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POLARONIC EFFECTS IN QUANTUM DOTS�Ashok Chatterjee and Soma MukhopadhyayS
hool of Physi
s, University of HyderabadHyderabad-500 046, India(Re
eived November 27, 2000)In this arti
le we present the results of our investigations on the groundand the �rst ex
ited states of a polaron in a polar semi
ondu
tor quantumdot in both two and three dimensions. We have also dis
ussed the stabilityof a strong-
oupling bipolaron in quantum dots. We have shown that belowa 
riti
al value of the 
on�nement length the bipolaron be
omes unstablein a quantum dot and breaks up into two individual polarons. We have�nally shown that the phonon-indu
ed Zeeman splitting of the �rst ex
itedlevel of a two-dimensional paraboli
 quantum dot be
omes strongly sizedependent below a 
ertain size and de
reases very rapidly with de
reasingdot size.PACS numbers: 68.65.+g, 71.38.+i1. Introdu
tionWith the re
ent advent of modern fabri
ation te
hniques su
h as mole
u-lar beam epitaxy, nanolithographi
 and et
hing te
hniques and sele
tive ionimplantation, the study of low dimensional systems has undergone a renais-san
e. It is now possible to realize ultra-small semi
ondu
tor stru
tures withquantum 
on�nement of 
arriers in all the spatial dire
tions. These stru
-tures are typi
ally of the order of a few nanometers in size and are 
ommonlyreferred to as zero-dimensional obje
ts or more te
hni
ally as quantum dots.Quantum dots 
ontain a dis
rete number of ele
trons 
on�ned in a poten-tial well whi
h is generally referred to as the 
on�ning potential and possessdis
rete spe
tra of energy levels [1�3℄. If the size of the dot (d) is smallerthan the bulk Bohr ex
iton radius (aB), the 
on�nement is 
onsidered to bestrong while the 
ondition d > aB refers to the weak 
on�nement regime [4℄.� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000. (473)



474 A. Chatterjee, S. MukhopadhyayInterest in the subje
t of quantum dots has 
ontinued unabated for morethan a de
ade or so primarily for two reasons. First, it has an intrinsi
appeal be
ause the natural length s
ales involved in it are of the order ofa few nanometers where the quantum e�e
ts show up in their full gloryand therefore the issues of interest in the quantum dot problems are offundamental nature from the point of view of basi
 physi
s. In fa
t, quantumdot systems 
an provide ex
ellent grounds for testing quantum me
hani
s.Se
ondly, and perhaps more importantly, the quantum dot systems exhibitvery many new physi
al e�e
ts whi
h are very interesting and are also quitedi�erent from those of their bulk 
ounterparts. Furthermore, quantum dotstru
tures 
an be realized in both two and three dimensions and 
an also befabri
ated in di�erent shapes and sizes. This design �exibility and the novelphysi
al e�e
ts make quantum dot stru
tures te
hnologi
ally very promisingin mi
roele
troni
 devi
es whi
h are ultrafast systems.A quantum dot 
an be regarded as a giant atom and 
an hold many realatoms and has primarily two energy s
ales: the 
on�nement energy and therepulsive Coulomb energy. As the size of an atom in
reases, the di�eren
esin the energy levels due to 
on�nement de
rease faster than the Coulombenergy. Therefore, it is expe
ted that ele
tron�ele
tron intera
tion will bemore important in a quantum dot than in a small natural atom [3℄. In aquantum dot both the valen
e bond and the 
ondu
tion band have dis
reteenergy levels. The valen
e band maximum 
an be 
alled as the HighestO

upied Mole
ular Orbital (HOMO) and the 
ondu
tion band minimum
an be 
alled as the Lowest Uno

