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MODELLING OF QUANTUM MECHANICAL DEVICESBY GREEN'S FUNCTION TECHNIQUE�A. Kolek and G. Haªda±Department of Ele
troni
s Fundamentals, Rzeszów University of Te
hnologyW. Pola 2, 35-959 Rzeszów, Poland(Re
eived O
tober 31, 2000)In the paper we show that for detailed treatment of small devi
es bythe Green's fun
tion te
hnique the self-energies due to the leads should be
onsidered for both extended and lo
alized states.PACS numbers: 73.23.�b, 73.50.�h1. Introdu
tion: the Green's fun
tion te
hniqueIt is known that the quantity whi
h des
ribes well transport propertiesof the quantum me
hani
al devi
e is the Green's fun
tion 
orresponding todevi
e Hamiltonian. In the notation of Tight-Binding Hamiltonian (TBH)H =Xi jii"ihij �Xi;j jiithjj ; (1)where the se
ond sum runs only over nearest neighbor (n.n.) sites i; j. TheGreen's fun
tion be
omes a matrix[G℄ = (z[I℄ � [H℄)�1 (2)with elements [G℄ij(z) whi
h des
ribe response at site i due to ex
itationin site j. In the above, z = E + i� is the 
omplex variable and [I℄ is theidentity matrix. The matrix [G℄ has poles at the positions of dis
rete (real)eigenvalues Ep of the Hamiltonian [1℄. The residua at these poles provideinformation about 
orresponding lo
alized eigenstates, res[G℄ij(z = En) =Pk �k (i)��k (j) ; where the summation is over all degenerate eigenfun
tions� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000. (551)



552 A. Kolek, G. Haªda±�k with energy Ep. The situation is quite di�erent for energies from the
ontinuous spe
trum of H. In this 
ase the Green's fun
tion is not wellde�ned. For su
h energies the retarded Green's fun
tion is de�ned by thelimiting pro
edure [GR℄ij(E) = lim�!0+ [G℄ij(z); and the quantity� 1� Im��GR�ii (E)	 = [�℄i (E) (3)is the lo
al density of (extended) states (DOS) per unit volume.When making use of Eq. (2) the problem of in�nite-dimensional matri-
es emerges. This is be
ause of the leads whi
h should be 
onsidered asstret
hing out to in�nity. Otherwise we would deal with 
losed system withno transport at all. The solution of this �in�nite dimensional� problem isdes
ribed in the book of Datta [2℄. It is that[G℄ = (z[I℄� [HD℄� [�DL1℄� [�DL2℄)�1 ; (4)where [HD℄ is the Hamiltonian of isolated devi
e whereas [�DL1℄ and [�DL2℄des
ribe the intera
tions between devi
e and leads 1 and 2 respe
tively. Theyare 
alled the self-energies due to the leads. Their elements 
an be expressedin terms of the Green's fun
tion of isolated semi-in�nite lead [GL℄. Whatis important, the only matrix elements of [GL℄ involved in the 
al
ulationof [�DL℄ are those between sites li, lj in the lead whi
h are adja
ent to thesites i, j in the devi
e[�DL℄i;j � t2[GL℄li;lj ; where li; lj are n.n. of i; j : (5)This makes 
al
ulations of self-energy possible be
ause all the matri
es inEq. (4) are of size M�L for a devi
e whi
h is M sites wide and L sites long.2. Self-energy due to the leadsTo 
al
ulate the self-energy [�DL℄ one needs the Green's fun
tion of thelead. These leads usually take the form of multi-moded quasi one dimen-sional semi-in�nite wires. In 2-D su
h a wire stret
hes from x = �1 tox = 0 and is M sites wide. If we assume "i = 0 for all site energies in thelead then the transverse 
omponents of the wave fun
tions �m and 
orre-sponding eigenenergies Em, m = 1; 2; :::M 
an be found easily. The retardedGreen's fun
tion is then [2, 3℄.�GR�li;lj (E) = �1t Xm �m (li)�m (lj) exp(ikma) ; (6)where 
os(kma) = q � �(E � Em)=2t, a is the site separation. The aboverelation holds only for modes m with eigenenergies Em that lie within the
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hnique 553range E � 2t < Em < E + 2t. For ea
h su
h a mode the longitudinal
omponent of the energy E � Em lies within the band of extended states.Thus Eq. (6) des
