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POLARONIC EFFECTS IN QUANTUM DOTS�Ashok Chatterjee and Soma MukhopadhyayShool of Physis, University of HyderabadHyderabad-500 046, India(Reeived November 27, 2000)In this artile we present the results of our investigations on the groundand the �rst exited states of a polaron in a polar semiondutor quantumdot in both two and three dimensions. We have also disussed the stabilityof a strong-oupling bipolaron in quantum dots. We have shown that belowa ritial value of the on�nement length the bipolaron beomes unstablein a quantum dot and breaks up into two individual polarons. We have�nally shown that the phonon-indued Zeeman splitting of the �rst exitedlevel of a two-dimensional paraboli quantum dot beomes strongly sizedependent below a ertain size and dereases very rapidly with dereasingdot size.PACS numbers: 68.65.+g, 71.38.+i1. IntrodutionWith the reent advent of modern fabriation tehniques suh as moleu-lar beam epitaxy, nanolithographi and ething tehniques and seletive ionimplantation, the study of low dimensional systems has undergone a renais-sane. It is now possible to realize ultra-small semiondutor strutures withquantum on�nement of arriers in all the spatial diretions. These stru-tures are typially of the order of a few nanometers in size and are ommonlyreferred to as zero-dimensional objets or more tehnially as quantum dots.Quantum dots ontain a disrete number of eletrons on�ned in a poten-tial well whih is generally referred to as the on�ning potential and possessdisrete spetra of energy levels [1�3℄. If the size of the dot (d) is smallerthan the bulk Bohr exiton radius (aB), the on�nement is onsidered to bestrong while the ondition d > aB refers to the weak on�nement regime [4℄.� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (473)



474 A. Chatterjee, S. MukhopadhyayInterest in the subjet of quantum dots has ontinued unabated for morethan a deade or so primarily for two reasons. First, it has an intrinsiappeal beause the natural length sales involved in it are of the order ofa few nanometers where the quantum e�ets show up in their full gloryand therefore the issues of interest in the quantum dot problems are offundamental nature from the point of view of basi physis. In fat, quantumdot systems an provide exellent grounds for testing quantum mehanis.Seondly, and perhaps more importantly, the quantum dot systems exhibitvery many new physial e�ets whih are very interesting and are also quitedi�erent from those of their bulk ounterparts. Furthermore, quantum dotstrutures an be realized in both two and three dimensions and an also befabriated in di�erent shapes and sizes. This design �exibility and the novelphysial e�ets make quantum dot strutures tehnologially very promisingin miroeletroni devies whih are ultrafast systems.A quantum dot an be regarded as a giant atom and an hold many realatoms and has primarily two energy sales: the on�nement energy and therepulsive Coulomb energy. As the size of an atom inreases, the di�erenesin the energy levels due to on�nement derease faster than the Coulombenergy. Therefore, it is expeted that eletron�eletron interation will bemore important in a quantum dot than in a small natural atom [3℄. In aquantum dot both the valene bond and the ondution band have disreteenergy levels. The valene band maximum an be alled as the HighestOupied Moleular Orbital (HOMO) and the ondution band minimuman be alled as the Lowest Unoupied Moleular Orbital (LUMO) and theHOMO�LUMO gap is the band gap whih depends on the size of the quan-tum dot [4℄. It turns out, quite expetedly, that various physial propertiesof a quantum dot depend on its size. For example, smaller sized nanorys-tallites have higher intensity of luminesene and highly enhaned radiativerates. Another important feature of quantum dots is that in these systemssurfae e�ets are very important beause the smaller the size of a dot, thelarger is the proportion of atoms on the surfae.As we have already mentioned, in a quantum dot the eletrons do nothave any free diretions. Furthermore, the de Broglie wavelength of theeletrons is of the same length sale as the on�nement length. If the on-�nement lengths of a quantum dot are of the same order in all the threediretions, it is alled a quasi-three-dimensional quantum dot or simply athree-dimensional (3D) quantum dot. If the on�nement length in one par-tiular diretion (say z) happens to be muh smaller as ompared to thosein the other two diretions, then the resulting system is referred to as aquasi-two-dimensional quantum dot. Theoretially, sometimes a quasi-two-dimensional quantum dot is treated as a purely two-dimensional (2D) quan-tum dot for the sake of mathematial simpliity. This approximation would



Polaroni E�ets in Quantum Dots 475be valid if the on�nement length in the z-diretion is extremely small whihmay be possible if the material is extremely thin in this diretion. It turnsout that the nature and details of the on�ning potential an be varied andone an have desired eletroni energy spetra to a great extent. The redueddimensionality with enormous design �exibility, the �nite partile numberand the presene of omparable energy sales have made this new area ofmesosopi systems extremely fasinating with lots of hallenges and haveopened up a new frontier in ondensed matter researh with tremendouspotentiality to revolutionize tehnology.2. Con�ning potentialA large number of experiments have been performed in the last fewyears to explore various physial properties of quantum dot strutures toyield a wealth of data whih have ontributed to our understanding of thesesystems in a profound way. The optial experiments of Sikorski and Merkt [5℄and Meurer et al. [6℄ on semiondutor quantum dots show that resonanefrequenies are more or less independent of the number of eletrons (N)in a dot whih essentially implies that exitation spetrum of a quantumdot is not in�uened by the eletron�eletron interation. This seems tobe a generalization of Kohn's theorem [7℄ whih states that the ylotronfrequeny in a translationally invariant eletron system is independent of theeletron density and of the form of the eletron�eletron interation. Thistheorem has been found valid for quantum dots in whih the on�nementpotential is harmoni. We shall present here this generalized Kohn's theoremwhih is due to Peeters [8℄. Let us onsider a 2D paraboli quantum dotwith N eletrons. The Hamiltonian of the system an be written asH = H0 + V (2.1)with H0 = NXi=1 ~p2i2m + 12 NXi=1 �!2xx2i + !2yy2i � ; (2.2)and V = NXi<j=1u(~ri � ~rj) ; (2.3)where xi and yi are respetively the x and y omponent of the position vetor~ri of the i-th eletron, ~pi is the momentum of the i-th eletron, !x and !yare the frequenies of the on�ning paraboli potential in x and y diretions,



