent resonance frequencies obtained from optical measurements on
semiconductor quantum dots imply that the confining potentials in these
systems are almost parabolic.
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3. Theoretical investigations

A large number of theoretical investigations on quantum dots have been
reported in the literature in the last few years. One of the main aims of
these studies has been to obtain the electronic energy spectrum. Several
variational calculations have been performed to study the effect of confine-
ment and Coulomb interactions. Maksym and Chakraborty [9] have in-
vestigated the role of electron—electron interaction in a quantum dot in a
magnetic field by exact numerical diagonalization. They have obtained a
rich structure in the electronic energy spectrum but the optical excitation
energies of a parabolic quantum dot have indeed turned out to be the same
as those of a single electron. This makes the interaction effects difficult to
observe. Maksym and Chakraborty have however suggested that one should
look for thermodynamic quantities which can show the electron—electron in-
teraction effects. They have indeed calculated the specific heat which shows
oscillations as a function of the magnetic field. The exact numerical diag-
onalization method is however computationally extensive and also suffers
from the convergence problem. Approximate many body calculations based
on Hartree method and Hartree-Fock method have also been performed
[10]. Hartree method however neglects all correlations while Hartree-Fock
method neglects Coulomb correlations.

Sometimes it is useful to consider instead of the actual problem a model
problem which is simple enough to admit an exact solution but contains
the essential features of the actual problem. Johnson and Payne [11] have
made an attempt in this direction and their model calculation provides exact
excitation spectra which show complex crossing as a function of the electron—
electron interaction which is similar to the full numerical calculation. Later,
several investigations [12] based on this exactly soluble model have also
followed.

Besides electronic properties, the optical properties of quantum dots have
also been studied by a number of authors. In fact recent years have witnessed
a flurry of investigations in this area and a great deal of literature with
extremely rich data has piled up.

4. Polaronic effects in quantum dots

A number of authors have studied the role of phonons and the effect
of Electron-Longitudinal-Optical (LO) phonon interaction on various elec-
tronic properties of polar semiconductor quantum dots. Since most of the
quantum dots available today are made of polar semiconductors, it would
be natural to expect the formation of polarons in these systems. A polaron
may be envisaged as a complex consisting of an electron together with the
lattice distortion induced by it. Since the distortion of a lattice means exci-
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tation of phonons, a polaron is essentially an electron dressed with a bunch
of virtual phonons. In the present section we shall first present the model
for the quantum dot polaron problem and then study the effect of polaronic
interaction on the Ground State (GS) and the first Excited State (ES) ener-
gies of an electron in a parabolic quantum dot using a variational method.
For the sake of generality we shall formulate the problem in N-dimensions
and obtain results in two and three dimensional dots as special cases.

4.1. The model

The Hamiltonian for the N-Dimensional (N-D) symmetric parabolic
Quantum Dot (QD) polaron problem can be written by generalizing the
Frohlich polaron Hamiltonian as

H' = H),, + Hy, + Hy, (4.1)
with
! h2 2 1 al 2 2
Hpar = —%VW + §m;wpixi , (42)
b = Two Y blabg (4.3)
7
Hiy = Y (6re™ bty + hue), (4.4)

!

q

where all vectors are N-dimensional, 7(z],z - - - 2'y) refers to the position
vector of the electron, m is it Bloch effective mass, wp; is the frequency
of the confining parabolic (harmonic) potential corresponding to the i-th
direction, wy is the LO phonon frequency which is assumed to be dispersion-
less, b' 7 (by) is the creation (annihilation) operator for a longitudinal-optical
phonon of wave vector ¢' and ¢z is the electron—phonon interaction coeffi-
cient for which we shall use the prescription of Peeters et al. [13]. It is
convenient to use the dimensionless Feynman units in which the energy is

1/2
scaled by hwq, lengths are scaled by rg = (L) and wave vectors by

mwo
qo = (%)1/2. This scaling is equivalent to putting i = m = wg = 1. In
Feynman units the Hamiltonian (4.1) reads

!

H = th = Hpar + th + Hep ) (45)
where
H' 1 1
Hpar = h(i):)r = —§V72:‘+ 5 Zw?m?, (4.5&)
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!
Hpn

_ _ t o
Hyn = 5os =2 blabs. (4.5b)
q
H,, = Ao _ § (& T 4+ h 4.5
o = 7o (&qe g+ .C.). (4.5¢)
0 7

In Eq. (4.5) everything is dimensionless, the dimensionless electron position
vector 7(z1,z9---zy) and the phonon wave vector ¢ are given by

= =
= i=<, (4.6)

o q0
the dimensionless frequency w; of the confining potential is given by w; = Z’:}’

and ¢, is given by
1/2
’ r <E) o(N=3/2) _(N~1)/2
, 2

-7 _ . 4.7
fq ﬁu]() ? VNqN_l « ’ ( )

where Vy is the dimensionless volume of the N-dimensional dot and « is the
dimensionless electron—phonon coupling constant. In what follows we shall
consider a symmetric QD for which we have

