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MODELLING OF QUANTUM MECHANICAL DEVICESBY GREEN'S FUNCTION TECHNIQUE�A. Kolek and G. Haªda±Department of Eletronis Fundamentals, Rzeszów University of TehnologyW. Pola 2, 35-959 Rzeszów, Poland(Reeived Otober 31, 2000)In the paper we show that for detailed treatment of small devies bythe Green's funtion tehnique the self-energies due to the leads should beonsidered for both extended and loalized states.PACS numbers: 73.23.�b, 73.50.�h1. Introdution: the Green's funtion tehniqueIt is known that the quantity whih desribes well transport propertiesof the quantum mehanial devie is the Green's funtion orresponding todevie Hamiltonian. In the notation of Tight-Binding Hamiltonian (TBH)H =Xi jii"ihij �Xi;j jiithjj ; (1)where the seond sum runs only over nearest neighbor (n.n.) sites i; j. TheGreen's funtion beomes a matrix[G℄ = (z[I℄ � [H℄)�1 (2)with elements [G℄ij(z) whih desribe response at site i due to exitationin site j. In the above, z = E + i� is the omplex variable and [I℄ is theidentity matrix. The matrix [G℄ has poles at the positions of disrete (real)eigenvalues Ep of the Hamiltonian [1℄. The residua at these poles provideinformation about orresponding loalized eigenstates, res[G℄ij(z = En) =Pk �k (i)��k (j) ; where the summation is over all degenerate eigenfuntions� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (551)



552 A. Kolek, G. Haªda±�k with energy Ep. The situation is quite di�erent for energies from theontinuous spetrum of H. In this ase the Green's funtion is not wellde�ned. For suh energies the retarded Green's funtion is de�ned by thelimiting proedure [GR℄ij(E) = lim�!0+ [G℄ij(z); and the quantity� 1� Im��GR�ii (E)	 = [�℄i (E) (3)is the loal density of (extended) states (DOS) per unit volume.When making use of Eq. (2) the problem of in�nite-dimensional matri-es emerges. This is beause of the leads whih should be onsidered asstrething out to in�nity. Otherwise we would deal with losed system withno transport at all. The solution of this �in�nite dimensional� problem isdesribed in the book of Datta [2℄. It is that[G℄ = (z[I℄� [HD℄� [�DL1℄� [�DL2℄)�1 ; (4)where [HD℄ is the Hamiltonian of isolated devie whereas [�DL1℄ and [�DL2℄desribe the interations between devie and leads 1 and 2 respetively. Theyare alled the self-energies due to the leads. Their elements an be expressedin terms of the Green's funtion of isolated semi-in�nite lead [GL℄. Whatis important, the only matrix elements of [GL℄ involved in the alulationof [�DL℄ are those between sites li, lj in the lead whih are adjaent to thesites i, j in the devie[�DL℄i;j � t2[GL℄li;lj ; where li; lj are n.n. of i; j : (5)This makes alulations of self-energy possible beause all the matries inEq. (4) are of size M�L for a devie whih is M sites wide and L sites long.2. Self-energy due to the leadsTo alulate the self-energy [�DL℄ one needs the Green's funtion of thelead. These leads usually take the form of multi-moded quasi one dimen-sional semi-in�nite wires. In 2-D suh a wire strethes from x = �1 tox = 0 and is M sites wide. If we assume "i = 0 for all site energies in thelead then the transverse omponents of the wave funtions �m and orre-sponding eigenenergies Em, m = 1; 2; :::M an be found easily. The retardedGreen's funtion is then [2, 3℄.�GR�li;lj (E) = �1t Xm �m (li)�m (lj) exp(ikma) ; (6)where os(kma) = q � �(E � Em)=2t, a is the site separation. The aboverelation holds only for modes m with eigenenergies Em that lie within the