476 A. Chatterjee, S. Mukhopadhyayrespetively, and u(~ri � ~rj) represents the Coulomb interation between thei-th and the j-th eletrons. The noninterating system desribed by H0 anbe diagonalized exatly and we getH0 = ~!x �C+x C�x + 12�+ ~!y �C+y C�y + 12� ; (2.4)where C+x = NXj=1 j;x = NXj=1 �m!x2~ �1=2�xj � i pj;xm!x� ; (2.5)C�x = NXj=1 �j;x = NXj=1 �m!x2~ �1=2�xj + i pj;xm!x� ; (2.6)and we have similar expressions for C+y and C�y . The eigenfuntions(	 (0)nx;ny(x; y)) and eigenvalues (E(0)nx;ny) of H0 are well-known.We have E(0)nx;ny = ~!x �nx + 12�+ ~!y �ny + 12� : (2.7)It is easy to prove that �V;C�x;y� = 0 (2.8)for any V that depends only on the relative distane between any two par-tiles. As a onsequene of (2.8) we obtain�H;C�x;y� = �~!x;yC�x;y (2.9)whih implies that if 	nx;ny is an eigenstate of H with energy Enx;ny , thenC�x 	nx;ny are also eigenstates of H with energies Enx;ny�~!x and C�y 	nx;nyare eigenstates with energies Enx;ny � ~!y. Thus one would onlude thatthe exitation spetrum of an interating eletron system in a 2D paraboliquantum dot onsists of two sets of equidistant levels with separation equalto the bare harmoni osillator frequenies !x; !y. In the presene of auniform magneti �eld B in the z-diretion, we have to replae ~pi in (2.2) by~pi + e ~Ai, where ~A is the vetor potential. In the symmetri gauge, we take~Ai = (�yi; xi; 0)B=2. It is easy to show that H0 an still be diagonalized.We get H0 = ~!1 �D+1 D�1 + 12�+ ~!2 �D+2 D�2 + 12� ; (2.10)



Polaroni E�ets in Quantum Dots 477where !21;2 = 12 ��!2x+!2y+!2�� h�!2x + !2y + !2�2 � 4!2x!2yi1=2� ; (2.11)D�1;2 = NXj=1 a�1;2(j) ; (2.12)a�1;2(j) = u1;2�xj ��!21;2 + !2y + 12!2�� i pj;xm!1;2 ��!21;2 + !2y�� iyj !2!1;2 �!21;2 + !2y�� pj;ym !� ; (2.13)with u1;2 = �m!1;22~ �1=2 h�!21;2 � !2y�2 + !2!2yi ; (2.14)and ! = eBm : (2.15)One an easily verify that�a�1 (j) ; a�2 (j)� = 0 ; (2.16)�a�s (j) ; a+s (j)� = 1 ; for s = 1; 2 : (2.17)Now again one an show thathV;D�1;2i = 0 ; (2.18)so that we get hH;D�1;2i = �~!1;2D�1;2 : (2.19)Thus also in the presene of a magneti �eld the separation of the energylevels of a system of interating eletrons in a paraboli quantum dot isidential to that in the absene of the Coulomb interation. This seemsto be true only for paraboli on�nement. Therefore, the eletron-numberindependent resonane frequenies obtained from optial measurements onsemiondutor quantum dots imply that the on�ning potentials in thesesystems are almost paraboli.



478 A. Chatterjee, S. Mukhopadhyay3. Theoretial investigationsA large number of theoretial investigations on quantum dots have beenreported in the literature in the last few years. One of the main aims ofthese studies has been to obtain the eletroni energy spetrum. Severalvariational alulations have been performed to study the e�et of on�ne-ment and Coulomb interations. Maksym and Chakraborty [9℄ have in-vestigated the role of eletron�eletron interation in a quantum dot in amagneti �eld by exat numerial diagonalization. They have obtained arih struture in the eletroni energy spetrum but the optial exitationenergies of a paraboli quantum dot have indeed turned out to be the sameas those of a single eletron. This makes the interation e�ets di�ult toobserve. Maksym and Chakraborty have however suggested that one shouldlook for thermodynami quantities whih an show the eletron�eletron in-teration e�ets. They have indeed alulated the spei� heat whih showsosillations as a funtion of the magneti �eld. The exat numerial diag-onalization method is however omputationally extensive and also su�ersfrom the onvergene problem. Approximate many body alulations basedon Hartree method and Hartree�Fok method have also been performed[10℄. Hartree method however neglets all orrelations while Hartree�Fokmethod neglets Coulomb orrelations.Sometimes it is useful to onsider instead of the atual problem a modelproblem whih is simple enough to admit an exat solution but ontainsthe essential features of the atual problem. Johnson and Payne [11℄ havemade an attempt in this diretion and their model alulation provides exatexitation spetra whih show omplex rossing as a funtion of the eletron�eletron interation whih is similar to the full numerial alulation. Later,several investigations [12℄ based on this exatly soluble model have alsofollowed.Besides eletroni properties, the optial properties of quantum dots havealso been studied by a number of authors. In fat reent years have witnesseda �urry of investigations in this area and a great deal of literature withextremely rih data has piled up.4. Polaroni e�ets in quantum dotsA number of authors have studied the role of phonons and the e�etof Eletron-Longitudinal-Optial (LO) phonon interation on various ele-troni properties of polar semiondutor quantum dots. Sine most of thequantum dots available today are made of polar semiondutors, it wouldbe natural to expet the formation of polarons in these systems. A polaronmay be envisaged as a omplex onsisting of an eletron together with thelattie distortion indued by it. Sine the distortion of a lattie means exi-