Wpl =Wp2 = =+ = Wp, (4.8)
or in dimensionless units
Wi =Wy =+ = Wy =W, (4.9)
so that the Hamiltonian (4.5) becomes

1 1
H = _EV% + §w2r2 —+ Z btq‘bq“i‘ Z <£q‘efzq.rb]‘q‘+ hC) . (410)
q 7

4.2. The Lee-Low-Pines—Gross (LLPG) method

A number of approximate solutions of the Hamiltonian (4.10) have been
reported in the literature in recent times (see [14] and references therein). We
shall discuss here a variational technique[15] which is a modification of the
canonical transformation method of Lee, Low and Pines [16] introduced first
by Gross [17] in the free polaron problem and later used by Takeguhara and
Kasuya [18] for the 3D bound polaron problem. This method admits a simple
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and straight-forward generalization to N dimensions [19]. We shall therefore
make an N-dimensional formulation and obtain results for N = 2 and N = 3
as special cases. We shall show that it is possible to extract using this method
information about both the effective mass excited states and relaxed excited
states [20]. In this method one first employs the transformation

-

q

U(7) = exp [Z { fa(Pblg— f;(ﬂbq-}], (4.11)

where f,(7) is a function of both ¢'and 7 and has to be obtained variationally.
The Hamiltonian (4.10) then transforms into

H = U 'HU
22 TN R
P+ b [ fo()]

1
2
q
N g 5 fE )+ S bR £ (M)
q q

—S "0l f1(P) 5+ S b bl g [ £ - [ £ (7)]

=2 Plabg P £ [i?q,qf; G)
- ;I b b alp, £ (7)] - 7, f()
@
3 baba 7 S50 15 1500 | +
+ i(bfw 13())(bg + £4(7)
+zq; {fqe‘iq"* (b g + f7 (7)) + h.c.} : (4.12)

where 1%' = —4V and we have used the condition

PRGN G AN HGIIEN (4.13)
q
which implies that the current due to the displacement of the phonon field
is zero in the confined state. The LLPG variational energy is now written
as

ENP = (0)(@™P(7)| H|2VP (7)]0) (4.14)



482 A. CHATTERJEE, S. MUKHOPADHYAY

where |0) is the unperturbed zero-phonon state and &P (7) is a real function
of the electronic coordinates. Variation of ENP with respect to [y (7) gives

{

which has to be solved to obtain f,(7). Eq. (4.10) now reduces to

7

+fq(f>}¢ND(f> = —ge TN (4.15)

1 L1 . .
END NP7V PNP () + Sw (@D (7] @D (7))

-~
S G @ @ N b} (010

2y

To make further progress, we choose #VP to be the eigenfunction of a trial
Hamiltonian H; i.e.

a2

5 V)

H@)P(7) = 5

()

= E}PolP(r). (4.17)
It then follows from Eq. (4.16) that
(@)D g0 |2))

(ENP — END +1)

OURGIEEDY

jl

|B57) . (4.18)

It then follows from Eq. (4.16) and (4.17) that
1 1

EJND = <@§VD| <—§V127+ 5(4)21"2) |¢§VD>

(@)Plge" T|2NP)

—%:; (ENP — END + 1)

‘ 2

(4.19)

In what follows we shall make a harmonic oscillator potential approxi-

mation i.e. we choose the trial potential as Vi(7) = su*r?. Then Q5§VD(7'")

and EJN D are given by

2

N 1/2
ND _
éj (F) - <7TN/22j1+j2+---+ij1!j2!...jN!)

n

X Hj, (pa1)Hjy (pas) - Hyy (poy)e =7, (4.20)
N
EfY = (i +d2+-+iv+5n’ (4.21)
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where Hj;(px;) is a Hermite polynomial. The LLPG expressions for the
ground and the first excited states are then finally given by

N N (A2 1 r(z+1
B = +—f—a‘f (fv)— +1) (4.22)
4l 2 (%) Ver(z+3)’
END:N+22 N +2 i_i F(%)
s e P ) 2Tt
% —1
/ (2N — 1)e” Mt+1_1 +gr( ) w
/ (1—6 “zt)1/2 4 NTI” (%) ('u2_1)7
(4.23)
where z = ﬁ and 1 is the dimensionless confinement length which is

1/2
given by [ = b= ﬁ where lp and 7o are defined as Iy = (i> and

T mwy,
1/2

T = _h_ /

0 = \ mwo '