ribes the propagation of extended states in the lead. Forenergies from outside the band of extended states of mode m i.e. forjE �Emj > 2t we have [1℄[G℄li;lj (E) = �1t Xm �m (li)�m (lj)�q �pq2 � 1� ; (7)where the signs+=� 
orrespond to E < Em�2t or E > Em+2t, respe
tively.Eq. (7) des
ribes the �propagation� of lo
alized states in the lead.Let us noti
e that usually the only self-energies in
luded when analyzingtransport through a devi
e are those of Eq. (6) whi
h des
ribe propagatingstates. For detailed treatment of the problem this is, however, not su�
ientsin
e the 
ontributions arising from Eq. (7) also in�uen
e the Green's fun
-tion in Eq. (4). In the next se
tion we prove this presenting the results ofnumeri
al 
al
ulations performed for a simple s
attering devi
e.3. An example: a single site s
attererTo illustrate the statement made in of the previous se
tion we have per-formed numeri
al 
al
ulations of a simple s
attering devi
e. The dimensionswere 
hosen M = 3 and L = 3 (short devi
e) orM = 3 and L = 11 (long de-vi
e). All but one devi
e sites have energies "i = 0. The only ex
eption wasthe impurity site l in the 
entre of devi
e, whi
h energy was set to "l = �t.Note that if we 
onsider the whole �devi
e + leads� system both devi
es areidenti
al: it is in�nite, 3 moded strip with one impurity site in the middleof its width. Thus we expe
t that 
al
ulations give identi
al results for bothshort and long devi
e provided the self-energy approa
h works well.It is well known that single site impurity works as s
attering 
entre andprodu
e one lo
alized state at some energy Ep below (for "l < 0) the bandand extended, resonant state at some energy Er within the band. Thestate below the band introdu
es a pole into the Green's fun
tion at z =Ep. The squared eigenfun
tion 
orresponding to this state 
an be obtainedas the residue at this pole. It is shown in Fig. 1(a) where the results ofnumeri
al 
al
ulations are presented. We 
an see that the data for long andshort devi
es 
oin
ides well so we 
on
lude that in
luding self-energies dueto the leads for both extended and lo
alized states properly des
ribes theintera
tions between the devi
e and the leads for energies from outside theband.The next test 
he
ks how the self-energy approa
h works for energiesfrom the band. In Fig. 2(a) a sample DOS 
al
ulated at the impurity site lis shown. The state below the band appears as a Æ fun
tion lo
ated at energyEp. Inside the band one 
an re
ognize a typi
al M -mode quasi 1-D DOS
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site number  n=i-lFig. 1. The shape of (a) lo
alized eigenstate at Ep ' �3:49t (b) DOS at resonantstate at Er ' �0:65t along the x dire
tion of the s
attering devi
e. In both �gureslines refer to the long devi
e of L = 11 sites and squares are for the short devi
e ofL = 3 sites. The width of the devi
es in the y dire
tion was M = 3 sites. Upperline is the 
ross-se
tion in the plane y = 0. The lower one is for y = �a. Theimpurity site was at x = 0, y = 0.perturbed by the resonant state at Er. The ex
ellent agreement between theresults of 
al
ulations for long and short devi
es is evident. Now we 
on
ludethat when both types of self-energies are taken into a

ount the intera
tionbetween devi
e and the lead is well des
ribed for extended states from theband. This 
on
lusion 
an be also derived from Fig. 1(b) where DOS atE = Er is shown. Again ex
ellent agreement between the 
al
ulations forlong and short devi
es is observed.For TBH it is required for every site n thata2 +1Z�1 [�℄n(E)dE = 1 : (8)The s
attering devi
e we are dealing with 
ontains one dis
rete eigenstatebelow the band and so the above equation 
ould be rewritten asa2 res [G℄n;n (z = Ep) + EUZEL � 1� Im �GR�n;n (E)dE! = 1 ; (9)where EL and EU are the lower and upper band edges. The �rst term inthis sum has been 
al
ulated already in our �rst test, where the squaredwave fun
tion for energy Ep below the band has been found (see Fig. 1(a)).