upied Mole
ular Orbital (LUMO) and theHOMO�LUMO gap is the band gap whi
h depends on the size of the quan-tum dot [4℄. It turns out, quite expe
tedly, that various physi
al propertiesof a quantum dot depend on its size. For example, smaller sized nano
rys-tallites have higher intensity of lumines
en
e and highly enhan
ed radiativerates. Another important feature of quantum dots is that in these systemssurfa
e e�e
ts are very important be
ause the smaller the size of a dot, thelarger is the proportion of atoms on the surfa
e.As we have already mentioned, in a quantum dot the ele
trons do nothave any free dire
tions. Furthermore, the de Broglie wavelength of theele
trons is of the same length s
ale as the 
on�nement length. If the 
on-�nement lengths of a quantum dot are of the same order in all the threedire
tions, it is 
alled a quasi-three-dimensional quantum dot or simply athree-dimensional (3D) quantum dot. If the 
on�nement length in one par-ti
ular dire
tion (say z) happens to be mu
h smaller as 
ompared to thosein the other two dire
tions, then the resulting system is referred to as aquasi-two-dimensional quantum dot. Theoreti
ally, sometimes a quasi-two-dimensional quantum dot is treated as a purely two-dimensional (2D) quan-tum dot for the sake of mathemati
al simpli
ity. This approximation would
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 E�e
ts in Quantum Dots 475be valid if the 
on�nement length in the z-dire
tion is extremely small whi
hmay be possible if the material is extremely thin in this dire
tion. It turnsout that the nature and details of the 
on�ning potential 
an be varied andone 
an have desired ele
troni
 energy spe
tra to a great extent. The redu
eddimensionality with enormous design �exibility, the �nite parti
le numberand the presen
e of 
omparable energy s
ales have made this new area ofmesos
opi
 systems extremely fas
inating with lots of 
hallenges and haveopened up a new frontier in 
ondensed matter resear
h with tremendouspotentiality to revolutionize te
hnology.2. Con�ning potentialA large number of experiments have been performed in the last fewyears to explore various physi
al properties of quantum dot stru
tures toyield a wealth of data whi
h have 
ontributed to our understanding of thesesystems in a profound way. The opti
al experiments of Sikorski and Merkt [5℄and Meurer et al. [6℄ on semi
ondu
tor quantum dots show that resonan
efrequen
ies are more or less independent of the number of ele
trons (N)in a dot whi
h essentially implies that ex
itation spe
trum of a quantumdot is not in�uen
ed by the ele
tron�ele
tron intera
tion. This seems tobe a generalization of Kohn's theorem [7℄ whi
h states that the 
y
lotronfrequen
y in a translationally invariant ele
tron system is independent of theele
tron density and of the form of the ele
tron�ele
tron intera
tion. Thistheorem has been found valid for quantum dots in whi
h the 
on�nementpotential is harmoni
. We shall present here this generalized Kohn's theoremwhi
h is due to Peeters [8℄. Let us 
onsider a 2D paraboli
 quantum dotwith N ele
trons. The Hamiltonian of the system 
an be written asH = H0 + V (2.1)with H0 = NXi=1 ~p2i2m + 12 NXi=1 �!2xx2i + !2yy2i � ; (2.2)and V = NXi<j=1u(~ri � ~rj) ; (2.3)where xi and yi are respe
tively the x and y 
omponent of the position ve
tor~ri of the i-th ele
tron, ~pi is the momentum of the i-th ele
tron, !x and !yare the frequen
ies of the 
on�ning paraboli
 potential in x and y dire
tions,
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tively, and u(~ri � ~rj) represents the Coulomb intera
tion between thei-th and the j-th ele
trons. The nonintera
ting system des
ribed by H0 
anbe diagonalized exa
tly and we getH0 = ~!x �C+x C�x + 12�+ ~!y �C+y C�y + 12� ; (2.4)where C+x = NXj=1 
j;x = NXj=1 �m!x2~ �1=2�xj � i pj;xm!x� ; (2.5)C�x = NXj=1 
�j;x = NXj=1 �m!x2~ �1=2�xj + i pj;xm!x� ; (2.6)and we have similar expressions for C+y and C�y . The eigenfun
tions(	 (0)nx;ny(x; y)) and eigenvalues (E(0)nx;ny) of H0 are well-known.We have E(0)nx;ny = ~!x �nx + 12�+ ~!y �ny + 12� : (2.7)It is easy to prove that �V;C�x;y� = 0 (2.8)for any V that depends only on the relative distan
e between any two par-ti
les. As a 
onsequen
e of (2.8) we obtain�H;C�x;y� = �~!x;yC�x;y (2.9)whi
h implies that if 	nx;ny is an eigenstate of H with energy Enx;ny , thenC�x 	nx;ny are also eigenstates of H with energies Enx;ny�~!x and C�y 	nx;nyare eigenstates with energies Enx;ny � ~!y. Thus one would 
on
lude thatthe ex
itation spe
trum of an intera
ting ele
tron system in a 2D paraboli
quantum dot 
onsists of two sets of equidistant levels with separation equalto the bare harmoni
 os
illator frequen
ies !x; !y. In the presen
e of auniform magneti
 �eld B in the z-dire
tion, we have to repla
e ~pi in (2.2) by~pi + e
 ~Ai, where ~A is the ve
tor potential. In the symmetri
 gauge, we take~Ai = (�yi; xi; 0)B=2. It is easy to show that H0 
an still be diagonalized.We get H0 = ~!1 �D+1 D�1 + 12�+ ~!2 �D+2 D�2 + 12� ; (2.10)
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ts in Quantum Dots 477where !21;2 = 12 ��!2x+!2y+!2
�� h�!2x + !2y + !2
�2 � 4!2x!2yi1=2� ; (2.11)D�1;2 = NXj=1 a�1;2(j) ; (2.12)a�1;2(j) = u1;2�xj ��!21;2 + !2y + 12!2
�� i pj;xm!1;2 ��!21;2 + !2y�� iyj !
2!1;2 �!21;2 + !2y�� pj;ym !
� ; (2.13)with u1;2 = �m!1;22~ �1=2 h�!21;2 � !2y�2 + !2
!2yi ; (2.14)and !
 = eBm
 : (2.15)One 
an easily verify that�a�1 (j) ; a�2 (j)� = 0 ; (2.16)�a�s (j) ; a+s (j)� = 1 ; for s = 1; 2 : (2.17)Now again one 
an show thathV;D�1;2i = 0 ; (2.18)so that we get hH;D�1;2i = �~!1;2D�1;2 : (2.19)Thus also in the presen
e of a magneti
 �eld the separation of the energylevels of a system of intera
ting ele
trons in a paraboli
 quantum dot isidenti
al to that in the absen
e of the Coulomb intera
tion. This seemsto be true only for paraboli
 
on�nement. Therefore, the ele
tron-numberindependent resonan
e frequen
ies obtained from opti
al measurements onsemi
ondu
tor quantum dots imply that the 
on�ning potentials in thesesystems are almost paraboli
.



478 A. Chatterjee, S. Mukhopadhyay3. Theoreti
al investigationsA large number of theoreti
al investigations on quantum dots have beenreported in the literature in the last few years. One of the main aims ofthese studies has been to obtain the ele
troni
 energy spe
trum. Severalvariational 
al
ulations have been performed to study the e�e
t of 
on�ne-ment and Coulomb intera
tions. Maksym and Chakraborty [9℄ have in-vestigated the role of ele
tron�ele
tron intera
tion in a quantum dot in amagneti
 �eld by exa
t numeri
al diagonalization. They have obtained ari
h stru
ture in the ele
troni
 energy spe
trum but the opti
al ex
itationenergies of a paraboli
 quantum dot have indeed turned out to be the sameas those of a single ele
tron. This makes the intera
tion e�e
ts di�
ult toobserve. Maksym and Chakraborty have however suggested that one shouldlook for thermodynami
 quantities whi
h 
an show the ele
tron�ele
tron in-tera
tion e�e
ts. They have indeed 
al
ulated the spe
i�
 heat whi
h showsos
illations as a fun
tion of the magneti
 �eld. The exa
t numeri
al diag-onalization method is however 
omputationally extensive and also su�ersfrom the 
onvergen
e problem. Approximate many body 
al
ulations basedon Hartree method and Hartree�Fo
k method have also been performed[10℄. Hartree method however negle
ts all 
orrelations while Hartree�Fo
kmethod negle
ts Coulomb 
orrelations.Sometimes it is useful to 
onsider instead of the a
tual problem a modelproblem whi
h is simple enough to admit an exa
t solution but 
ontainsthe essential features of the a
tual problem. Johnson and Payne [11℄ havemade an attempt in this dire
tion and their model 
al
ulation provides exa
tex
itation spe
tra whi
h show 
omplex 
rossing as a fun
tion of the ele
tron�ele
tron intera
tion whi
h is similar to the full numeri
al 
al
ulation. Later,several investigations [12℄ based on this exa
tly soluble model have alsofollowed.Besides ele
troni
 properties, the opti
al properties of quantum dots havealso been studied by a number of authors. In fa
t re
ent years have witnesseda �urry of investigations in this area and a great deal of literature withextremely ri
h data has piled up.4. Polaroni
 e�e
ts in quantum dotsA number of authors have studied the role of phonons and the e�e
tof Ele
tron-Longitudinal-Opti
al (LO) phonon intera
tion on various ele
-troni
 properties of polar semi
ondu
tor quantum dots. Sin
e most of thequantum dots available today are made of polar semi
ondu
tors, it wouldbe natural to expe
t the formation of polarons in these systems. A polaronmay be envisaged as a 
omplex 
onsisting of an ele
tron together with thelatti
e distortion indu
ed by it. Sin
e the distortion of a latti
e means ex
i-
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ts in Quantum Dots 479tation of phonons, a polaron is essentially an ele
tron dressed with a bun
hof virtual phonons. In the present se
tion we shall �rst present the modelfor the quantum dot polaron problem and then study the e�e
t of polaroni
intera
tion on the Ground State (GS) and the �rst Ex
ited State (ES) ener-gies of an ele
tron in a paraboli
 quantum dot using a variational method.For the sake of generality we shall formulate the problem in N -dimensionsand obtain results in two and three dimensional dots as spe
ial 
ases.4.1. The modelThe Hamiltonian for the N -Dimensional (N -D) symmetri
 paraboli
Quantum Dot (QD) polaron problem 
an be written by generalizing theFröhli
h polaron Hamiltonian asH 0 = H 0par +H 0ph +H 0ep (4.1)with H 0par = � ~22mr2~r0 + 12m NXi=1 !2pix2i ; (4.2)H 0ph = ~!0X~q0 by~q0b~q0 ; (4.3)H 0ep = Xq0 (�q0e�i~q0:~r0by~q0 + h:
) ; (4.4)where all ve
tors are N -dimensional, ~r0(x01; x02 � � � x0N ) refers to the positionve
tor of the ele
tron, m is it Blo
h e�e
tive mass, !pi is the frequen
yof the 
on�ning paraboli
 (harmoni
) potential 
orresponding to the i-thdire
tion, !0 is the LO phonon frequen
y whi
h is assumed to be dispersion-less, by~q0(b~q0) is the 
reation (annihilation) operator for a longitudinal-opti
alphonon of wave ve
tor ~q0 and �~q0 is the ele
tron�phonon intera
tion 
oe�-
ient for whi
h we shall use the pres
ription of Peeters et al. [13℄. It is
onvenient to use the dimensionless Feynman units in whi
h the energy iss
aled by ~!0, lengths are s
aled by r0 = � ~m!0�1=2 and wave ve
tors byq0 = �m!0~ �1=2. This s
aling is equivalent to putting ~ = m = !0 = 1. InFeynman units the Hamiltonian (4.1) readsH = H 0~!0 = Hpar +Hph +Hep ; (4.5)where Hpar = H 0par~!0 = �12r2~r + 12Xi !2i x2i ; (4.5a)