The polaronic correction (AFE) to the ground state electron energy is
defined as

N

AEcs = BCY 22

where EYP has to be obtained by minimizing (4.22) with respect to z for
N =2 and N = 3. In Figs. 1 and 2 we plot (—AFE) as a function of
lop for a few selected quantum dots of polar semiconductors such as InSb,
GaAs, CdTe, CdSe and CdS. The material parameters used in the calcula-
tion have been taken from Ref. [21]. In Fig. 1 we show the behaviour for
the 3D dots while the corresponding results for the 2D dots are plotted in
Fig. 2. It is clear that polaronic effects increase with decreasing dot size and
can become extremely large if the dot-size is reduced below a few nanome-
ters. Furthermore, the polaronic effects are found in all cases stronger in
2D dots than in the corresponding 3D dots. For example, in the case of
3D CdS dot, AE = —22.29 meV, for Iy = 40 A while for the corresponding
2D dot, AEF = —35.13 meV for the same value of [y. Furthermore, as the
confinement length is reduced from 40 A to 20 A, the decrease in AE in the
case of 3D CdS dot is —28.25 meV while that in the corresponding 2D case
is —44.7 meV.
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Fig.1. Polaronic corrections, —AE (in meV) to the GS energy of an electron in
InSh, GaAs, CdTe, CdSe and CdS quantum dots with parabolic confinement in
3D, as a function of the confinement length Iy (in A).
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Fig.2. Polaronic corrections, —AE (in meV) to the GS energy of an electron in
InSh, GaAs, CdTe, CdSe and CdS quantum dots with parabolic confinement in 2D

as a function of the confinement length Iy (in A).

The first excited state polaron energies for N = 2 and N = 3 have to

be obtained by minimizing (4.23) with respect to p. It may be noted that
the energy expression (4.23) has a singularity at u = 1 corresponding to the
instability of the excited state with respect to the emission of a phonon.
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In the extended state limit i.e. for [ — oo and o — 0, we obtain

s = (357) o ()
O‘\QF F;J(sz)) [1 + (NS—;}Q);P] (4.24)

which on minimization with respect to u yields

1
p? = . (4.25)

12 [ _ MF(NQ)]I/?

W T

Substituting Eq. (4.25) in (4.24) gives

_ 1/2
osirieen (nez) 1, ooz

E}]EVSDEMES = -
: 2r'(§) 2 )12 ANT(5)

which is the Effective Mass Excited State (EMES) result. Since the first ES
energy has a singularity at ;4 = 1, the minima corresponding to the effective
mass excited state would occur on the left side of the singularity. The
situation described by Eq. (4.26) is that of an undisturbed weak-coupling
polaron sitting at the first ES level of the confining parabolic potential of
the quantum dot.

In the case of localised state limit i.e. for ;1 — oo, we obtain

EN _ (Nt2) o (N+2 i_af(%)
ESLoc - 4 414 NQ QF(%)

x <1 - H) <2m%) (4.27)

which on minimization with respect to u yields

N+2\ 4 N+2\1 aF(2) 1

T —— ) —= 1-— —21In2) =0. (4.28
(F52) - (552) Sy (a0 2 =0, (425)

In the limit of strong electron—phonon coupling and weak confinement, one
can solve (4.28) approximately to obtain

Q@ 1\ (&%
h= N <1_E) Fé) : (4.29)
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Eq. (4.27) then reduces to

a2 1 2 F(b) 2
Eighes = 4N +2) <1_W> ( Fé) )

(N +2)3 1 I'(N/2)
40?1t (1- %)?

2
} — (N +2)In2 (4.30)

which is the first relaxed excited state (RES) energy in the limit of large «
and weak confinement. In the limit of strong confinement (I — 0) and small
electron—phonon coupling (a — 0), Eq. (4.28) can be approximately solved
by dropping the third term to give

2= = (4.31)

and thus in this limit the first RES energy is given by

N+2) «a 1\ (&%) /1
END _ ——(1-= 2 Z42[n2) . (4.32
ES,RES o2 2( 4N) e 7T [1n (4.32)

Since the first RES energy expressions (4.30) and (4.32) are obtained for large
values of p, the minima corresponding to these energies will be on the right
side of the singularity. It may be mentioned that relaxed excited states occur
when the localization potential for the electron arises from the combined
effect of the lattice polarization and the confining parabolic potential.