Polaroni E�ets in Quantum Dots 479tation of phonons, a polaron is essentially an eletron dressed with a bunhof virtual phonons. In the present setion we shall �rst present the modelfor the quantum dot polaron problem and then study the e�et of polaroniinteration on the Ground State (GS) and the �rst Exited State (ES) ener-gies of an eletron in a paraboli quantum dot using a variational method.For the sake of generality we shall formulate the problem in N -dimensionsand obtain results in two and three dimensional dots as speial ases.4.1. The modelThe Hamiltonian for the N -Dimensional (N -D) symmetri paraboliQuantum Dot (QD) polaron problem an be written by generalizing theFröhlih polaron Hamiltonian asH 0 = H 0par +H 0ph +H 0ep (4.1)with H 0par = � ~22mr2~r0 + 12m NXi=1 !2pix2i ; (4.2)H 0ph = ~!0X~q0 by~q0b~q0 ; (4.3)H 0ep = Xq0 (�q0e�i~q0:~r0by~q0 + h:) ; (4.4)where all vetors are N -dimensional, ~r0(x01; x02 � � � x0N ) refers to the positionvetor of the eletron, m is it Bloh e�etive mass, !pi is the frequenyof the on�ning paraboli (harmoni) potential orresponding to the i-thdiretion, !0 is the LO phonon frequeny whih is assumed to be dispersion-less, by~q0(b~q0) is the reation (annihilation) operator for a longitudinal-optialphonon of wave vetor ~q0 and �~q0 is the eletron�phonon interation oe�-ient for whih we shall use the presription of Peeters et al. [13℄. It isonvenient to use the dimensionless Feynman units in whih the energy issaled by ~!0, lengths are saled by r0 = � ~m!0�1=2 and wave vetors byq0 = �m!0~ �1=2. This saling is equivalent to putting ~ = m = !0 = 1. InFeynman units the Hamiltonian (4.1) readsH = H 0~!0 = Hpar +Hph +Hep ; (4.5)where Hpar = H 0par~!0 = �12r2~r + 12Xi !2i x2i ; (4.5a)



480 A. Chatterjee, S. MukhopadhyayHph = H 0ph~!0 =X~q by~qb~q ; (4.5b)Hep = H 0ep~!0 =X~q (�qe�i~q�~rby~q + h::) : (4.5)In Eq. (4.5) everything is dimensionless, the dimensionless eletron positionvetor ~r(x1; x2 � � � xN ) and the phonon wave vetor ~q are given by~r = ~r0r0 ; ~q = ~q0q0 ; (4.6)the dimensionless frequeny !i of the on�ning potential is given by !i = !pi!0and �q is given by�q = �0q0~!0 = i2664��N � 12 � 2(N�3=2)�(N�1)=2VNqN�1 � �37751=2 ; (4.7)where VN is the dimensionless volume of the N -dimensional dot and � is thedimensionless eletron�phonon oupling onstant. In what follows we shallonsider a symmetri QD for whih we have!p1 = !p2 = � � � = !p ; (4.8)or in dimensionless units!1 = !2 = � � � = !N = ! ; (4.9)so that the Hamiltonian (4.5) beomesH = �12r2~r + 12!2r2 +X~q by~qb~q +X~q ��~qe�i~q:~rby~q + h::� : (4.10)4.2. The Lee�Low�Pines�Gross (LLPG) methodA number of approximate solutions of the Hamiltonian (4.10) have beenreported in the literature in reent times (see [14℄ and referenes therein). Weshall disuss here a variational tehnique[15℄ whih is a modi�ation of theanonial transformation method of Lee, Low and Pines [16℄ introdued �rstby Gross [17℄ in the free polaron problem and later used by Takeguhara andKasuya [18℄ for the 3D bound polaron problem. This method admits a simple



Polaroni E�ets in Quantum Dots 481and straight-forward generalization to N dimensions [19℄. We shall thereforemake an N -dimensional formulation and obtain results for N = 2 and N = 3as speial ases. We shall show that it is possible to extrat using this methodinformation about both the e�etive mass exited states and relaxed exitedstates [20℄. In this method one �rst employs the transformationU(~r) = exp"X~q nf~q(~r)by~q � f�~q (~r)b~qo# ; (4.11)where fq(~r) is a funtion of both ~q and ~r and has to be obtained variationally.The Hamiltonian (4.10) then transforms into~H = U�1HU= 12"~̂p2 +X~q by~q ~̂p � [~p; f~q(~r)℄�X~q b~q~̂p � [~̂p; f�q (~r)℄ +X~q by~q[~̂p; fq(~r)℄ � ~̂p�X~q b~q[~̂p; f�q (~r)℄ � ~p+X~q~q0 by~qby~q0 [~̂p; f~q(~r)℄ � [~̂p; f�~q0(~r)℄�X~q~q0 by~qb~q0 [~̂p; f~q(~r)℄ � [~̂p; f�~q0(~r)℄�X~q~q0 b~q0by~q[~̂p; f�q (~r)℄ � [~̂p; f~q(~r)℄+X~q~q0 b~qb~q0 [~p; f�~q (~r)℄ � [~p; f�~q (~r)℄#+ 12!2r2+X~q (by~q + f�~q (~r))(b~q + f~q(~r))+X~q n�qe�i~q�~r(byq + f�q (~r)) + h::o ; (4.12)where ~̂p = �ir~r and we have used the onditionX~q hf�q (~r)~rf~q(~r)� fq(~r)~rf�~q (~r)i = 0 (4.13)whih implies that the urrent due to the displaement of the phonon �eldis zero in the on�ned state. The LLPG variational energy is now writtenas END = h0jh�ND(~r)j ~H j�ND(~r)ij0i ; (4.14)



482 A. Chatterjee, S. Mukhopadhyaywhere j0i is the unperturbed zero-phonon state and �ND(~r) is a real funtionof the eletroni oordinates. Variation of END with respet to f�q (~r) gives(" ~̂p22 ; f~q(~r)#+ fq(~r))�ND(~r) = ��qe�i~q�~r�ND(~r) (4.15)whih has to be solved to obtain fq(~r). Eq. (4.10) now redues toEND = �h�ND(~r)j12r2j�ND(~r)i+ 12!2h�ND(~r)jr2j�ND(~r)i+12X~q n��q h�ND(~r)jei~q:~rf~q(~r)j�ND(~r)i+ h::o : (4.16)To make further progress, we hoose �ND to be the eigenfuntion of a trialHamiltonian Ht i.e.Ht�NDj (~r) = " ~̂p22 + Vt(~r)#�NDj (~r)= ENDj �NDj (~r) : (4.17)It then follows from Eq. (4.16) thatf~q(~r)�NDj (~r) = �Xj0 h�NDj0 j�qe�i~q:~rj�NDj i(ENDj0 �ENDj + 1) j�NDj0 i : (4.18)It then follows from Eq. (4.16) and (4.17) thatENDj = h�NDj j��12r2~p + 12!2r2� j�NDj i�X~q Xj0 ���h�NDj0 j�qe�i~q~rj�NDj i���2(ENDj0 �ENDj + 1) : (4.19)In what follows we shall make a harmoni osillator potential approxi-mation i.e. we hoose the trial potential as Vt(~r) = 12�4r2. Then �NDj (~r)and ENDj are given by�NDj (~r) = � �N�N=22j1+j2+���+jN j1!j2! � � � jN !�1=2� Hj1(�x1)Hj2(�x2) � � �HjN (�xN )e��22 r2 ; (4.20)ENDj = (j1 + j2 + � � �+ jN + N2 )�2 ; (4.21)



