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In the paper we show that for detailed treatment of small devices by
the Green’s function technique the self-energies due to the leads should be
considered for both extended and localized states.
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1. Introduction: the Green’s function technique

It is known that the quantity which describes well transport properties
of the quantum mechanical device is the Green’s function corresponding to
device Hamiltonian. In the notation of Tight-Binding Hamiltonian (TBH)

H=>lijes(i| = Y |i)t(sl | (1)
i i

where the second sum runs only over nearest neighbor (n.n.) sites 4, j. The
Green’s function becomes a matrix

[G] = (z11] - [H]) ™ (2)

with elements [G];;(z) which describe response at site ¢ due to excitation
in site j. In the above, z = F + in is the complex variable and [I] is the
identity matrix. The matrix [G] has poles at the positions of discrete (real)
eigenvalues E, of the Hamiltonian [1]. The residua at these poles provide
information about corresponding localized eigenstates, res[G);;(z = F,) =
Yok Ok (1) ¢f (j) , where the summation is over all degenerate eigenfunctions
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¢r with energy E,. The situation is quite different for energies from the
continuous spectrum of H. In this case the Green’s function is not well
defined. For such energies the retarded Green’s function is defined by the
limiting procedure [GR];;(E) = lim,_,o+[G];j(z), and the quantity

—%Im {[G™],, (B)} = [pli () (3)

is the local density of (extended) states (DOS) per unit volume.

When making use of Eq. (2) the problem of infinite-dimensional matri-
ces emerges. This is because of the leads which should be considered as
stretching out to infinity. Otherwise we would deal with closed system with
no transport at all. The solution of this “infinite dimensional” problem is
described in the book of Datta [2]. It is that

[G] = (2[1] = [Hp] ~ [Zou] — [Ppra]) " (4)

where [Hp] is the Hamiltonian of isolated device whereas [Y'pr1] and [X'pr2]
describe the interactions between device and leads 1 and 2 respectively. They
are called the self-energies due to the leads. Their elements can be expressed
in terms of the Green’s function of isolated semi-infinite lead [G1]. What
is important, the only matrix elements of [Gr] involved in the calculation
of [Yp1] are those between sites /;, [; in the lead which are adjacent to the
sites 4, j in the device

[ZDL]i,j = tQ[GL]li,lj s where li, lj are n.n. of i,j . (5)

This makes calculations of self-energy possible because all the matrices in
Eq. (4) are of size M x L for a device which is M sites wide and L sites long.

2. Self-energy due to the leads

To calculate the self-energy [Y'pr,] one needs the Green’s function of the
lead. These leads usually take the form of multi-moded quasi one dimen-
sional semi-infinite wires. In 2-D such a wire stretches from z = —oo to
z = 0 and is M sites wide. If we assume ¢; = 0 for all site energies in the
lead then the transverse components of the wave functions x,, and corre-
sponding eigenenergies E,,,, m = 1,2,...M can be found easily. The retarded
Green’s function is then |2, 3].

[G"],,,, (B) = —% > xm (1) xm (1) exp(ikma) (6)

where cos(kpa) = ¢ = —(E — Ep,)/2t, a is the site separation. The above
relation holds only for modes m with eigenenergies F,, that lie within the
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range £ — 2t < E,, < E + 2t. For each such a mode the longitudinal
component of the energy E — F,, lies within the band of extended states.
Thus Eq. (6) describes the propagation of extended states in the lead. For
energies from outside the band of extended states of mode m i.e. for
|E — En| > 2t we have [1]

[G]li,l]‘ (E) = _% ZXm (lz) Xm (lj) (q T v q2 - 1) ) (7)

where the signs +/— correspond to £ < E,—2t or E > E,,+2t, respectively.
Eq. (7) describes the “propagation” of localized states in the lead.

Let us notice that usually the only self-energies included when analyzing
transport through a device are those of Eq. (6) which describe propagating
states. For detailed treatment of the problem this is, however, not sufficient
since the contributions arising from Eq. (7) also influence the Green’s func-
tion in Eq. (4). In the next section we prove this presenting the results of
numerical calculations performed for a simple scattering device.

3. An example: a single site scatterer

To illustrate the statement made in of the previous section we have per-
formed numerical calculations of a simple scattering device. The dimensions
were chosen M = 3 and L = 3 (short device) or M = 3 and L = 11 (long de-
vice). All but one device sites have energies ; = 0. The only exception was
the impurity site [ in the centre of device, which energy was set to ¢ = —t.
Note that if we consider the whole “device + leads” system both devices are
identical: it is infinite, 3 moded strip with one impurity site in the middle
of its width. Thus we expect that calculations give identical results for both
short and long device provided the self-energy approach works well.