The first ES polaronic correction to the quantum dot electron energy can

be defined as
N +2

212
which as a function of ;1 would have in general two minima, one correspond-
ing to the EMES which can occur for ¢ < 1 and the other corresponding
to the RES which can occur for 4 > 1. However for the excited polaronic
states to exist, it is necessary that AFEgg is negative. We have studied the
variation of AFEgg as a function of p for both 2D and 3D dots for various
sets of values of @ and [. The typical behaviour is shown in Fig. 3 where we
have taken @ = 2 and I = 3. It is evident that in 2D, AFEgg has only one
minimum corresponding to the RES while in 3D, A Fgg has two minima, one
corresponding to the EMES and the other to the RES, the EMES being, as
expected, lower in energy. For o = 2 and [ = 1 we find that in both 2D and
3D, AFEgg shows only one minimum which occurs for g > 1 implying that
the first excited states in these cases are of RES type. Fora=2and [ =7
we find that in 2D, AFEgg shows two minima, one giving the EMES energy

AFgps = BYY —
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correction and the other giving the first RES energy correction. In 3D also
we find that there are 2 minima in the A Fgg-i curve, but the minimum for
1> 1 gives a positive polaronic energy and is therefore not acceptable. For
a = 0.5 and [ = 5.0 we find that the first ES is of EMES type in both 2D
and 3D dots. It should however be pointed out that when the minimum of
the AFgg-p curve is very close to the singularity, the energies obtained are
not very accurate and therefore in such cases even if we may obtain a small

positive value for AFgg, the RES may still possibly exist.

0.00 7

-1.00 4

-3.00 ]

AEy (in Feynman Units)
|

-4.00 4

«=2.0, 1=3.0

0.00

Fig.3. Polaronic corrections, AFgs (in Feynman units) to the ES energy of an
electron in 2D and 3D quantum dots for @« = 2 and [ = 3 as a function of the

variational parameter .

0.50 1.00 1.50 2.00 250

1.50 4
0.50

-0.50 4

E; (in Feynman units)
|

-2.50 4
o

Fig.4. EMES and RES energies (in Feynman units) of a polaron as a function of
1/1? (in Feynman units) for @ = 1.5 in 2D and 3D quantum dots. The GS polaron

050 7 1.00 1.60 2.00 250 3.00
1/ (in Feynman units)

energies are also shown for the sake of comparison.
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0.00 4%,
-1,00 ]

-2,00 ]

E; (in Feynman units)

~3,00 ]

-4,00 7
0.

Fig.5. EMES and RES energies (in Feynman units) of a polaron as a function of
« for [ = 2 in both 2D and 3D quantum dots. The GS energies are also shown for
the sake of comparison.
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Fig.6. The curve giving the critical values of a and 1/I? (in Feynman units) below
which EMES would exist in 2D and 3D quantum dots.

We have studied the behaviour of the EMES and the RES energies as a
function of l% for & = 1.5 in both two and three dimensions. The results are
shown in Fig. 4 where we have also shown the behaviour of the GS polaron
energy for the sake of comparison. In Fig. 5 we plot Egs, EE}SV[ES and EgéES
as a function of a for [ = 2 for both 2D and 3D dots. It is evident from all
these figures that the difference between the GS energy and the first RES
energy is always greater than an LO-phonon energy. It can also be noticed
that for a particular value of o the EMES ceases to exist below a certain
value of the confinement length [. Again for a given value of [ the EMES
exists only if « does not exceed a particular value. We show this behaviour
more elaborately in Fig. 6 for both 2D and 3D dots. The points lying on
the 2D and 3D curves correspond to the critical values of « and llg below
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Fig. 7. Polaronic corrections, —AEgg (in meV) to the ES energy of an electron in
2D and 3D GaAs quantum dots as a function of the confinement length I (in A).
The GS energies are also shown for the sake of comparison.

which EMES would exist in the respective dimensions. Finally, we apply
our results to realistic quantum dots. In Fig. 7 we show the behaviour of
—AFEgg for 2D and 3D GaAs quantum dot. For the sake of comparison we
have also plotted the GS polaronic energy corrections. It can be noticed
that for large values of the confinement length the first ES of a polaron in
a GaAs quantum dot is of the effective mass type. However, for a small dot
the first ES of the polaron can be described by a relaxed excited state.

5. Formation and stability of a singlet optical bipolaron
in a parabolic quantum dot

In the present section we investigate the formation and stability of a
singlet optical bipolaron in 2D and 3D parabolic quantum dots in strong
electron—phonon coupling region. We choose to work in the strong electron—
phonon coupling regime because it is well-known that in bulk systems stable
bipolarons form if « is larger than some critical value. The concept of the
bipolaron was first introduced in the polaron literature by Pekar [22] in
the early fifties and various aspects of the bipolaron have subsequently been
investigated by several authors (see [23] and references therein). A bipolaron
is a bound pair of two electrons dressed with a cloud of virtual phonons.
Normally two conduction band electrons would repel each other because
of their repulsive Coulomb interaction, but in polar materials there is an
additional interaction between electrons mediated by virtual phonons which
is attractive. If this phonon-mediated attractive interaction is large enough
to overcome the mutual Coulomb repulsion then the electrons can form a
bipolaronic bound state. The phenomenon of bipolaron formation is purely
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of quantum origin since classically the net force between the two electrons is
always repulsive, the effect of the electron-lattice polarization being merely
to reduce the strength of the Coulomb repulsion by a factor eg /e, where &g
and e4, are respectively the static and high frequency dielectric constants.
The bipolaron problem is interesting for both academic reasons and for its
practical importance in polar semiconductors and semiconducting glasses.
However, the discovery of high temperature superconductivity [24] in CuOs-
based layer ceramic materials and the subsequent proposal of bipolaronic
mechanism [25] for inducing pairing in these systems has made the bipolaron
problem all the more fascinating and brought it to the forefront of current
research.