480 A. Chatterjee, S. MukhopadhyayHph = H 0ph~!0 =X~q by~qb~q ; (4.5b)Hep = H 0ep~!0 =X~q (�qe�i~q�~rby~q + h:
:) : (4.5
)In Eq. (4.5) everything is dimensionless, the dimensionless ele
tron positionve
tor ~r(x1; x2 � � � xN ) and the phonon wave ve
tor ~q are given by~r = ~r0r0 ; ~q = ~q0q0 ; (4.6)the dimensionless frequen
y !i of the 
on�ning potential is given by !i = !pi!0and �q is given by�q = �0q0~!0 = i2664��N � 12 � 2(N�3=2)�(N�1)=2VNqN�1 � �37751=2 ; (4.7)where VN is the dimensionless volume of the N -dimensional dot and � is thedimensionless ele
tron�phonon 
oupling 
onstant. In what follows we shall
onsider a symmetri
 QD for whi
h we have!p1 = !p2 = � � � = !p ; (4.8)or in dimensionless units!1 = !2 = � � � = !N = ! ; (4.9)so that the Hamiltonian (4.5) be
omesH = �12r2~r + 12!2r2 +X~q by~qb~q +X~q ��~qe�i~q:~rby~q + h:
:� : (4.10)4.2. The Lee�Low�Pines�Gross (LLPG) methodA number of approximate solutions of the Hamiltonian (4.10) have beenreported in the literature in re
ent times (see [14℄ and referen
es therein). Weshall dis
uss here a variational te
hnique[15℄ whi
h is a modi�
ation of the
anoni
al transformation method of Lee, Low and Pines [16℄ introdu
ed �rstby Gross [17℄ in the free polaron problem and later used by Takeguhara andKasuya [18℄ for the 3D bound polaron problem. This method admits a simple
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ts in Quantum Dots 481and straight-forward generalization to N dimensions [19℄. We shall thereforemake an N -dimensional formulation and obtain results for N = 2 and N = 3as spe
ial 
ases. We shall show that it is possible to extra
t using this methodinformation about both the e�e
tive mass ex
ited states and relaxed ex
itedstates [20℄. In this method one �rst employs the transformationU(~r) = exp"X~q nf~q(~r)by~q � f�~q (~r)b~qo# ; (4.11)where fq(~r) is a fun
tion of both ~q and ~r and has to be obtained variationally.The Hamiltonian (4.10) then transforms into~H = U�1HU= 12"~̂p2 +X~q by~q ~̂p � [~p; f~q(~r)℄�X~q b~q~̂p � [~̂p; f�q (~r)℄ +X~q by~q[~̂p; fq(~r)℄ � ~̂p�X~q b~q[~̂p; f�q (~r)℄ � ~p+X~q~q0 by~qby~q0 [~̂p; f~q(~r)℄ � [~̂p; f�~q0(~r)℄�X~q~q0 by~qb~q0 [~̂p; f~q(~r)℄ � [~̂p; f�~q0(~r)℄�X~q~q0 b~q0by~q[~̂p; f�q (~r)℄ � [~̂p; f~q(~r)℄+X~q~q0 b~qb~q0 [~p; f�~q (~r)℄ � [~p; f�~q (~r)℄#+ 12!2r2+X~q (by~q + f�~q (~r))(b~q + f~q(~r))+X~q n�qe�i~q�~r(byq + f�q (~r)) + h:
:o ; (4.12)where ~̂p = �ir~r and we have used the 
onditionX~q hf�q (~r)~rf~q(~r)� fq(~r)~rf�~q (~r)i = 0 (4.13)whi
h implies that the 
urrent due to the displa
ement of the phonon �eldis zero in the 
on�ned state. The LLPG variational energy is now writtenas END = h0jh�ND(~r)j ~H j�ND(~r)ij0i ; (4.14)



482 A. Chatterjee, S. Mukhopadhyaywhere j0i is the unperturbed zero-phonon state and �ND(~r) is a real fun
tionof the ele
troni
 