Polaroni E�ets in Quantum Dots 483where Hji(�xi) is a Hermite polynomial. The LLPG expressions for theground and the �rst exited states are then �nally given byENDGS = N4z + Nz4l4 � �p�2 � (N�12 )� (N2 ) 1pz � (z + 1)� (z + 12) ; (4.22)ENDES = N + 24 �2 +�N + 24l4 � 1�2 � �4N �� (N�12 )� (N2 )� 1Z0 dte�(1��2)t( (2N � 1)e��2t + 1(1� e��2t)1=2 � 1)+ �4 � (N�12 )N� (N2 ) �(�2 � 1) ;(4.23)where z = 1(�2) and l is the dimensionless on�nement length whih isgiven by l = l0r0 = 1p! where l0 and r0 are de�ned as l0 = � ~m!h�1=2 andr0 = � ~m!0�1=2.The polaroni orretion (�E) to the ground state eletron energy isde�ned as �EGS = ENDGS � N2l2 ;where ENDGS has to be obtained by minimizing (4.22) with respet to z forN = 2 and N = 3. In Figs. 1 and 2 we plot (��E) as a funtion ofl0 for a few seleted quantum dots of polar semiondutors suh as InSb,GaAs, CdTe, CdSe and CdS. The material parameters used in the alula-tion have been taken from Ref. [21℄. In Fig. 1 we show the behaviour forthe 3D dots while the orresponding results for the 2D dots are plotted inFig. 2. It is lear that polaroni e�ets inrease with dereasing dot size andan beome extremely large if the dot-size is redued below a few nanome-ters. Furthermore, the polaroni e�ets are found in all ases stronger in2D dots than in the orresponding 3D dots. For example, in the ase of3D CdS dot, �E = �22:29 meV, for l0 = 40 Å while for the orresponding2D dot, �E = �35:13 meV for the same value of l0. Furthermore, as theon�nement length is redued from 40 Å to 20 Å, the derease in �E in thease of 3D CdS dot is �28:25 meV while that in the orresponding 2D aseis �44:7 meV.
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Fig. 1. Polaroni orretions, ��E (in meV) to the GS energy of an eletron inInSb, GaAs, CdTe, CdSe and CdS quantum dots with paraboli on�nement in3D, as a funtion of the on�nement length l0 (in Å).
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 oFig. 2. Polaroni orretions, ��E (in meV) to the GS energy of an eletron inInSb, GaAs, CdTe, CdSe and CdS quantum dots with paraboli on�nement in 2Das a funtion of the on�nement length l0 (in Å).The �rst exited state polaron energies for N = 2 and N = 3 have tobe obtained by minimizing (4.23) with respet to �. It may be noted thatthe energy expression (4.23) has a singularity at � = 1 orresponding to theinstability of the exited state with respet to the emission of a phonon.



Polaroni E�ets in Quantum Dots 485In the extended state limit i.e. for l !1 and �! 0, we obtainENDES = �N + 24 ��2 +�N + 24l4 � 1�2��p�2 � (N�12 )� (N2 ) �1 + (N + 2)8N �2� (4.24)whih on minimization with respet to � yields�2 = 1l2 �1� �p�4N � (N�12 )� (N2 ) �1=2 : (4.25)Substituting Eq. (4.25) in (4.24) givesENDES;EMES = ��p�� (N�12 )2� (N2 ) +�N + 22 � 1l2 "1� �p�� (N�12 )4N� (N2 ) #1=2 (4.26)whih is the E�etive Mass Exited State (EMES) result. Sine the �rst ESenergy has a singularity at � = 1, the minima orresponding to the e�etivemass exited state would our on the left side of the singularity. Thesituation desribed by Eq. (4.26) is that of an undisturbed weak-ouplingpolaron sitting at the �rst ES level of the on�ning paraboli potential ofthe quantum dot.In the ase of loalised state limit i.e. for �!1, we obtainENDES;Lo = �N + 24 ��2 +�N + 24l4 � 1�2 � �� (N�12 )2� (N2 )� �1� 14N ��2 ln 2 + �2� � (4.27)whih on minimization with respet to � yields�N + 22 ��4��N + 22 � 1l4 � �2 � (N�12 )� (N2 ) (1� 14N )(�3�2� ln 2) = 0 : (4.28)In the limit of strong eletron�phonon oupling and weak on�nement, onean solve (4.28) approximately to obtain� = �N + 2 �1� 14N � � (N�12 )� (N2 ) : (4.29)



486 A. Chatterjee, S. MukhopadhyayEq. (4.27) then redues toENDES;RES = � �24(N + 2) �1� 14N �2 � (N�12 )� (N2 ) !2+(N + 2)34�2l4 1(1� 14N )2 (� (N=2)� (N�12 ))2 � (N + 2) ln 2 (4.30)whih is the �rst relaxed exited state (RES) energy in the limit of large �and weak on�nement. In the limit of strong on�nement (l ! 0) and smalleletron�phonon oupling (� ! 0), Eq. (4.28) an be approximately solvedby dropping the third term to give�2 = 1l2 ; (4.31)and thus in this limit the �rst RES energy is given byENDES;RES = (N + 2)2l2 � �2 �1� 14N � � (N�12 )� (N2 ) �1l + 2l ln 2� : (4.32)Sine the �rst RES energy expressions (4.30) and (4.32) are obtained for largevalues of �, the minima orresponding to these energies will be on the rightside of the singularity. It may be mentioned that relaxed exited states ourwhen the loalization potential for the eletron arises from the ombinede�et of the lattie polarization and the on�ning paraboli potential.The �rst ES polaroni orretion to the quantum dot eletron energy anbe de�ned as �EES = ENDES � N + 22l2whih as a funtion of � would have in general two minima, one orrespond-ing to the EMES whih an our for � < 1 and the other orrespondingto the RES whih an our for � > 1. However for the exited polaronistates to exist, it is neessary that �EES is negative. We have studied thevariation of �EES as a funtion of � for both 2D and 3D dots for varioussets of values of � and l. The typial behaviour is shown in Fig. 3 where wehave taken � = 2 and l = 3. It is evident that in 2D, �EES has only oneminimum orresponding to the RES while in 3D, �EES has two minima, oneorresponding to the EMES and the other to the RES, the EMES being, asexpeted, lower in energy. For � = 2 and l = 1 we �nd that in both 2D and3D, �EES shows only one minimum whih ours for � > 1 implying thatthe �rst exited states in these ases are of RES type. For � = 2 and l = 7we �nd that in 2D, �EES shows two minima, one giving the EMES energy



