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When all 3 dimensions of electron device drop to a nanometer size, a
0-D device or a quantum dot appears. In this case the conductance shows
oscillations with varying gate voltage. In this paper the results of nu-
merical simulations, which clearly show the above behavior, are presented.
The dot conductance is calculated with the help of Landauer formula af-
ter the Green’s function corresponding to device Hamiltonian is evaluated.
Coulomb interactions are included as the Hartree potential associated with
the charge of all particles inside a dot. This forces us to use self-energies
which describes interactions between device and leads not only to propa-
gating states but also to non-propagating, localized states below the band.

PACS numbers: 73.23.-b, 73.23.Hk

1. Introduction

The modern semiconductor technology makes now possible fabrication
of devices that are only a few tens nanometers in size. The way to confine
electrons in such small regions is to use material boundaries and/or electric
fields. If the electrons are confined in all 3-dimensions: a zero dimensional
(0-D) device or a quantum dot forms. Recent experiments at low tem-
peratures revealed that conductance g of such quantum dot oscillates with
varying gate voltage V,. The commonly accepted explanation of this effect
is that each oscillation corresponds to precisely one electron added to the
device.

The aim of this paper is to present the results of numerical calculations
in which the effect of conductance oscillations in quantum dot is reproduced.
The method we have employed was the Green’s function technique applied to
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discretized 2-D space. The problem was simplified in that way that electron-
electron interactions were included only within Hartree approximation. Also
the spin degeneracy has been omitted.

2. The model and computational technique

The model of rectangular quantum dot together with quasi 1-D leads
is sketched in Fig. 1. We consider two strips connected to the opposite
edges of the device. Within the Hartree approximation the tight-binding
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Fig. 1. (a) The model of 0-dimensional device weakly coupled to the leads: L1 (left)
and L2 (right). The dimensions of the device are w (width) and L (length). The
leads stretch to infinity. The uniform discretization mesh of lattice spacing a used
in numerical simulations is marked. (b) Energetic structure of the model in (a).
Sites in the leads have zero-energies, [E.]; = 0. Energies of the sites in the device
depend on gate voltage, [E.]; = —eV;. The height of the barriers describes the
value of coupling parameter 7. Fermi level is assumed in the band center Ep = 4t.

Hamiltonian becomes a matrix [H] with elements [H];;

[Hlii = 4t — e[Vuli + [Ec)i ,
[
[

[E.]; is the conduction band edge at site i, + = h?/2m*a?, m* is electron
effective mass, a is the site separation and the elements of the vector of
Hartree potential are [4]

lij = —t, for 4,7 being nearest neighbors (n.n.)

H
Hlj; =0 otherwise . (1)

2

Vuli = —47fm (; I[Z]gjlja + 3.52[n]ia2> , (2)

where |r;;] is the distance between sites i and j, € is dielectric constant and
[n]; is the electron density at site i. It can be calculated as



Calculations of Conductance Oscillations in Quantum Dots 511

Er
)i = 3 resGlis (2 = By) + / (G (B)dE, 3)
[Ec]s

where the summation is over all discrete eigenenergies Fjy of the Hamiltonian
[H] (or poles of [G];;) that lie below the Fermi level Ep, and the integral
is over continuous spectrum of [H]: starting from the band edge [E.]; up
to Er. The Green’s functions that appear on the r.h.s. of Eq. (3) can be
calculated as [2]

[G](z = E+in) = (2[I] = [H] = [Zpr1] — [Zpr2)) 1, GH(E) = Jim G(z). (4)
In this equations the coupling between device and leads is taken into account
in the form of self-energies Xprp,, p = 1,2. The matrix elements of self-
energy due to the interaction between the device and the lead p are [2,4]

[Zorplis (B) = =t xm (1) Xm (1) fn (E) . (5)

where 7 is the coupling parameter and I; is the point (site) in the lead p
adjacent to the point 7 in the device. The meaning of the coupling parameter
7 is that for 7 = 0 there is no coupling to the lead: [Ypr,li; = 0. In
this case we have closed device with only bounded states inside the dot
and no transport takes place. On the contrary for 7 = 1 the system is
entirely open. Tuning 7 in the range [0, 1| continuously changes the coupling
between the device and the lead. It is like controlling the height of the tunnel
barrier separating device from the lead (see Fig. 1(b)). In Eq. (5) xpm, is the
transverse component of the envelope function of mode (subband) m in lead
p. The form of the function f,, in Eq. (5) depends on the difference between
E and eigenenergy E,, of mode m [2,4]