oordinates. Variation of END with respe
t to f�q (~r) gives(" ~̂p22 ; f~q(~r)#+ fq(~r))�ND(~r) = ��qe�i~q�~r�ND(~r) (4.15)whi
h has to be solved to obtain fq(~r). Eq. (4.10) now redu
es toEND = �h�ND(~r)j12r2j�ND(~r)i+ 12!2h�ND(~r)jr2j�ND(~r)i+12X~q n��q h�ND(~r)jei~q:~rf~q(~r)j�ND(~r)i+ h:
:o : (4.16)To make further progress, we 
hoose �ND to be the eigenfun
tion of a trialHamiltonian Ht i.e.Ht�NDj (~r) = " ~̂p22 + Vt(~r)#�NDj (~r)= ENDj �NDj (~r) : (4.17)It then follows from Eq. (4.16) thatf~q(~r)�NDj (~r) = �Xj0 h�NDj0 j�qe�i~q:~rj�NDj i(ENDj0 �ENDj + 1) j�NDj0 i : (4.18)It then follows from Eq. (4.16) and (4.17) thatENDj = h�NDj j��12r2~p + 12!2r2� j�NDj i�X~q Xj0 ���h�NDj0 j�qe�i~q~rj�NDj i���2(ENDj0 �ENDj + 1) : (4.19)In what follows we shall make a harmoni
 os
illator potential approxi-mation i.e. we 
hoose the trial potential as Vt(~r) = 12�4r2. Then �NDj (~r)and ENDj are given by�NDj (~r) = � �N�N=22j1+j2+���+jN j1!j2! � � � jN !�1=2� Hj1(�x1)Hj2(�x2) � � �HjN (�xN )e��22 r2 ; (4.20)ENDj = (j1 + j2 + � � �+ jN + N2 )�2 ; (4.21)
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ts in Quantum Dots 483where Hji(�xi) is a Hermite polynomial. The LLPG expressions for theground and the �rst ex
ited states are then �nally given byENDGS = N4z + Nz4l4 � �p�2 � (N�12 )� (N2 ) 1pz � (z + 1)� (z + 12) ; (4.22)ENDES = N + 24 �2 +�N + 24l4 � 1�2 � �4N �� (N�12 )� (N2 )� 1Z0 dte�(1��2)t( (2N � 1)e��2t + 1(1� e��2t)1=2 � 1)+ �4 � (N�12 )N� (N2 ) �(�2 � 1) ;(4.23)where z = 1(�2) and l is the dimensionless 
on�nement length whi
h isgiven by l = l0r0 = 1p! where l0 and r0 are de�ned as l0 = � ~m!h�1=2 andr0 = � ~m!0�1=2.The polaroni
 
orre
tion (�E) to the ground state ele
tron energy isde�ned as �EGS = ENDGS � N2l2 ;where ENDGS has to be obtained by minimizing (4.22) with respe
t to z forN = 2 and N = 3. In Figs. 1 and 2 we plot (��E) as a fun
tion ofl0 for a few sele
ted quantum dots of polar semi
ondu
tors su
h as InSb,GaAs, CdTe, CdSe and CdS. The material parameters used in the 
al
ula-tion have been taken from Ref. [21℄. In Fig. 1 we show the behaviour forthe 3D dots while the 
orresponding results for the 2D dots are plotted inFig. 2. It is 
lear that polaroni
 e�e
ts in
rease with de
reasing dot size and
an be
ome extremely large if the dot-size is redu
ed below a few nanome-ters. Furthermore, the polaroni
 e�e
ts are found in all 
ases stronger in2D dots than in the 
orresponding 3D dots. For example, in the 
ase of3D CdS dot, �E = �22:29 meV, for l0 = 40 Å while for the 
orresponding2D dot, �E = �35:13 meV for the same value of l0. Furthermore, as the
on�nement length is redu
ed from 40 Å to 20 Å, the de
rease in �E in the
ase of 3D CdS dot is �28:25 meV while that in the 
orresponding 2D 
aseis �44:7 meV.
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Fig. 1. Polaroni
 
orre
tions, ��E (in meV) to the GS energy of an ele
tron inInSb, GaAs, CdTe, CdSe and CdS quantum dots with paraboli
 
on�nement in3D, as a fun
tion of the 
on�nement length l0 (in Å).
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 oFig. 2. Polaroni
 
orre
tions, ��E (in meV) to the GS energy of an ele
tron inInSb, GaAs, CdTe, CdSe and CdS quantum dots with paraboli
 
on�nement in 2Das a fun
tion of the 
on�nement length l0 (in Å).The �rst ex
ited state polaron energies for N = 2 and N = 3 have tobe obtained by minimizing (4.23) with respe
t to �. It may be noted thatthe energy expression (4.23) has a singularity at � = 1 
orresponding to theinstability of the ex
ited state with respe
t to the emission of a phonon.
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ts in Quantum Dots 485In the extended state limit i.e. for l !1 and �! 0, we obtainENDES = �N + 24 ��2 +�N + 24l4 � 1�2��p�2 � (N�12 )� (N2 ) �1 + (N + 2)8N �2� (4.24)whi
h on minimization with respe
t to � yields�2 = 1l2 �1� �p�4N � (N�12 )� (N2 ) �1=2 : (4.25)Substituting Eq. (4.25) in (4.24) givesENDES;EMES = ��p�� (N�12 )2� (N2 ) +�N + 22 � 1l2 "1� �p�� (N�12 )4N� (N2 ) #1=2 (4.26)whi
h is the E�e
tive Mass Ex
ited State (EMES) result. Sin
e the �rst ESenergy has a singularity at � = 1, the minima 
orresponding to the e�e
tivemass ex
ited state would o

ur on the left side of the singularity. Thesituation des
ribed by Eq. (4.26) is that of an undisturbed weak-
ouplingpolaron sitting at the �rst ES level of the 
on�ning paraboli
 potential ofthe quantum dot.In the 
ase of lo
alised state limit i.e. for �!1, we obtainENDES;Lo
 = �N + 24 ��2 +�N + 24l4 � 1�2 � �� (N�12 )2� (N2 )� �1� 14N ��2 ln 2 + �2� � (4.27)whi
h on minimization with respe
t to � yields�N + 22 ��4��N + 22 � 1l4 � �2 � (N�12 )� (N2 ) (1� 14N )(�3�2� ln 2) = 0 : (4.28)In the limit of strong ele
tron�phonon 
oupling and weak 
on�nement, one
an solve (4.28) approximately to obtain� = �N + 2 �1� 14N � � (N�12 )� (N2 ) : (4.29)



486 A. Chatterjee, S. MukhopadhyayEq. (4.27) then redu
es toENDES;RES = � �24(N + 2) �1� 14N �2 � (N�12 )� (N2 ) !2+(N + 2)34�2l4 1(1� 14N )2 (� (N=2)� (N�12 ))2 � (N + 2) ln 2 (4.30)whi
h is the �rst relaxed ex
ited state (RES) energy in the limit of large �and weak 
on�nement. In the limit of strong 
on�nement (l ! 0) and smallele
tron�phonon 
oupling (� ! 0), Eq. (4.28) 
an be approximately solvedby dropping the third term to give�2 = 1l2 ; (4.31)and thus in this limit the �rst RES energy is given byENDES;RES = (N + 2)2l2 � �2 �1� 14N � � (N�12 )� (N2 ) �1l + 2l ln 2� : (4.32)Sin
e the �rst RES energy expressions (4.30) and (4.32) are obtained for largevalues of �, the minima 
orresponding to these energies will be on the rightside of the singularity. It may be mentioned that relaxed ex
ited states o

urwhen the lo
alization potential for the ele
tron arises from the 
ombinede�e
t of the latti
e polarization and the 
on�ning paraboli
 potential.The �rst ES polaroni
 
orre
tion to the quantum dot ele
tron energy 
anbe de�ned as �EES = ENDES � N + 22l2whi
h as a fun
tion of � would have in general two minima, one 
orrespond-ing to the EMES whi
h 
an o