Polaroni E�ets in Quantum Dots 487orretion and the other giving the �rst RES energy orretion. In 3D alsowe �nd that there are 2 minima in the �EES-� urve, but the minimum for� > 1 gives a positive polaroni energy and is therefore not aeptable. For� = 0:5 and l = 5:0 we �nd that the �rst ES is of EMES type in both 2Dand 3D dots. It should however be pointed out that when the minimum ofthe �EES-� urve is very lose to the singularity, the energies obtained arenot very aurate and therefore in suh ases even if we may obtain a smallpositive value for �EES, the RES may still possibly exist.

Fig. 3. Polaroni orretions, �EES (in Feynman units) to the ES energy of aneletron in 2D and 3D quantum dots for � = 2 and l = 3 as a funtion of thevariational parameter �.

Fig. 4. EMES and RES energies (in Feynman units) of a polaron as a funtion of1=l2 (in Feynman units) for � = 1:5 in 2D and 3D quantum dots. The GS polaronenergies are also shown for the sake of omparison.
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Fig. 5. EMES and RES energies (in Feynman units) of a polaron as a funtion of� for l = 2 in both 2D and 3D quantum dots. The GS energies are also shown forthe sake of omparison.

Fig. 6. The urve giving the ritial values of � and 1=l2 (in Feynman units) belowwhih EMES would exist in 2D and 3D quantum dots.We have studied the behaviour of the EMES and the RES energies as afuntion of 1l2 for � = 1:5 in both two and three dimensions. The results areshown in Fig. 4 where we have also shown the behaviour of the GS polaronenergy for the sake of omparison. In Fig. 5 we plot EGS, EEMESES and ERESESas a funtion of � for l = 2 for both 2D and 3D dots. It is evident from allthese �gures that the di�erene between the GS energy and the �rst RESenergy is always greater than an LO-phonon energy. It an also be notiedthat for a partiular value of � the EMES eases to exist below a ertainvalue of the on�nement length l. Again for a given value of l the EMESexists only if � does not exeed a partiular value. We show this behaviourmore elaborately in Fig. 6 for both 2D and 3D dots. The points lying onthe 2D and 3D urves orrespond to the ritial values of � and 1l2 below
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 oFig. 7. Polaroni orretions, ��EES (in meV) to the ES energy of an eletron in2D and 3D GaAs quantum dots as a funtion of the on�nement length l0 (in Å).The GS energies are also shown for the sake of omparison.whih EMES would exist in the respetive dimensions. Finally, we applyour results to realisti quantum dots. In Fig. 7 we show the behaviour of��EES for 2D and 3D GaAs quantum dot. For the sake of omparison wehave also plotted the GS polaroni energy orretions. It an be notiedthat for large values of the on�nement length the �rst ES of a polaron ina GaAs quantum dot is of the e�etive mass type. However, for a small dotthe �rst ES of the polaron an be desribed by a relaxed exited state.5. Formation and stability of a singlet optial bipolaronin a paraboli quantum dotIn the present setion we investigate the formation and stability of asinglet optial bipolaron in 2D and 3D paraboli quantum dots in strongeletron�phonon oupling region. We hoose to work in the strong eletron�phonon oupling regime beause it is well-known that in bulk systems stablebipolarons form if � is larger than some ritial value. The onept of thebipolaron was �rst introdued in the polaron literature by Pekar [22℄ inthe early �fties and various aspets of the bipolaron have subsequently beeninvestigated by several authors (see [23℄ and referenes therein). A bipolaronis a bound pair of two eletrons dressed with a loud of virtual phonons.Normally two ondution band eletrons would repel eah other beauseof their repulsive Coulomb interation, but in polar materials there is anadditional interation between eletrons mediated by virtual phonons whihis attrative. If this phonon-mediated attrative interation is large enoughto overome the mutual Coulomb repulsion then the eletrons an form abipolaroni bound state. The phenomenon of bipolaron formation is purely



490 A. Chatterjee, S. Mukhopadhyayof quantum origin sine lassially the net fore between the two eletrons isalways repulsive, the e�et of the eletron-lattie polarization being merelyto redue the strength of the Coulomb repulsion by a fator "0="1, where "0and "1 are respetively the stati and high frequeny dieletri onstants.The bipolaron problem is interesting for both aademi reasons and for itspratial importane in polar semiondutors and semionduting glasses.However, the disovery of high temperature superondutivity [24℄ in CuO2-based layer erami materials and the subsequent proposal of bipolaronimehanism [25℄ for induing pairing in these systems has made the bipolaronproblem all the more fasinating and brought it to the forefront of urrentresearh.It would also be interesting to explore the possibility of bipolaron for-mation in quantum dots. In [26℄ we have studied the stability of a strong-oupling optial bipolaron for the �rst time in two and three dimensionalparaboli quantum dots using the Landau�Pekar variational method. Laterthe bipolaron problem in a quantum dot has also been studied by other au-thors [27℄. In what follows we present our quantum dot bipolaron model [26℄and then make an N -dimensional formulation for the bipolaron binding en-ergy and �nally disuss our numerial results.5.1. The modelThe Hamiltonian for a system of the two-eletrons moving in anN -dimensional symmetri paraboli quantum dot and interating with LOphonons of the system an be written asH 0 = � ~22mr2~r01 � ~22mr2~r02 + e2"1j~r01 � ~r02j + 12m!2p(r021 + r022 )+~!0X~q0 by~q0b~q + 2Xi=1X~q0 h�0q0e�i~q0:~r0iby~q0 + h::i ; (5.1)where again all vetors are N -dimensional. The �rst two terms refer tothe kineti energies of the two eletrons, the third term desribes their mu-tual Coulomb repulsion, the fourth term gives the potential energy of thetwo eletrons due to the symmetri paraboli on�nement, the �fth term de-sribes the usual unperturbed phonon Hamiltonian, and the sixth term givesthe interation of the two eletrons with the LO phonon �eld. In Feynman'sunits (~ = !0 = m = 1) the Hamiltonian (5.1) reads