It would also be interesting to explore the possibility of bipolaron for-
mation in quantum dots. In [26] we have studied the stability of a strong-
coupling optical bipolaron for the first time in two and three dimensional
parabolic quantum dots using the Landau—Pekar variational method. Later
the bipolaron problem in a quantum dot has also been studied by other au-
thors [27]. In what follows we present our quantum dot bipolaron model [26]
and then make an N-dimensional formulation for the bipolaron binding en-
ergy and finally discuss our numerical results.

5.1. The model

The Hamiltonian for a system of the two-electrons moving in an
N-dimensional symmetric parabolic quantum dot and interacting with LO
phonons of the system can be written as

H = —h—QV% — h—QV%: + 762 + lmw2(1"'2 + r12)
2m v 2m T2 e R = 2 Pt T2
2
iy 3 b+ > Y [epe T b +he (5.1)
7 i=1 7

where again all vectors are N-dimensional. The first two terms refer to
the kinetic energies of the two electrons, the third term describes their mu-
tual Coulomb repulsion, the fourth term gives the potential energy of the
two electrons due to the symmetric parabolic confinement, the fifth term de-
scribes the usual unperturbed phonon Hamiltonian, and the sixth term gives
the interaction of the two electrons with the LO phonon field. In Feynman’s
units (A = wyg = m = 1) the Hamiltonian (5.1) reads
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1 1 1
H = —5V% - Vi + P )+ Y bty

riy 2 -
+33 [gqe*iff-” b2+ h.c.] : (5.2)
i 7

where

ST e

5.2. Formulation

We seek a variational solution of (5.2) for a singlet bipolaron in the
strong-coupling limit. In this limit the adiabatic approximation is valid and
therefore we choose a trial wave function of the from

Wip) = |B(7, 7)) exp [Z(fqb%— f;ba)] 0)10). (5.4)

where f,’s are to be obtained variationally, |0) is the unperturbed zero-
phonon state satisfying bz/0) = 0 for all ¢, |¢) is the antisymmetric spin func-
tion for the two electrons corresponding to the singlet pairing and |®(7, 7))
is a symmetric two-electron wave function. The variational energy (Epp) is
given by

Egp = (V|H|V)
1 B
= —§<¢|V%+V3|¢)+Z|fq*|2+<¢|a|¢)
7

2
w * %
+7(@|r§ + r2|®) + 2§ (Eifeps+hc), (5.5)
q

where
pg = (BT ) (5.6)
We choose the two-electron wave function as

|P(71,72)) = ¢(71)p(72)g(71, T2, |1 — T2]), (5.7)
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with ¢ as one-electron functions and g the Coulomb correlation factor. For
¢(7) we try a Gaussian function and for the correlation factor g, we choose
a Jastrow type function so that the normalised &(7,75) can be written as

/
AN(AZ — b) 2t A2 b
|D(717)) = [ ( Nﬂ'N) - 712 €Xp [—7(7"% ‘H"%)] exp [ZT%Q] )
(5.8)
where A and b are variational parameters. Variation of the energy Epp with
respect to f, yields

fq = —284pq 5 (5.9)

where p, is given by

O R A (2o

We finally obtain for the bipolaron GS energy

N., N 1 P V2T (M)A
B = Y2y Ny L 2) ey VI
BP = gAY 2 < N) NI(Y)
1 [N N+2 &=y o
= 2R o2 2 T2 )2
T [)\2 T o ] V2 o) (" +1) a
1 3
1- 11
% [ N(t2 +1) + AN2(2 + 1)2] ’ (5:11)

where [ is as usual the dimensionless effective confinement length and A

and t (= @/)‘i\;b) are variational parameters which have to be obtained

numerically by solving the equations

8EBp . aEBP
N 0 and 5

=0. (5.12)

To obtain the stability criteria we have to find out the Binding Energy
(BE) of the bipolaron which is given by

BE = 2E, — Epp , (5.13)

where E), is the GS energy of a single strong-coupling polaron in the same
parabolic quantum dot system and should be calculated using the same
approximation as were used for the determination of Epp. E, is given by
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N N/ 1 a (821
o= 2+ (- )= 2 / 5.14

where p has to be obtained numerically from

OF,
—0. 1
o 0 (5.15)

5.3. Numerical results and discussion

We determine the bipolaron stability by demanding that the binding
energy of the bipolaron be positive. We find that binding energy of a strong-
coupling bipolaron in a quantum dot depends on two parameters. These
parameters are 1) = €4, /€9 and the confinement length [.