ur for � < 1 and the other 
orrespondingto the RES whi
h 
an o

ur for � > 1. However for the ex
ited polaroni
states to exist, it is ne
essary that �EES is negative. We have studied thevariation of �EES as a fun
tion of � for both 2D and 3D dots for varioussets of values of � and l. The typi
al behaviour is shown in Fig. 3 where wehave taken � = 2 and l = 3. It is evident that in 2D, �EES has only oneminimum 
orresponding to the RES while in 3D, �EES has two minima, one
orresponding to the EMES and the other to the RES, the EMES being, asexpe
ted, lower in energy. For � = 2 and l = 1 we �nd that in both 2D and3D, �EES shows only one minimum whi
h o

urs for � > 1 implying thatthe �rst ex
ited states in these 
ases are of RES type. For � = 2 and l = 7we �nd that in 2D, �EES shows two minima, one giving the EMES energy
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orre
tion and the other giving the �rst RES energy 
orre
tion. In 3D alsowe �nd that there are 2 minima in the �EES-� 
urve, but the minimum for� > 1 gives a positive polaroni
 energy and is therefore not a

eptable. For� = 0:5 and l = 5:0 we �nd that the �rst ES is of EMES type in both 2Dand 3D dots. It should however be pointed out that when the minimum ofthe �EES-� 
urve is very 
lose to the singularity, the energies obtained arenot very a

urate and therefore in su
h 
ases even if we may obtain a smallpositive value for �EES, the RES may still possibly exist.

Fig. 3. Polaroni
 
orre
tions, �EES (in Feynman units) to the ES energy of anele
tron in 2D and 3D quantum dots for � = 2 and l = 3 as a fun
tion of thevariational parameter �.

Fig. 4. EMES and RES energies (in Feynman units) of a polaron as a fun
tion of1=l2 (in Feynman units) for � = 1:5 in 2D and 3D quantum dots. The GS polaronenergies are also shown for the sake of 
omparison.
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Fig. 5. EMES and RES energies (in Feynman units) of a polaron as a fun
tion of� for l = 2 in both 2D and 3D quantum dots. The GS energies are also shown forthe sake of 
omparison.

Fig. 6. The 
urve giving the 
riti
al values of � and 1=l2 (in Feynman units) belowwhi
h EMES would exist in 2D and 3D quantum dots.We have studied the behaviour of the EMES and the RES energies as afun
tion of 1l2 for � = 1:5 in both two and three dimensions. The results areshown in Fig. 4 where we have also shown the behaviour of the GS polaronenergy for the sake of 
omparison. In Fig. 5 we plot EGS, EEMESES and ERESESas a fun
tion of � for l = 2 for both 2D and 3D dots. It is evident from allthese �gures that the di�eren
e between the GS energy and the �rst RESenergy is always greater than an LO-phonon energy. It 
an also be noti
edthat for a parti
ular value of � the EMES 
eases to exist below a 
ertainvalue of the 
on�nement length l. Again for a given value of l the EMESexists only if � does not ex
eed a parti
ular value. We show this behaviourmore elaborately in Fig. 6 for both 2D and 3D dots. The points lying onthe 2D and 3D 
urves 
orrespond to the 
riti
al values of � and 1l2 below
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 oFig. 7. Polaroni
 
orre
tions, ��EES (in meV) to the ES energy of an ele
tron in2D and 3D GaAs quantum dots as a fun
tion of the 
on�nement length l0 (in Å).The GS energies are also shown for the sake of 
omparison.whi
h EMES would exist in the respe
tive dimensions. Finally, we applyour results to realisti
 quantum dots. In Fig. 7 we show the behaviour of��EES for 2D and 3D GaAs quantum dot. For the sake of 
omparison wehave also plotted the GS polaroni
 energy 
orre
tions. It 
an be noti
edthat for large values of the 
on�nement length the �rst ES of a polaron ina GaAs quantum dot is of the e�e
tive mass type. However, for a small dotthe �rst ES of the polaron 
an be des
ribed by a relaxed ex
ited state.5. Formation and stability of a singlet opti
al bipolaronin a paraboli
 quantum dotIn the present se
tion we investigate the formation and stability of asinglet opti
al bipolaron in 2D and 3D paraboli
 quantum dots in strongele
tron�phonon 
oupling region. We 
hoose to work in the strong ele
tron�phonon 
oupling regime be
ause it is well-known that in bulk systems stablebipolarons form if � is larger than some 
riti
al value. The 
on
ept of thebipolaron was �rst introdu
ed in the polaron literature by Pekar [22℄ inthe early �fties and various aspe
ts of the bipolaron have subsequently beeninvestigated by several authors (see [23℄ and referen
es therein). A bipolaronis a bound pair of two ele
trons dressed with a 
loud of virtual phonons.Normally two 
ondu
tion band ele
trons would repel ea
h other be
auseof their repulsive Coulomb intera
tion, but in polar materials there is anadditional intera
tion between ele
trons mediated by virtual phonons whi
his attra
tive. If this phonon-mediated attra
tive intera
tion is large enoughto over
ome the mutual Coulomb repulsion then the ele
trons 
an form abipolaroni
 bound state. The phenomenon of bipolaron formation is purely
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e 
lassi
ally the net for
e between the two ele
trons isalways repulsive, the e�e
t of the ele
tron-latti
e polarization being merelyto redu
e the strength of the Coulomb repulsion by a fa
tor "0="1, where "0and "1 are respe
tively the stati
 and high frequen
y diele
tri
 
onstants.The bipolaron problem is interesting for both a
ademi
 reasons and for itspra
ti
al importan
e in polar semi
ondu
tors and semi
ondu
ting glasses.However, the dis
overy of high temperature super
ondu
tivity [24℄ in CuO2-based layer 
erami
 materials and the subsequent proposal of bipolaroni
me
hanism [25℄ for indu
ing pairing in these systems has made the bipolaronproblem all the more fas
inating and brought it to the forefront of 
urrentresear
h.It would also be interesting to explore the possibility of bipolaron for-mation in quantum dots. In [26℄ we have studied the stability of a strong-
oupling opti
al bipolaron for the �rst time in two and three dimensionalparaboli
 quantum dots using the Landau�Pekar variational method. Laterthe bipolaron problem in a quantum dot has also been studied by other au-thors [27℄. In what follows we present our quantum dot bipolaron model [26℄and then make an N -dimensional formulation for the bipolaron binding en-ergy and �nally dis
uss our numeri
al results.5.1. The modelThe Hamiltonian for a system of the two-ele
trons moving in anN -dimensional symmetri
 paraboli
 quantum dot and intera
ting with LOphonons of the system 
an be written asH 0 = � ~22mr2~r01 � ~22mr2~r02 + e2"1j~r01 � ~r02j + 12m!2p(r021 + r022 )+~!0X~q0 by~q0b~q + 2Xi=1X~q0 h�0q0e�i~q0:~r0iby~q0 + h:
:i ; (5.1)where again all ve
tors are N -dimensional. The �rst two terms refer tothe kineti
 energies of the two ele
trons, the third term des
ribes their mu-tual Coulomb repulsion, the fourth term gives the potential energy of thetwo ele
trons due to the symmetri
 paraboli
 