qg—+q¢*—-1 for E>E,+2t

fm (E) =< exp (ikpa) for E,—-2t<E<E,+2t

qg++q¢*—-1 for E<E,—2t

where cos k,a = ¢ = —(E — E,)/2t. The meaning of the above cases is that
while the first and third rows refer to localized (non-propagating) states, the
row in the middle describes the propagation of extended states and for this
reason is especially important when calculating conductance. For this reason
the other two terms are usually ignored. When Coulomb interactions are
considered the charge being captured in localized states must be taken into
account. Thus, for a proper treatment the self-energy terms that describe
interaction for localized states must not be omitted. One more reason for

, (6)
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this is that omitting self-energies that describes device-lead interaction for
localized states gives incorrect density of extended states [5]. So, in our
calculations we use the self-energies as in Egs. (5) and (6). In this point this
paper differs from others [3].

3. Results of calculations: 10X 5 rectangular quantum dot

We have performed calculations for rectangular-shaped quantum dot.
The discretization mesh was of 10 sites width and 5 sites length. The leads
were of 10 sites width. The strength of Coulomb interaction U = e?/4rea
was assumed as U = 0.5t. For GaAs material parameters m* and e this
corresponds to the lattice spacing a ~ 2.5 nm, and the size of the device of
approximately 25 x 12.5 nm?. As a reference level we have assumed the con-
duction band edge in the leads [E.]; = 0. The influence of external voltage
V, was then simulated by the site energies in the device [E.]; = —eV,. The
Fermi level was fixed in the middle of the band, Fr = 4t (see Fig. 1(b)).
The calculations were performed for the value of the coupling parameter
7 = 0.2. The self-consistent solutions was achieved in the iterative pro-
cedure: calculate device Hamiltonian, Eqgs. (1); calculate the self-energies
due to the leads, Egs. (5) and (6); calculate the Green’s functions, Eq. (4);
calculate electron density, Eq. (3); calculate the Hartree potential, Eq. (2);
calculate the Hamiltonian, Eqgs. (1) ..., go on unless electron density stops
changing. Result are shown in Fig. 2. In Fig. 2(a) the density of states
(DOS)

a2
AB) = a* Y [ph(B) = =% 3" 1mlGMa(B)

calculated for gate voltage V, = —t/e is presented. Lorentzian peaks at the
positions of dot energy levels are clearly visible. The width of these peaks
depend on the value of coupling parameter 7, the greater 7 the wider the
peak.

The positions of the peaks in DOS in Fig. 2(a) depend on the gate
voltage V. This is shown in Fig. 2(b) where the maxima in DOS are plotted
versus eVy. The origin of this step-like behavior is clear. As Vj increases
every time the peak in DOS crosses Fr a new electron tunnels into the dot.
This prevents moving DOS towards level energies because the (Coulomb)
electrostatic energy of the system increases. The peak in DOS is pinned
to Er until the whole electron enters the dot. This effect is known as the
Coulomb blockade.
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Fig.2. (a) Deunsity of states 2(E) calculated for the device weakly coupled to the
leads (7 = 0.2). The gate voltage was V, = —t/e. The position of the Fermi energy,
fixed at E = Ep = 4t, is marked. The unit on horizontal /vertical axis is ¢/t~".
(b) The positions of the maxima in the density of states (2(F) versus eV. The
unit on both axes is t.

Another effect are the oscillations of the conductance. When the peak in
DOS crosses Er high DOS is probed. This correspond to large conductance.
On the contrary for Er in between the peaks, low DOS is probed and small
conductance should be observed. Indeed, such oscillations are shown in
Fig. 3. We were able to calculate conductance g since it can be expressed in
terms of the retarded Green’s function [2]

g = S {IllGMITL)IGN ) ©

Fig.3. Conductance g in units of €*/h versus the gate voltage V in units of ¢/e.
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where Tr{} stands for the trace of the matrix, * is Hermitian conjugate and
the elements of the matrix [I7,,] are [2]

il = 3 w2, Q

where v, = 2tasinkpa is the longitudinal component of the velocity in
mode m and the summation is over all modes in lead p.

4. Conclusions

The Green’s function technique was used to calculate the conductance
of 0-D device. The electron-electron interactions were treated within the
Hartree approximation. The interactions between device and leads took into
account both extended and localized sites. The oscillations of conductance
have been observed in agreement with recent experiments.
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