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EFig. 2. The lo
al DOS at impurity site l of the s
attering devi
e (see text) 
al
ulatedwith self-energies due to the leads for (a) both extended and lo
alized states ofEqs. (6) and (7) (b) only extended states of Eq. (6). Solid line/
rosses refer tolong/short devi
e. The sharp peak at low energies is Æ fun
tion lo
ated at energyEp of the lo
alized state. The peak in the middle of the band 
orresponds toresonant state of energy Er. For 
omparison DOS of the system with no impurities(i.e. for perfe
t 3 moded 1-D strip) is shown as the dashed line.To 
omplete the balan
e we have integrated the lo
al DOS (su
h as thosein Fig. 2(a)) over all energies at every point n of the devi
e. For ea
h sitethe integration gives the value 1�0:001 in ex
ellent agreement with Eq. (9).We may 
on
lude that in
luding both types of self-energy does not violatethe balan
e of Eq. (8).Let us noti
e, however, that if the (real) self-energies of Eq. (7) werenot in
luded the 
ontribution res[G℄n;n (z = Ep) in Eq. (9) 
oming from thelo
alized state at Ep would have been omitted and the balan
e of Eq. (8)would have been violated! In Table I we summarize the integrated DOSof the short devi
e for whi
h the intera
tion with the leads was introdu
edonly by the 
omplex self-energies given by Eq. (6). Indeed, one 
an see fromTable I that in this 
ase the balan
e of Eq. (8) is broken for all sites of thedevi
e. TABLE IThe integrated DOS at sites in the position x = ia, y = ja. In the 
al
ulationsof the Green's fun
tion in Eq. (4) only 
omplex self-energies given by Eq. (6) werein
luded. j = �1 j = 0 j = 1i = �1 0:908 0:891 0:908i = 0 0:888 0:752 0:888i = 1 0:908 0:891 0:908
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eable in Fig. 2(b) where the DOS 
al
ulatedwith only 
omplex self-energy terms of Eq. (6) in
luded in the 
al
ulationsof Green's fun
tion are shown. Large dis
repan
ies between DOS for longand short devi
es are observed in some range of energies espe
ially near theresonant state. We 
on
lude that omitting the real terms of self-energy dueto the leads given by Eq. (7) not only negle
ts the (lo
alized) states belowthe band but also gives in
orre
t DOS. This is important for example in the
ase when Coulomb intera
tions must be in
luded in the analysis. In this
ase the 
harge of ele
trons is 
al
ulated by integrating DOS up to the Fermilevel. 4. Con
lusionsThe intera
tions between devi
e and leads 
an be formulated in termsof self-energies in
luded into Green's fun
tion. These self-energies are 
om-plex valued if the energy lies within the band �2t around the energy Em oftransverse mode m. In this 
ase they des
ribe the lead-devi
e intera
tionfor extended states. For energies from outside the band of mode m, i.e. forjE �Emj > 2t the self-energies are real. In this 
ase they des
ribe the lead-devi
e intera
tion for lo
alized (non-propagating) states. For the 
orre
ttreatment of the problem the 
ontributions from both extended and lo
al-ized states should be taken into a

ount. This is espe
ially important whenthe 
harge of ele
trons 
aptured in the states below the Fermi level is in-volved in the analysis, for example in the self-
onsistent S
hrödinger/Poisson
al
ulations.The authors wish to a
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