on�nement, the �fth term de-s
ribes the usual unperturbed phonon Hamiltonian, and the sixth term givesthe intera
tion of the two ele
trons with the LO phonon �eld. In Feynman'sunits (~ = !0 = m = 1) the Hamiltonian (5.1) reads
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H = �12r2~r01 � 12r2~r2 + �r12 + 12!2(r21 + r22) +X~q by~qb~q+Xi X~q h�qe�i~q:riby~q + h:
:i ; (5.2)where � = � e2~!0"1��� ~m!0�1=2 : (5.3)5.2. FormulationWe seek a variational solution of (5.2) for a singlet bipolaron in thestrong-
oupling limit. In this limit the adiabati
 approximation is valid andtherefore we 
hoose a trial wave fun
tion of the fromj	BPi = j�(~r1; ~r2)i exp�X~q (f~qby~q � f�~q b~q)�j0ij�i ; (5.4)where fq's are to be obtained variationally, j0i is the unperturbed zero-phonon state satisfying b~qj0i = 0 for all ~q, j�i is the antisymmetri
 spin fun
-tion for the two ele
trons 
orresponding to the singlet pairing and j�(~r1; ~r2)iis a symmetri
 two-ele
tron wave fun
tion. The variational energy (EBP) isgiven by EBP = h	 jHj	i= �12h�jr21 +r22j�i+X~q jf~qj2 + h�j �r12 j�i+!22 h�jr21 + r22j�i+ 2X~q (�~qf�~q ��~q + h:
:) ; (5.5)where �~q = h�jei~q:~ri j�i : (5.6)We 
hoose the two-ele
tron wave fun
tion asj�(~r1; ~r2)i = �(~r1)�(~r2)g(~r1; ~r2; j~r1 � ~r2j) ; (5.7)
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tron fun
tions and g the Coulomb 
orrelation fa
tor. For�(~r) we try a Gaussian fun
tion and for the 
orrelation fa
tor g, we 
hoosea Jastrow type fun
tion so that the normalised �(~r1; ~r2) 
an be written asj�(~r1~r2)i = "�N (�2 � b)N2 +1N�N #1=2 r12 exp ���22 (r21 + r22)� exp � b4r212� ;(5.8)where � and b are variational parameters. Variation of the energy EBP withrespe
t to fq yields fq = �2�q�q ; (5.9)where �q is given by�q = �1� q24N(�2 � b)� exp ��q28 � 1�2 + 1�2 � b�� : (5.10)We �nally obtain for the bipolaron GS energyEBP = N4 �2 + N4 t2�2 � 12 �1� 2N� t2�2 + p2�� (N+12 )t�N� (N2 )+ 14l4 �N�2 + N + 2�2t2 �� 2p2 � (N�12 )� (N2 ) (t2 + 1)�1=2t��� �1� 1N(t2 + 1) + 34N2(t2 + 1)2 � ; (5.11)where l is as usual the dimensionless e�e
tive 
on�nement length and �and t (= q�2�b�2 ) are variational parameters whi
h have to be obtainednumeri
ally by solving the equations�EBP�� = 0 and �EBP�t = 0 : (5.12)To obtain the stability 
riteria we have to �nd out the Binding Energy(BE) of the bipolaron whi
h is given byBE = 2Ep �EBP ; (5.13)where Ep is the GS energy of a single strong-
oupling polaron in the sameparaboli
 quantum dot system and should be 
al
ulated using the sameapproximation as were used for the determination of EBP. Ep is given by
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Ep = N4 �2 + N4 � 1l4�2�� �2 � (N�12 )� (N2 ) � ; (5.14)where � has to be obtained numeri
ally from�Ep�� = 0 : (5.15)5.3. Numeri
al results and dis
ussionWe determine the bipolaron stability by demanding that the bindingenergy of the bipolaron be positive. We �nd that binding energy of a strong-
oupling bipolaron in a quantum dot depends on two parameters. Theseparameters are � = "1="0 and the 
on�nement length l.

Fig. 8. Binding energy of the bipolaron (BE) (in Feynman units) as a fun
tion of the
on�nement length l (in Feynman units) for di�erent values of �(� = 0:01; 0:05; 0:1)in a 3D quantum dot.In Fig. 8 we show the variation of the bipolaron binding energy (BE) as afun
tion of l for a few values of �(� = 0:01; 0:05; 0:1) for a 3D quantum dot.It is 
lear that the binding energy de
reases with the de
rease in the 
on�ne-ment length l. The variation is extremely rapid below a 
ertain value of the
on�nement length and indeed the bipolaron be
omes unstable if l is madesmaller than a 
riti
al value l
. At su
h 
on�nement lengths a bipolaronbreaks up into two individual polarons. This instability of the bipolaron
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tive 
on�nement lengthof the quantum dot potential de
reases, the average Coulomb repulsion be-tween the two ele
trons in
reases. If this in
rease in the Coulomb repulsionwith 
orresponding de
rease in the size of the quantum dot be
omes largeenough to dominate over the phonon-mediated attra
tive ele
tron�ele
tronattra
tion, the formation of stable bipolarons will be inhibited. However,when l is large, the bipolaron binding energy does not 
hange mu
h withl and hen
e the bipolaron stability be
omes more or less independent of l.This is essentially the bulk limit. It is also 
lear from the �gure that thebipolaron binding energy in
reases with a de
rease in � whi
h is again notvery di�
ult to understand. Sin
e � = (1�p2�� ), for a given value of �, ade
rease in � means a de
rease in � and hen
e a redu
tion in the strength ofthe ele
tron�ele
tron Coulomb repulsion whi
h in turn implies an in
rease inthe ele
tron�ele
tron attra
tive intera
tion. Thus a de
rease in � would leadto an enhan
ement in the bipolaron binding energy favouring the formationof stable bipolarons. The variation of the binding energy of the bipolaronwith l for a 2D quantum dot is qualitatively similar to that observed in 3Ddots and has not been shown here. Quantitatively however, the polaroni
intera
tions are stronger in 2D than in 3D and 
onsequently, for the samevalue of �, the bipolaron binding energy is found to be larger in a 2D dotthan in 3D dot and also for a given value of � the 
riti
al 
on�nement lengthle is smaller for a 2D quantum dot than for the 
orresponding 3D dot.6. Phonon-indu
ed suppression of Zeeman splittingin a polar quantum dotIn the pre
eding se
tions we have dis
ussed the polaroni
 e�e
ts in quan-tum dots. It will, however, be important to 
al
ulate polaroni
 e�e
tswhi
h 
an be easily measured experimentally and thus the existen
e or non-existen
e of these e�e
ts 
an be substantiated unambiguously. In a re
entpaper [28℄ we have made an attempt in this dire
tion. The �rst ex
itedlevel of a 2D paraboli
 quantum dot potential is two-fold degenerate. Thistwo-fold degenera
y will be lifted in the presen
e of a magneti
 �eld. This isthe so 
alled Zeeman e�e
t in a paraboli
 quantum dot. It would be indeedinteresting to study the e�e
t of polaroni
 intera
tion on this Zeeman e�e
t.In re
ent times several authors [11,29℄ have studied the e�e
t of a mag-neti
 �eld on the ele
troni
 properties of a quantum dot. A few authors [30℄have also addressed themselves to the problem of a quantum dot ele
tronin a magneti
 �eld in the presen
e of the ele
tron-LO-phonon intera
tion.This is the so 
alled magnetopolaron problem in a quantum dot. In [28℄ wehave 
al
ulated the Zeeman splitting of the �rst ex
ited level of a 2D polarsemi
ondu
tor quantum dot with paraboli
 