Polaroni E�ets in Quantum Dots 491
H = �12r2~r01 � 12r2~r2 + �r12 + 12!2(r21 + r22) +X~q by~qb~q+Xi X~q h�qe�i~q:riby~q + h::i ; (5.2)where � = � e2~!0"1��� ~m!0�1=2 : (5.3)5.2. FormulationWe seek a variational solution of (5.2) for a singlet bipolaron in thestrong-oupling limit. In this limit the adiabati approximation is valid andtherefore we hoose a trial wave funtion of the fromj	BPi = j�(~r1; ~r2)i exp�X~q (f~qby~q � f�~q b~q)�j0ij�i ; (5.4)where fq's are to be obtained variationally, j0i is the unperturbed zero-phonon state satisfying b~qj0i = 0 for all ~q, j�i is the antisymmetri spin fun-tion for the two eletrons orresponding to the singlet pairing and j�(~r1; ~r2)iis a symmetri two-eletron wave funtion. The variational energy (EBP) isgiven by EBP = h	 jHj	i= �12h�jr21 +r22j�i+X~q jf~qj2 + h�j �r12 j�i+!22 h�jr21 + r22j�i+ 2X~q (�~qf�~q ��~q + h::) ; (5.5)where �~q = h�jei~q:~ri j�i : (5.6)We hoose the two-eletron wave funtion asj�(~r1; ~r2)i = �(~r1)�(~r2)g(~r1; ~r2; j~r1 � ~r2j) ; (5.7)



492 A. Chatterjee, S. Mukhopadhyaywith � as one-eletron funtions and g the Coulomb orrelation fator. For�(~r) we try a Gaussian funtion and for the orrelation fator g, we hoosea Jastrow type funtion so that the normalised �(~r1; ~r2) an be written asj�(~r1~r2)i = "�N (�2 � b)N2 +1N�N #1=2 r12 exp ���22 (r21 + r22)� exp � b4r212� ;(5.8)where � and b are variational parameters. Variation of the energy EBP withrespet to fq yields fq = �2�q�q ; (5.9)where �q is given by�q = �1� q24N(�2 � b)� exp ��q28 � 1�2 + 1�2 � b�� : (5.10)We �nally obtain for the bipolaron GS energyEBP = N4 �2 + N4 t2�2 � 12 �1� 2N� t2�2 + p2�� (N+12 )t�N� (N2 )+ 14l4 �N�2 + N + 2�2t2 �� 2p2 � (N�12 )� (N2 ) (t2 + 1)�1=2t��� �1� 1N(t2 + 1) + 34N2(t2 + 1)2 � ; (5.11)where l is as usual the dimensionless e�etive on�nement length and �and t (= q�2�b�2 ) are variational parameters whih have to be obtainednumerially by solving the equations�EBP�� = 0 and �EBP�t = 0 : (5.12)To obtain the stability riteria we have to �nd out the Binding Energy(BE) of the bipolaron whih is given byBE = 2Ep �EBP ; (5.13)where Ep is the GS energy of a single strong-oupling polaron in the sameparaboli quantum dot system and should be alulated using the sameapproximation as were used for the determination of EBP. Ep is given by
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Ep = N4 �2 + N4 � 1l4�2�� �2 � (N�12 )� (N2 ) � ; (5.14)where � has to be obtained numerially from�Ep�� = 0 : (5.15)5.3. Numerial results and disussionWe determine the bipolaron stability by demanding that the bindingenergy of the bipolaron be positive. We �nd that binding energy of a strong-oupling bipolaron in a quantum dot depends on two parameters. Theseparameters are � = "1="0 and the on�nement length l.

Fig. 8. Binding energy of the bipolaron (BE) (in Feynman units) as a funtion of theon�nement length l (in Feynman units) for di�erent values of �(� = 0:01; 0:05; 0:1)in a 3D quantum dot.In Fig. 8 we show the variation of the bipolaron binding energy (BE) as afuntion of l for a few values of �(� = 0:01; 0:05; 0:1) for a 3D quantum dot.It is lear that the binding energy dereases with the derease in the on�ne-ment length l. The variation is extremely rapid below a ertain value of theon�nement length and indeed the bipolaron beomes unstable if l is madesmaller than a ritial value l. At suh on�nement lengths a bipolaronbreaks up into two individual polarons. This instability of the bipolaron



494 A. Chatterjee, S. Mukhopadhyaymay be explained in the following way. As the e�etive on�nement lengthof the quantum dot potential dereases, the average Coulomb repulsion be-tween the two eletrons inreases. If this inrease in the Coulomb repulsionwith orresponding derease in the size of the quantum dot beomes largeenough to dominate over the phonon-mediated attrative eletron�eletronattration, the formation of stable bipolarons will be inhibited. However,when l is large, the bipolaron binding energy does not hange muh withl and hene the bipolaron stability beomes more or less independent of l.This is essentially the bulk limit. It is also lear from the �gure that thebipolaron binding energy inreases with a derease in � whih is again notvery di�ult to understand. Sine � = (1�p2�� ), for a given value of �, aderease in � means a derease in � and hene a redution in the strength ofthe eletron�eletron Coulomb repulsion whih in turn implies an inrease inthe eletron�eletron attrative interation. Thus a derease in � would leadto an enhanement in the bipolaron binding energy favouring the formationof stable bipolarons. The variation of the binding energy of the bipolaronwith l for a 2D quantum dot is qualitatively similar to that observed in 3Ddots and has not been shown here. Quantitatively however, the polaroniinterations are stronger in 2D than in 3D and onsequently, for the samevalue of �, the bipolaron binding energy is found to be larger in a 2D dotthan in 3D dot and also for a given value of � the ritial on�nement lengthle is smaller for a 2D quantum dot than for the orresponding 3D dot.6. Phonon-indued suppression of Zeeman splittingin a polar quantum dotIn the preeding setions we have disussed the polaroni e�ets in quan-tum dots. It will, however, be important to alulate polaroni e�etswhih an be easily measured experimentally and thus the existene or non-existene of these e�ets an be substantiated unambiguously. In a reentpaper [28℄ we have made an attempt in this diretion. The �rst exitedlevel of a 2D paraboli quantum dot potential is two-fold degenerate. Thistwo-fold degeneray will be lifted in the presene of a magneti �eld. This isthe so alled Zeeman e�et in a paraboli quantum dot. It would be indeedinteresting to study the e�et of polaroni interation on this Zeeman e�et.In reent times several authors [11,29℄ have studied the e�et of a mag-neti �eld on the eletroni properties of a quantum dot. A few authors [30℄have also addressed themselves to the problem of a quantum dot eletronin a magneti �eld in the presene of the eletron-LO-phonon interation.This is the so alled magnetopolaron problem in a quantum dot. In [28℄ wehave alulated the Zeeman splitting of the �rst exited level of a 2D polarsemiondutor quantum dot with paraboli on�nement in the presene of