It is well known that single site impurity works as scattering centre and
produce one localized state at some energy E, below (for ¢, < 0) the band
and extended, resonant state at some energy FE, within the band. The
state below the band introduces a pole into the Green’s function at z =
E,. The squared eigenfunction corresponding to this state can be obtained
as the residue at this pole. It is shown in Fig. 1(a) where the results of
numerical calculations are presented. We can see that the data for long and
short devices coincides well so we conclude that including self-energies due
to the leads for both extended and localized states properly describes the
interactions between the device and the leads for energies from outside the
band.

The next test checks how the self-energy approach works for energies
from the band. In Fig. 2(a) a sample DOS calculated at the impurity site I
is shown. The state below the band appears as a § function located at energy
E,. Inside the band one can recognize a typical M-mode quasi 1-D DOS
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Fig. 1. The shape of (a) localized eigenstate at E, ~ —3.49¢ (b) DOS at resonant
state at E, ~ —0.65¢ along the z direction of the scattering device. In both figures
lines refer to the long device of L = 11 sites and squares are for the short device of
L = 3 sites. The width of the devices in the y direction was M = 3 sites. Upper
line is the cross-section in the plane y = 0. The lower one is for y = +a. The
impurity site was at x =0, y = 0.

0.2

perturbed by the resonant state at F,. The excellent agreement between the
results of calculations for long and short devices is evident. Now we conclude
that when both types of self-energies are taken into account the interaction
between device and the lead is well described for extended states from the
band. This conclusion can be also derived from Fig. 1(b) where DOS at
E = E; is shown. Again excellent agreement between the calculations for
long and short devices is observed.
For TBH it is required for every site n that

—+00

@ [ n(E)dE 1. (®)

—00

The scattering device we are dealing with contains one discrete eigenstate
below the band and so the above equation could be rewritten as

Ey
a? (res G, (2= Ep) + / —%Im [GR]M (E)dE) =1, 9)
Ep

where Fr, and Ey are the lower and upper band edges. The first term in
this sum has been calculated already in our first test, where the squared
wave function for energy F|, below the band has been found (see Fig. 1(a)).
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Fig.2. The local DOS at impurity site I of the scattering device (see text) calculated
with self-energies due to the leads for (a) both extended and localized states of
Egs. (6) and (7) (b) only extended states of Eq. (6). Solid line/crosses refer to
long/short device. The sharp peak at low energies is ¢ function located at energy
E; of the localized state. The peak in the middle of the band corresponds to
resonant state of energy E,. For comparison DOS of the system with no impurities
(i.e. for perfect 3 moded 1-D strip) is shown as the dashed line.

To complete the balance we have integrated the local DOS (such as those
in Fig. 2(a)) over all energies at every point n of the device. For each site
the integration gives the value 1£0.001 in excellent agreement with Eq. (9).
We may conclude that including both types of self-energy does not violate
the balance of Eq. (8).

Let us notice, however, that if the (real) self-energies of Eq. (7) were
not included the contribution res[G], , (z = Ep) in Eq. (9) coming from the
localized state at E}, would have been omitted and the balance of Eq. (8)
would have been violated! In Table I we summarize the integrated DOS
of the short device for which the interaction with the leads was introduced
only by the complex self-energies given by Eq. (6). Indeed, one can see from
Table T that in this case the balance of Eq. (8) is broken for all sites of the
device.

TABLE 1
The integrated DOS at sites in the position £ = ia, y = ja. In the calculations
of the Green’s function in Eq. (4) only complex self-energies given by Eq. (6) were
included.

j=—1 j=0 j=1
1=-—1 0908 0.891 0.908

1=0 0.888  0.752 0.888
1=1 0.908 0.891 0.908
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This is even better noticeable in Fig. 2(b) where the DOS calculated
with only complex self-energy terms of Eq. (6) included in the calculations
of Green’s function are shown. Large discrepancies between DOS for long
and short devices are observed in some range of energies especially near the
resonant state. We conclude that omitting the real terms of self-energy due
to the leads given by Eq. (7) not only neglects the (localized) states below
the band but also gives incorrect DOS. This is important for example in the
case when Coulomb interactions must be included in the analysis. In this
case the charge of electrons is calculated by integrating DOS up to the Fermi
level.

4. Conclusions

The interactions between device and leads can be formulated in terms
of self-energies included into Green’s function. These self-energies are com-
plex valued if the energy lies within the band +2¢ around the energy E,, of
transverse mode m. In this case they describe the lead-device interaction
for extended states. For energies from outside the band of mode m, i.e. for
|E — Ep| > 2t the self-energies are real. In this case they describe the lead-
device interaction for localized (non-propagating) states. For the correct
treatment of the problem the contributions from both extended and local-
ized states should be taken into account. This is especially important when
the charge of electrons captured in the states below the Fermi level is in-
volved in the analysis, for example in the self-consistent Schrodinger /Poisson
calculations.
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