5.00
— 1 7n=0.01
0 E
= 400 4
[« ]
>
- ]
o) ] n=0.05

3.00
= E
[
>
) ]
L 2.00
i= ]
~ ] 7n=0.1
W 400
m ]

0.00 Frrrtrr B B R

0.00 0.50 1.00 1.50 2.00

I (in Feynman units)

Fig. 8. Binding energy of the bipolaron (BE) (in Feynman units) as a function of the
confinement length [ (in Feynman units) for different values of n(n = 0.01,0.05,0.1)
in a 3D quantum dot.

In Fig. 8 we show the variation of the bipolaron binding energy (BE) as a
function of [ for a few values of n(n = 0.01,0.05,0.1) for a 3D quantum dot.
It is clear that the binding energy decreases with the decrease in the confine-
ment length [. The variation is extremely rapid below a certain value of the
confinement length and indeed the bipolaron becomes unstable if [ is made
smaller than a critical value [.. At such confinement lengths a bipolaron
breaks up into two individual polarons. This instability of the bipolaron
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may be explained in the following way. As the effective confinement length
of the quantum dot potential decreases, the average Coulomb repulsion be-
tween the two electrons increases. If this increase in the Coulomb repulsion
with corresponding decrease in the size of the quantum dot becomes large
enough to dominate over the phonon-mediated attractive electron—electron
attraction, the formation of stable bipolarons will be inhibited. However,
when [ is large, the bipolaron binding energy does not change much with
I and hence the bipolaron stability becomes more or less independent of [.
This is essentially the bulk limit. It is also clear from the figure that the
bipolaron binding energy increases with a decrease in i which is again not
very difficult to understand. Since n = (1 — \/5%), for a given value of «, a
decrease in  means a decrease in 8 and hence a reduction in the strength of
the electron—electron Coulomb repulsion which in turn implies an increase in
the electron—electron attractive interaction. Thus a decrease in 7 would lead
to an enhancement in the bipolaron binding energy favouring the formation
of stable bipolarons. The variation of the binding energy of the bipolaron
with [ for a 2D quantum dot is qualitatively similar to that observed in 3D
dots and has not been shown here. Quantitatively however, the polaronic
interactions are stronger in 2D than in 3D and consequently, for the same
value of 7, the bipolaron binding energy is found to be larger in a 2D dot
than in 3D dot and also for a given value of 5 the critical confinement length
le is smaller for a 2D quantum dot than for the corresponding 3D dot.

6. Phonon-induced suppression of Zeeman splitting
in a polar quantum dot

In the preceding sections we have discussed the polaronic effects in quan-
tum dots. It will, however, be important to calculate polaronic effects
which can be easily measured experimentally and thus the existence or non-
existence of these effects can be substantiated unambiguously. In a recent
paper [28] we have made an attempt in this direction. The first excited
level of a 2D parabolic quantum dot potential is two-fold degenerate. This
two-fold degeneracy will be lifted in the presence of a magnetic field. This is
the so called Zeeman effect in a parabolic quantum dot. It would be indeed
interesting to study the effect of polaronic interaction on this Zeeman effect.

In recent times several authors [11,29] have studied the effect of a mag-
netic field on the electronic properties of a quantum dot. A few authors [30]
have also addressed themselves to the problem of a quantum dot electron
in a magnetic field in the presence of the electron-LO-phonon interaction.
This is the so called magnetopolaron problem in a quantum dot. In [28] we
have calculated the Zeeman splitting of the first excited level of a 2D polar
semiconductor quantum dot with parabolic confinement in the presence of
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an external magnetic field applied normal to the plane of the dot for small
a using Rayleigh—Schrodinger perturbation theory (RSPT). An all coupling
calculation has been performed by us in a subsequent work [31]. We shall
present here the RSPT solution.

6.1. The model

The Hamiltonian for a magnetopolaron in a 2D quantum dot with sym-
metric parabolic confinement can be written as

1 eA’ 1
H = %<ﬁ+ 6) + mwf)p&—i-thb -‘Ib-‘l

+3 [ere bl he] (6.1)
7
where all vectors are two dimensional, §'(z',y') and 5 = —ihiV' are respec-

tively the position vector and the momentum of the electron, e is the charge
of the electron, A’ is the vector potential and other symbols have already
been defined earher. Let us consider that the magnetic field is applied in
the z-direction and is of strength B i.e. we have B = (0,0, B). We choose
A’ such that V’. A" = 0 and work in the symmetric gauge so that A’ can be
chosen as A’ = (— +By',+B1'). Then the Hamiltonian (6.1) becomes

2 212
D eB e’B 1
TR LR mr T i T

o Y by + 3 [ehe bl + e (6.2)