on�nement in the presen
e of
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 �eld applied normal to the plane of the dot for small� using Rayleigh�S
hrodinger perturbation theory (RSPT). An all 
oupling
al
ulation has been performed by us in a subsequent work [31℄. We shallpresent here the RSPT solution.6.1. The modelThe Hamiltonian for a magnetopolaron in a 2D quantum dot with sym-metri
 paraboli
 
on�nement 
an be written asH 0 = 12m  ~p0 + e ~A0e !2 + 12m!2p�02 + ~!X~q0 by~q0b~q0+X~q0 h�0~q0e�i~q0:~�0by~q + h:
:i ; (6.1)where all ve
tors are two dimensional, ~�0(x0; y0) and ~p0 = �i~~r0 are respe
-tively the position ve
tor and the momentum of the ele
tron, e is the 
hargeof the ele
tron, ~A0 is the ve
tor potential and other symbols have alreadybeen de�ned earlier. Let us 
onsider that the magneti
 �eld is applied inthe z-dire
tion and is of strength B i.e. we have ~B = (0; 0; B). We 
hoose~A0 su
h that ~r0: ~A0 = 0 and work in the symmetri
 gauge so that ~A0 
an be
hosen as ~A0 = (�12By0; 12Bx0). Then the Hamiltonian (6.1) be
omesH 0 = ~p022m + eB2m
 (x0p0y � y0p0x) + e2B28m
2 �02 + 12 m!2p�02+~!0X~q0 by~q0b~q0 +X~q0 h�0~q0e�i~q0:~�0by~q0 + h:
:i ; (6.2)or H 0 = ~p022m + !0
2 L0z + 12m!02�02 + ~!0X~q0 by~q0b~q0+X~q0 ��0~q0e�i~q0:~�0by~q0 + h:
:� ; (6.3)where !0
 = eBm
 is the bare 
y
lotron frequen
y, Lz0 = (x0py0�y0px0) is the z-
omponent of the angular momentum of the ele
tron, and !0 = (!2p+ !02
4 )1=2.We shall again use the Feynman units. The Hamiltonian (6.3) 
an then bewritten as H = H0 +Hep = He +Hph +Hep ; (6.4)
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2 Lz + 12 �!2�2 ; (6.5)Hph = X~q by~qb~q ; (6.6)Hep = X~q ��~qe�i~q:~�by~q + h:
:� ; (6.7)where ~�(x; y) = ~�0=r0; ~q = ~q0=q0; ! = !p=!0; !
 = !0
=!0; �! = !0=!0 =(!2 + !2
4 )1=2; Lz = �i [x(�=�y)� y(�=�x)℄ and j�qj2 = (p2��=V2q),V2 be-ing the dimensionless area of the 2D dot. The Hamiltonian H0 = He +Hphis exa
tly soluble. We are however interested in studying the e�e
t of Hepon the energy spe
trum of H0. We shall obtain in parti
ular the 
orre
tionsto the GS and the �rst ES energies of H0 due to Hep. These may be referredto as the magnetopolaron self-energy 
orre
tions. In the subse
tion imme-diately following we shall 
al
ulate perturbatively the GS and the �rst ESmagnetopolaron self energy 
orre
tions.6.2. The RSPT solutionWe have already mentioned that H0 is exa
tly soluble. We haveH0	 (0)nm(~�)Y~q jnqi = �E(0)nm +X~q nq�	 (0)nm(~�)Y~q jnqi ; (6.8)where X~q by~qb~qYq jnqi = �X~q n~q�Y~q jnqi ; (6.9)and He	 (0)nm(~�) = E(0)nm	 (0)nm(~�) : (6.10)We are interested in the perturbative e�e
ts of Hep on the states 	 (0)nm(~�)j0iwhere j0i =Qq j0qi. The wave fun
tions 	 (0)nm(~�) and the energy values E(0)nmare given by	 (0)nm(~�) = 1p2� eim� � 2�!n!(n+ jmj)!�1=2 (p�!�)jmjLjmjn (�!�2)e� �!2 �2 ; (6.11)E(0)nm = (2n+ jmj+ 1)�! + m2 !
; (6.12)
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ts in Quantum Dots 497where n = 0; 1; 2; � � �, m = 0;�1;�2; � � � and Ljmjn (�!�2) is the asso
iatedLaguerre polynomial. In the absen
e of the magneti
 �eld the �rst ex
itedstate E(0)0;�1 is two-fold degenerate. This degenera
y is lifted in the presen
eof the magneti
 �eld. This 
an be referred to as the Zeeman splitting in aparaboli
 quantum dot. We shall now study the e�e
t of Hep on this Zeemansplitting by the se
ond-order RSPT.The se
ond-order RSPT 
orre
tion to the energy of the state 	 (0)nm(~�)j0idue to the polaroni
 intera
tion is given by�Enm = �Xn0m0 Xfn~q00gjh	 (0)n0m0 jQ~q00hn~q00 j hP~q �qe�i~q:~�by~q + h:
:i j	 (0)nmiQ~q0 j0~q0ij2(E(0)n0m0 +P~q00 n~q00 �E(0)nm) ; (6.13)where Pfn~q00g = Pnq1 Pnq2 Pnq3 � � � : On further simpli�
ation (6.13) re-du
es to �Enm = �Xn0m0X~q jh	 (0)n0m0(~�)j�qe�i~q:~�j	 (0)nm(~�)ij2(E(0)n0m0 �E(0)nm + 1) : (6.14)Summation over ~q in the above expression 
an be performed and we get�Enm = � �p2 Xn0m0 Z Z d~�d~�0j~�� ~�0j jh	 (o)�n0m0(~�)	 (0)n0m0(~�0)	�(o)nm (~�0)	 (0)nm(~�)(E(0)n0m0 �E(0)nm + 1) :(6.15)Zhu and Gu (1993) [30℄ have also 
onsidered the same weak-
oupling mag-netopolaron problem but have restri
ted their study to the strong magneti
�eld limit. They have evaluated the energy expression by taking n0 = n andm0 = m. One may noti
e that the in�nite sum over n0;m0 o

urring in equa-tion (6.15) is the Green's fun
tion for the unperturbed ele
troni
 problem.For the magneti
 �eld alone the 
orresponding Green's fun
tion was �rstderived by Sondheimer and Wilson [32℄ and for a magneti
 �eld with a 3Dharmoni
 os
illator potential it was �rst obtained by Lepine and Matz [33℄.In the present 
ase the unperturbed problem involves a 2D harmoni
 os
il-lator in a magneti
 �eld. This Green's fun
tion 
an be obtained exa
tly forall values of the magneti
 �eld for the ground state (n = 0;m = 0) and forsmall values of the magneti
 �eld [(�! + !
2 ) < 1℄ for the �rst two ex
ited