Polaroni E�ets in Quantum Dots 495an external magneti �eld applied normal to the plane of the dot for small� using Rayleigh�Shrodinger perturbation theory (RSPT). An all ouplingalulation has been performed by us in a subsequent work [31℄. We shallpresent here the RSPT solution.6.1. The modelThe Hamiltonian for a magnetopolaron in a 2D quantum dot with sym-metri paraboli on�nement an be written asH 0 = 12m  ~p0 + e ~A0e !2 + 12m!2p�02 + ~!X~q0 by~q0b~q0+X~q0 h�0~q0e�i~q0:~�0by~q + h::i ; (6.1)where all vetors are two dimensional, ~�0(x0; y0) and ~p0 = �i~~r0 are respe-tively the position vetor and the momentum of the eletron, e is the hargeof the eletron, ~A0 is the vetor potential and other symbols have alreadybeen de�ned earlier. Let us onsider that the magneti �eld is applied inthe z-diretion and is of strength B i.e. we have ~B = (0; 0; B). We hoose~A0 suh that ~r0: ~A0 = 0 and work in the symmetri gauge so that ~A0 an behosen as ~A0 = (�12By0; 12Bx0). Then the Hamiltonian (6.1) beomesH 0 = ~p022m + eB2m (x0p0y � y0p0x) + e2B28m2 �02 + 12 m!2p�02+~!0X~q0 by~q0b~q0 +X~q0 h�0~q0e�i~q0:~�0by~q0 + h::i ; (6.2)or H 0 = ~p022m + !02 L0z + 12m!02�02 + ~!0X~q0 by~q0b~q0+X~q0 ��0~q0e�i~q0:~�0by~q0 + h::� ; (6.3)where !0 = eBm is the bare ylotron frequeny, Lz0 = (x0py0�y0px0) is the z-omponent of the angular momentum of the eletron, and !0 = (!2p+ !024 )1=2.We shall again use the Feynman units. The Hamiltonian (6.3) an then bewritten as H = H0 +Hep = He +Hph +Hep ; (6.4)



496 A. Chatterjee, S. Mukhopadhyaywith He = �12r2~� + !2 Lz + 12 �!2�2 ; (6.5)Hph = X~q by~qb~q ; (6.6)Hep = X~q ��~qe�i~q:~�by~q + h::� ; (6.7)where ~�(x; y) = ~�0=r0; ~q = ~q0=q0; ! = !p=!0; ! = !0=!0; �! = !0=!0 =(!2 + !24 )1=2; Lz = �i [x(�=�y)� y(�=�x)℄ and j�qj2 = (p2��=V2q),V2 be-ing the dimensionless area of the 2D dot. The Hamiltonian H0 = He +Hphis exatly soluble. We are however interested in studying the e�et of Hepon the energy spetrum of H0. We shall obtain in partiular the orretionsto the GS and the �rst ES energies of H0 due to Hep. These may be referredto as the magnetopolaron self-energy orretions. In the subsetion imme-diately following we shall alulate perturbatively the GS and the �rst ESmagnetopolaron self energy orretions.6.2. The RSPT solutionWe have already mentioned that H0 is exatly soluble. We haveH0	 (0)nm(~�)Y~q jnqi = �E(0)nm +X~q nq�	 (0)nm(~�)Y~q jnqi ; (6.8)where X~q by~qb~qYq jnqi = �X~q n~q�Y~q jnqi ; (6.9)and He	 (0)nm(~�) = E(0)nm	 (0)nm(~�) : (6.10)We are interested in the perturbative e�ets of Hep on the states 	 (0)nm(~�)j0iwhere j0i =Qq j0qi. The wave funtions 	 (0)nm(~�) and the energy values E(0)nmare given by	 (0)nm(~�) = 1p2� eim� � 2�!n!(n+ jmj)!�1=2 (p�!�)jmjLjmjn (�!�2)e� �!2 �2 ; (6.11)E(0)nm = (2n+ jmj+ 1)�! + m2 !; (6.12)



Polaroni E�ets in Quantum Dots 497where n = 0; 1; 2; � � �, m = 0;�1;�2; � � � and Ljmjn (�!�2) is the assoiatedLaguerre polynomial. In the absene of the magneti �eld the �rst exitedstate E(0)0;�1 is two-fold degenerate. This degeneray is lifted in the preseneof the magneti �eld. This an be referred to as the Zeeman splitting in aparaboli quantum dot. We shall now study the e�et of Hep on this Zeemansplitting by the seond-order RSPT.The seond-order RSPT orretion to the energy of the state 	 (0)nm(~�)j0idue to the polaroni interation is given by�Enm = �Xn0m0 Xfn~q00gjh	 (0)n0m0 jQ~q00hn~q00 j hP~q �qe�i~q:~�by~q + h::i j	 (0)nmiQ~q0 j0~q0ij2(E(0)n0m0 +P~q00 n~q00 �E(0)nm) ; (6.13)where Pfn~q00g = Pnq1 Pnq2 Pnq3 � � � : On further simpli�ation (6.13) re-dues to �Enm = �Xn0m0X~q jh	 (0)n0m0(~�)j�qe�i~q:~�j	 (0)nm(~�)ij2(E(0)n0m0 �E(0)nm + 1) : (6.14)Summation over ~q in the above expression an be performed and we get�Enm = � �p2 Xn0m0 Z Z d~�d~�0j~�� ~�0j jh	 (o)�n0m0(~�)	 (0)n0m0(~�0)	�(o)nm (~�0)	 (0)nm(~�)(E(0)n0m0 �E(0)nm + 1) :(6.15)Zhu and Gu (1993) [30℄ have also onsidered the same weak-oupling mag-netopolaron problem but have restrited their study to the strong magneti�eld limit. They have evaluated the energy expression by taking n0 = n andm0 = m. One may notie that the in�nite sum over n0;m0 ourring in equa-tion (6.15) is the Green's funtion for the unperturbed eletroni problem.For the magneti �eld alone the orresponding Green's funtion was �rstderived by Sondheimer and Wilson [32℄ and for a magneti �eld with a 3Dharmoni osillator potential it was �rst obtained by Lepine and Matz [33℄.In the present ase the unperturbed problem involves a 2D harmoni osil-lator in a magneti �eld. This Green's funtion an be obtained exatly forall values of the magneti �eld for the ground state (n = 0;m = 0) and forsmall values of the magneti �eld [(�! + !2 ) < 1℄ for the �rst two exited