7 7

H =

or

ﬁ? I 1
H =+ 2CL;+§mw'2 p? + hwy Y bl gby
m
7

+3 (5;.,e—i'7-f5’bqu n h.c.) , (6.3)

—y

q

where w]. = @ is the bare cyclotron frequency, L, = (2'py —y'py) is the z-

component of the angular momentum of the electron, and w’ = (w4 <% )1/ 2
We shall again use the Feynman units. The Hamlltoman (6.3) can then be
written as

H=Hy+Hep, = He + Hyy + Hep (6.4)
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with
1 w 1._
H, = —§v§+ TCLZ + §w2p2 , (6.5)
Hpn = Y blghg, (6.6)
7
Hyp = 3 (&7 by +he.) (6.7)

q

where ﬁ(xay) = :5'/7107q_’ = @’/QOaw = UJp/UJO,UJC = wé/wma] = wl/wo =
(@ + 4501V, L, = ~i[2(9/0y) — y(8/0x)] and |&,> = (V2ma/Vaq),Va be-
ing the dimensionless area of the 2D dot. The Hamiltonian Hy = H, + Hpy,
is exactly soluble. We are however interested in studying the effect of He,
on the energy spectrum of Hy. We shall obtain in particular the corrections
to the GS and the first ES energies of Hy due to Hep. These may be referred
to as the magnetopolaron self-energy corrections. In the subsection imme-
diately following we shall calculate perturbatively the GS and the first ES
magnetopolaron self energy corrections.

6.2. The RSPT solution
We have already mentioned that Hj is exactly soluble. We have

H00(7) [] Ina) = (Eg% 'y n) v [, (68
q q q
where
> bl [[Ing) = (Z n@) 1T n). (6.9)
q q q q
and
HYO) (5) = EQ w0 (p). (6.10)

We are interested in the perturbative effects of He, on the states Wé%(p”)m)

where [0) =[], |0g). The wave functions W,S%(p‘) and the energy values B9

are given by

. wn! 1/2 @ 2
P = e () a0

EQ) = 20+ |m| + 1o + %wc, (6.12)
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where n = 0,1,2,---, m = 0,£1,£2,--- and L‘nm‘(cIJpQ) is the associated
Laguerre polynomial. In the absence of the magnetic field the first excited

state E(() il is two-fold degenerate. This degeneracy is lifted in the presence
of the magnetlc field. This can be referred to as the Zeeman splitting in a
parabolic quantum dot. We shall now study the effect of Hej, on this Zeeman
splitting by the second-order RSPT.

The second-order RSPT correction to the energy of the state Wé%(ﬁ)m)
due to the polaronic interaction is given by

== 2

n’m’ {nqw}
(@0 Tl e [ Sgae™ 771 g+ hc.| 1) TT7 10712
(E,,(.L(l)znl + qu ngr — E’I(l%)

(6.13)

D ngy 2

ngy Domgy 2angy On further simplification (6.13) re-

where Z{nqw} = Z

duces to

(), ﬁ)lf o TP (7))
ZZ e “E0 1) . (6.14)

Summation over ¢ in the above expression can be performed and we get

N Z / / dpd %72:, (D)) (7)) ()T ()
nm - ‘

(6.15)

Zhu and Gu (1993) [30] have also considered the same weak-coupling mag-
netopolaron problem but have restricted their study to the strong magnetic
field limit. They have evaluated the energy expression by taking n’ = n and
m’ = m. One may notice that the infinite sum over n’,m’ occurring in equa-
tion (6.15) is the Green’s function for the unperturbed electronic problem.
For the magnetic field alone the corresponding Green’s function was first
derived by Sondheimer and Wilson [32] and for a magnetic field with a 3D
harmonic oscillator potential it was first obtained by Lepine and Matz [33].
In the present case the unperturbed problem involves a 2D harmonic oscil-
lator in a magnetic field. This Green’s function can be obtained exactly for
all values of the magnetic field for the ground state (n = 0,m = 0) and for
small values of the magnetic field [(w + %) < 1] for the first two excited
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states (n = 0,m = £1). We obtain

= Y (P) v (P)
Gnm(paﬁ’) = Z E(O) — 0 1

n'm! Lprmy nm

(0) w
— dt 7(17Enm )t -
/ ¢ 27 sinh(wt)

_, ycosh(wt/2)

w _
X exp [—5{(p2 + p?) coth @t — 2.5 sinh(at)

—2i(z'y — y'x)%}] . (6.16)

Substituting (6.16) in (6.15) and performing integrations over g and g’ we
finally get

BEppm = E) + AE,,, . (6.17)

where E,,, is the perturbed energy and

AEqy = —O‘\/Z‘/a / dt ¢ (6.18)
0

1 — et cosh(%t)]1/2”

and
C—aymVe [ e TS (g F h) 4 B2 - f
Aot = V2 O/dt (1 — e 20)[f(gf + h2)]3/2 , (6.19)
where
f = 1+ coth(@t) — cosh(wct/2)/sinh(wt), (6.20)
g = 1+ coth(wt) + cosh(w.t/2)/sinh(wt) , (6.21)
and
B sin( <)
= m (6.22)

It may be noted that results (6.18) and (6.19) are exact to order .