498 A. Chatterjee, S. Mukhopadhyaystates (n = 0;m = �1). We obtainGnm(~�; ~�0) = Xn0m0 	�n0m0(~�)	n0m0(~�0)E(0)n0m0 �E(0)nm + 1= Z dte�(1�E(0)nm)t �!2� sinh(�!t)� exp�� �!2�(�2 + �02) 
oth �!t� 2~�:~�0 
osh(!
t=2)sinh(�!t)�2i(x0y � y0x)sinh(!
t2 )sinh(�!t) �� : (6.16)Substituting (6.16) in (6.15) and performing integrations over ~� and ~�0 we�nally get Enm = E(0)nm +�Enm ; (6.17)where Enm is the perturbed energy and�E00 = ��p�p�!2 1Z0 dt e�t[1� e��!t 
osh(!
t2 )℄1=2 ; (6.18)and �E0;�1 = ��p�p�!p2 1Z0 dte�[1��!�!
2 ℄t[2f(g � h) + h2 � f2℄(1� e�2�!t)[f(gf + h2)℄3=2 ; (6.19)where f = 1 + 
oth(�!t)� 
osh(!
t=2)= sinh(�!t) ; (6.20)g = 1 + 
oth(�!t) + 
osh(!
t=2)= sinh(�!t) ; (6.21)and h = sin(!
t2 )sinh(�!t) : (6.22)It may be noted that results (6.18) and (6.19) are exa
t to order �.We de�ne the renormalized 
y
lotron frequen
ies as !�
� = (E0;�1 �E00)=~ and the 
orresponding 
y
lotron masses as m�� = m(!
=!�
�). Itis possible to obtain simple analyti
al expressions for the magnetopolaronself-energy 
orre
tions in di�erent limiting 
ases. However, we shall presenthere our numeri
al results for a GaAs quantum dot.
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ts in Quantum Dots 4996.3. Numeri
al resultsWe have already pointed out that the two-fold degenera
y of the �rstex
ited level of a 2D paraboli
 quantum dot potential is lifted in the presen
eof a magneti
 �eld. Consequently, the bare 
y
lotron frequen
y !
 splitsinto two 
y
lotron frequen
ies !�
+ and !�
�. With in
reasing magneti
 �eld!�
+ in
reases while !�
� de
reases. We have studied the behaviour of therenormalised 
y
lotron resonan
e frequen
ies !�
+ and !�
� as a fun
tion of!0
 in a GaAs quantum dot in
orporating the ele
tron�phonon intera
tion.We have found that when the polaroni
 intera
tion is taken into a

ount the
y
lotron resonan
e frequen
ies de
rease quite signi�
antly and furthermoretheir variation with the magneti
 �eld also be
omes slower, more so for largermagneti
 �elds [28℄.
 (

 in
 m

eV
 )

 oFig. 9. Zeeman splitting (in meV) for a GaAs dot as a fun
tion of the 
on�nementlength (in Å) for a parti
ular value of the magneti
 �eld.It is however more useful from the point of view of experimental ob-servation to study the behaviour of the Zeeman splitting [~(!�
+ � !�
�)℄dire
tly as a fun
tion of the dot size. Results are shown in Fig. 9. In theabsen
e of any polaroni
 intera
tion the Zeeman splitting in a quantum dotis essentially independent of the 
on�nement length, while for � = 0:068,i.e. in a GaAs quantum dot it is found to be strongly size dependent belowa 
ertain value of l0. In fa
t, the Zeeman splitting de
reases very rapidlywith de
reasing dot size below a few nanometers. This is a very interest-ing theoreti
al observation and should be experimentally measurable. For abulk GaAs system also the Zeeman splitting is suppressed in the presen
eof the polaroni
 intera
tion but this suppression is independent of the sys-tem size. In a paraboli
 quantum dot of a polar semi
ondu
tor the ex
itedunperturbed states n = 0, m = �1, (plus zero phonon) strongly mix withthe n = 0, m = 0 plus one phonon state resulting in the devaluation of the



500 A. Chatterjee, S. Mukhopadhyayaxial angular momentum of the pure �rst ex
ited states of the quantum dotpotential. This explains the suppression of the Zeeman splitting in the pres-en
e of the ele
tron�phonon intera
tion. It is now well known that when the
on�nement length be
omes 
omparable to the polaron size, the polaroni
e�e
ts be
ome extremely pronoun
ed and in
rease sharply with the de
reasein the 
on�nement length. Thus it is expe
ted that in the presen
e of thepolaroni
 intera
tion the Zeeman e�e
t will be strongly suppressed if thee�e
tive dot size is redu
ed below a few nanometers. This interesting sizedependen
e of Zeeman splitting in a paraboli
 quantum dot 
an be usefullyexploited to obtain any desired resonant absorption in a GaAs quantum dotby tuning the frequen
y of the 
on�ning potential or the e�e
tive dot size.7. Con
lusionIn 
on
lusion, we have shown that the polaroni
 
orre
tions, �E to theele
troni
 energy in
rease with de
reasing 
on�nement length l in both 2Dand 3D quantum dots. We also �nd that for the same value of the ele
tron�phonon 
oupling 
onstant � and the 
on�nement length l the polaroni
e�e
ts are more pronoun
ed in a 2D dot than in a 3D one. We have shownthat the �rst ex
ited polaroni
 states in a quantum dot 
an be of two types;one is EMES (e�e
tive mass ex
ited state) and the other one 
an be referredto as RES (relax ex
ited state). We �nd that in GaAs quantum dots the�rst ex
ited states are of the EMES type if the dot sizes are large while forsmall dots the �rst ex
ited states 
an be des
ribed by RES.We have studied the stability of a strong-
oupling opti
al bipolaron intwo- and three-dimensional paraboli
 quantum dots and have shown that thebipolaron stability in these systems depends on two parameters, �(= "1="0)and l. The bipolaron binding energy de
reases with the de
rease in l andbelow a 
ertain value of l whi
h depends on � and the dimensionality ofthe dot, a bipolaron be
omes unstable and breaks up into two individualpolarons.We have �nally investigated the e�e
t of the ele
tron-LO-phonon intera
-tion on the ground and the �rst ex
ited states of a 2D paraboli
 quantum dotin the presen
e of an external magneti
 �eld for small �. We �nd that belowa 
ertain value of l the Zeeman splitting be
omes strongly size dependentand de
reases very rapidly with de
reasing dot size. This size-dependentsuppression of the Zeeman splitting in a polar quantum dot is a 
lear man-ifestation of the quantum size e�e
t and 
an have interesting te
hnologi
alappli
ations.
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