498 A. Chatterjee, S. Mukhopadhyaystates (n = 0;m = �1). We obtainGnm(~�; ~�0) = Xn0m0 	�n0m0(~�)	n0m0(~�0)E(0)n0m0 �E(0)nm + 1= Z dte�(1�E(0)nm)t �!2� sinh(�!t)� exp�� �!2�(�2 + �02) oth �!t� 2~�:~�0 osh(!t=2)sinh(�!t)�2i(x0y � y0x)sinh(!t2 )sinh(�!t) �� : (6.16)Substituting (6.16) in (6.15) and performing integrations over ~� and ~�0 we�nally get Enm = E(0)nm +�Enm ; (6.17)where Enm is the perturbed energy and�E00 = ��p�p�!2 1Z0 dt e�t[1� e��!t osh(!t2 )℄1=2 ; (6.18)and �E0;�1 = ��p�p�!p2 1Z0 dte�[1��!�!2 ℄t[2f(g � h) + h2 � f2℄(1� e�2�!t)[f(gf + h2)℄3=2 ; (6.19)where f = 1 + oth(�!t)� osh(!t=2)= sinh(�!t) ; (6.20)g = 1 + oth(�!t) + osh(!t=2)= sinh(�!t) ; (6.21)and h = sin(!t2 )sinh(�!t) : (6.22)It may be noted that results (6.18) and (6.19) are exat to order �.We de�ne the renormalized ylotron frequenies as !�� = (E0;�1 �E00)=~ and the orresponding ylotron masses as m�� = m(!=!��). Itis possible to obtain simple analytial expressions for the magnetopolaronself-energy orretions in di�erent limiting ases. However, we shall presenthere our numerial results for a GaAs quantum dot.



Polaroni E�ets in Quantum Dots 4996.3. Numerial resultsWe have already pointed out that the two-fold degeneray of the �rstexited level of a 2D paraboli quantum dot potential is lifted in the preseneof a magneti �eld. Consequently, the bare ylotron frequeny ! splitsinto two ylotron frequenies !�+ and !��. With inreasing magneti �eld!�+ inreases while !�� dereases. We have studied the behaviour of therenormalised ylotron resonane frequenies !�+ and !�� as a funtion of!0 in a GaAs quantum dot inorporating the eletron�phonon interation.We have found that when the polaroni interation is taken into aount theylotron resonane frequenies derease quite signi�antly and furthermoretheir variation with the magneti �eld also beomes slower, more so for largermagneti �elds [28℄.
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 oFig. 9. Zeeman splitting (in meV) for a GaAs dot as a funtion of the on�nementlength (in Å) for a partiular value of the magneti �eld.It is however more useful from the point of view of experimental ob-servation to study the behaviour of the Zeeman splitting [~(!�+ � !��)℄diretly as a funtion of the dot size. Results are shown in Fig. 9. In theabsene of any polaroni interation the Zeeman splitting in a quantum dotis essentially independent of the on�nement length, while for � = 0:068,i.e. in a GaAs quantum dot it is found to be strongly size dependent belowa ertain value of l0. In fat, the Zeeman splitting dereases very rapidlywith dereasing dot size below a few nanometers. This is a very interest-ing theoretial observation and should be experimentally measurable. For abulk GaAs system also the Zeeman splitting is suppressed in the preseneof the polaroni interation but this suppression is independent of the sys-tem size. In a paraboli quantum dot of a polar semiondutor the exitedunperturbed states n = 0, m = �1, (plus zero phonon) strongly mix withthe n = 0, m = 0 plus one phonon state resulting in the devaluation of the



500 A. Chatterjee, S. Mukhopadhyayaxial angular momentum of the pure �rst exited states of the quantum dotpotential. This explains the suppression of the Zeeman splitting in the pres-ene of the eletron�phonon interation. It is now well known that when theon�nement length beomes omparable to the polaron size, the polaronie�ets beome extremely pronouned and inrease sharply with the dereasein the on�nement length. Thus it is expeted that in the presene of thepolaroni interation the Zeeman e�et will be strongly suppressed if thee�etive dot size is redued below a few nanometers. This interesting sizedependene of Zeeman splitting in a paraboli quantum dot an be usefullyexploited to obtain any desired resonant absorption in a GaAs quantum dotby tuning the frequeny of the on�ning potential or the e�etive dot size.7. ConlusionIn onlusion, we have shown that the polaroni orretions, �E to theeletroni energy inrease with dereasing on�nement length l in both 2Dand 3D quantum dots. We also �nd that for the same value of the eletron�phonon oupling onstant � and the on�nement length l the polaronie�ets are more pronouned in a 2D dot than in a 3D one. We have shownthat the �rst exited polaroni states in a quantum dot an be of two types;one is EMES (e�etive mass exited state) and the other one an be referredto as RES (relax exited state). We �nd that in GaAs quantum dots the�rst exited states are of the EMES type if the dot sizes are large while forsmall dots the �rst exited states an be desribed by RES.We have studied the stability of a strong-oupling optial bipolaron intwo- and three-dimensional paraboli quantum dots and have shown that thebipolaron stability in these systems depends on two parameters, �(= "1="0)and l. The bipolaron binding energy dereases with the derease in l andbelow a ertain value of l whih depends on � and the dimensionality ofthe dot, a bipolaron beomes unstable and breaks up into two individualpolarons.We have �nally investigated the e�et of the eletron-LO-phonon intera-tion on the ground and the �rst exited states of a 2D paraboli quantum dotin the presene of an external magneti �eld for small �. We �nd that belowa ertain value of l the Zeeman splitting beomes strongly size dependentand dereases very rapidly with dereasing dot size. This size-dependentsuppression of the Zeeman splitting in a polar quantum dot is a lear man-ifestation of the quantum size e�et and an have interesting tehnologialappliations.
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