We define the renormalized cyclotron frequencies as w), = (Fg 41 —
Eyo)/h and the corresponding cyclotron masses as m} = m(w./wiy). It
is possible to obtain simple analytical expressions for the magnetopolaron
self-energy corrections in different limiting cases. However, we shall present
here our numerical results for a GaAs quantum dot.
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6.3. Numerical results

We have already pointed out that the two-fold degeneracy of the first
excited level of a 2D parabolic quantum dot potential is lifted in the presence
of a magnetic field. Consequently, the bare cyclotron frequency w. splits
into two cyclotron frequencies w;, and w; . With increasing magnetic field
wy, increases while w; decreases. We have studied the behaviour of the
renormalised cyclotron resonance frequencies wy, and w; as a function of
w! in a GaAs quantum dot incorporating the electron—-phonon interaction.
We have found that when the polaronic interaction is taken into account the
cyclotron resonance frequencies decrease quite significantly and furthermore
their variation with the magnetic field also becomes slower, more so for larger
magnetic fields [28].

1,40 o
— 1
3 1.20 3
E ]
£ i
~ 1,00 9
—_
Lo
3 080 ]
|
.
v © 1
3 060 GaAs
< ] .
w.=2.0x10"/sec
0,40 I e R e e

Fig.9. Zeeman splitting (in meV) for a GaAs dot as a function of the confinement
length (in A) for a particular value of the magnetic field.

It is however more useful from the point of view of experimental ob-
servation to study the behaviour of the Zeeman splitting [A(ws, — wy )]
directly as a function of the dot size. Results are shown in Fig. 9. In the
absence of any polaronic interaction the Zeeman splitting in a quantum dot
is essentially independent of the confinement length, while for « = 0.068,
i.e. in a GaAs quantum dot it is found to be strongly size dependent below
a certain value of [y. In fact, the Zeeman splitting decreases very rapidly
with decreasing dot size below a few nanometers. This is a very interest-
ing theoretical observation and should be experimentally measurable. For a
bulk GaAs system also the Zeeman splitting is suppressed in the presence
of the polaronic interaction but this suppression is independent of the sys-
tem size. In a parabolic quantum dot of a polar semiconductor the excited
unperturbed states n = 0, m = %1, (plus zero phonon) strongly mix with
the n = 0, m = 0 plus one phonon state resulting in the devaluation of the
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axial angular momentum of the pure first excited states of the quantum dot
potential. This explains the suppression of the Zeeman splitting in the pres-
ence of the electron—phonon interaction. It is now well known that when the
confinement length becomes comparable to the polaron size, the polaronic
effects become extremely pronounced and increase sharply with the decrease
in the confinement length. Thus it is expected that in the presence of the
polaronic interaction the Zeeman effect will be strongly suppressed if the
effective dot size is reduced below a few nanometers. This interesting size
dependence of Zeeman splitting in a parabolic quantum dot can be usefully
exploited to obtain any desired resonant absorption in a GaAs quantum dot
by tuning the frequency of the confining potential or the effective dot size.

7. Conclusion

In conclusion, we have shown that the polaronic corrections, AE to the
electronic energy increase with decreasing confinement length [ in both 2D
and 3D quantum dots. We also find that for the same value of the electron—
phonon coupling constant « and the confinement length [ the polaronic
effects are more pronounced in a 2D dot than in a 3D one. We have shown
that the first excited polaronic states in a quantum dot can be of two types;
one is EMES (effective mass excited state) and the other one can be referred
to as RES (relax excited state). We find that in GaAs quantum dots the
first excited states are of the EMES type if the dot sizes are large while for
small dots the first excited states can be described by RES.

We have studied the stability of a strong-coupling optical bipolaron in
two- and three-dimensional parabolic quantum dots and have shown that the
bipolaron stability in these systems depends on two parameters, n(= e /0)
and [. The bipolaron binding energy decreases with the decrease in [ and
below a certain value of [ which depends on 7 and the dimensionality of
the dot, a bipolaron becomes unstable and breaks up into two individual
polarons.

We have finally investigated the effect of the electron-LO-phonon interac-
tion on the ground and the first excited states of a 2D parabolic quantum dot
in the presence of an external magnetic field for small a. We find that below
a certain value of [ the Zeeman splitting becomes strongly size dependent
and decreases very rapidly with decreasing dot size. This size-dependent
suppression of the Zeeman splitting in a polar quantum dot is a clear man-
ifestation of the quantum size effect and can have interesting technological
applications.
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