Modelling of Quantum Mehanial Devies by Green's Funtion Tehnique 553range E � 2t < Em < E + 2t. For eah suh a mode the longitudinalomponent of the energy E � Em lies within the band of extended states.Thus Eq. (6) desribes the propagation of extended states in the lead. Forenergies from outside the band of extended states of mode m i.e. forjE �Emj > 2t we have [1℄[G℄li;lj (E) = �1t Xm �m (li)�m (lj)�q �pq2 � 1� ; (7)where the signs+=� orrespond to E < Em�2t or E > Em+2t, respetively.Eq. (7) desribes the �propagation� of loalized states in the lead.Let us notie that usually the only self-energies inluded when analyzingtransport through a devie are those of Eq. (6) whih desribe propagatingstates. For detailed treatment of the problem this is, however, not su�ientsine the ontributions arising from Eq. (7) also in�uene the Green's fun-tion in Eq. (4). In the next setion we prove this presenting the results ofnumerial alulations performed for a simple sattering devie.3. An example: a single site sattererTo illustrate the statement made in of the previous setion we have per-formed numerial alulations of a simple sattering devie. The dimensionswere hosen M = 3 and L = 3 (short devie) orM = 3 and L = 11 (long de-vie). All but one devie sites have energies "i = 0. The only exeption wasthe impurity site l in the entre of devie, whih energy was set to "l = �t.Note that if we onsider the whole �devie + leads� system both devies areidential: it is in�nite, 3 moded strip with one impurity site in the middleof its width. Thus we expet that alulations give idential results for bothshort and long devie provided the self-energy approah works well.It is well known that single site impurity works as sattering entre andprodue one loalized state at some energy Ep below (for "l < 0) the bandand extended, resonant state at some energy Er within the band. Thestate below the band introdues a pole into the Green's funtion at z =Ep. The squared eigenfuntion orresponding to this state an be obtainedas the residue at this pole. It is shown in Fig. 1(a) where the results ofnumerial alulations are presented. We an see that the data for long andshort devies oinides well so we onlude that inluding self-energies dueto the leads for both extended and loalized states properly desribes theinterations between the devie and the leads for energies from outside theband.The next test heks how the self-energy approah works for energiesfrom the band. In Fig. 2(a) a sample DOS alulated at the impurity site lis shown. The state below the band appears as a Æ funtion loated at energyEp. Inside the band one an reognize a typial M -mode quasi 1-D DOS
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site number  n=i-lFig. 1. The shape of (a) loalized eigenstate at Ep ' �3:49t (b) DOS at resonantstate at Er ' �0:65t along the x diretion of the sattering devie. In both �gureslines refer to the long devie of L = 11 sites and squares are for the short devie ofL = 3 sites. The width of the devies in the y diretion was M = 3 sites. Upperline is the ross-setion in the plane y = 0. The lower one is for y = �a. Theimpurity site was at x = 0, y = 0.perturbed by the resonant state at Er. The exellent agreement between theresults of alulations for long and short devies is evident. Now we onludethat when both types of self-energies are taken into aount the interationbetween devie and the lead is well desribed for extended states from theband. This onlusion an be also derived from Fig. 1(b) where DOS atE = Er is shown. Again exellent agreement between the alulations forlong and short devies is observed.For TBH it is required for every site n thata2 +1Z�1 [�℄n(E)dE = 1 : (8)The sattering devie we are dealing with ontains one disrete eigenstatebelow the band and so the above equation ould be rewritten asa2 res [G℄n;n (z = Ep) + EUZEL � 1� Im �GR�n;n (E)dE! = 1 ; (9)where EL and EU are the lower and upper band edges. The �rst term inthis sum has been alulated already in our �rst test, where the squaredwave funtion for energy Ep below the band has been found (see Fig. 1(a)).
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EFig. 2. The loal DOS at impurity site l of the sattering devie (see text) alulatedwith self-energies due to the leads for (a) both extended and loalized states ofEqs. (6) and (7) (b) only extended states of Eq. (6). Solid line/rosses refer tolong/short devie. The sharp peak at low energies is Æ funtion loated at energyEp of the loalized state. The peak in the middle of the band orresponds toresonant state of energy Er. For omparison DOS of the system with no impurities(i.e. for perfet 3 moded 1-D strip) is shown as the dashed line.To omplete the balane we have integrated the loal DOS (suh as thosein Fig. 2(a)) over all energies at every point n of the devie. For eah sitethe integration gives the value 1�0:001 in exellent agreement with Eq. (9).We may onlude that inluding both types of self-energy does not violatethe balane of Eq. (8).Let us notie, however, that if the (real) self-energies of Eq. (7) werenot inluded the ontribution res[G℄n;n (z = Ep) in Eq. (9) oming from theloalized state at Ep would have been omitted and the balane of Eq. (8)would have been violated! In Table I we summarize the integrated DOSof the short devie for whih the interation with the leads was introduedonly by the omplex self-energies given by Eq. (6). Indeed, one an see fromTable I that in this ase the balane of Eq. (8) is broken for all sites of thedevie. TABLE IThe integrated DOS at sites in the position x = ia, y = ja. In the alulationsof the Green's funtion in Eq. (4) only omplex self-energies given by Eq. (6) wereinluded. j = �1 j = 0 j = 1i = �1 0:908 0:891 0:908i = 0 0:888 0:752 0:888i = 1 0:908 0:891 0:908



556 A. Kolek, G. Haªda±This is even better notieable in Fig. 2(b) where the DOS alulatedwith only omplex self-energy terms of Eq. (6) inluded in the alulationsof Green's funtion are shown. Large disrepanies between DOS for longand short devies are observed in some range of energies espeially near theresonant state. We onlude that omitting the real terms of self-energy dueto the leads given by Eq. (7) not only neglets the (loalized) states belowthe band but also gives inorret DOS. This is important for example in thease when Coulomb interations must be inluded in the analysis. In thisase the harge of eletrons is alulated by integrating DOS up to the Fermilevel. 4. ConlusionsThe interations between devie and leads an be formulated in termsof self-energies inluded into Green's funtion. These self-energies are om-plex valued if the energy lies within the band �2t around the energy Em oftransverse mode m. In this ase they desribe the lead-devie interationfor extended states. For energies from outside the band of mode m, i.e. forjE �Emj > 2t the self-energies are real. In this ase they desribe the lead-devie interation for loalized (non-propagating) states. For the orrettreatment of the problem the ontributions from both extended and loal-ized states should be taken into aount. This is espeially important whenthe harge of eletrons aptured in the states below the Fermi level is in-volved in the analysis, for example in the self-onsistent Shrödinger/Poissonalulations.The authors wish to aknowledge that their interest in modelling of meso-sopi systems was inspired by late professor Andrzej Kusy to whom they areespeially indebted. The work was supported by the Polish State Committeefor Sienti� Researh (KBN) grant No. 8T11B05515.REFERENCES[1℄ E.N. Eonomou, Green's Funtions in Quantum Physis, Springer-Verlag, NewYork 1983.[2℄ S. Datta, Eletroni Transport in Mesosopi Systems, Cambridge UniversityPress, 1995.[3℄ M.J. MLennan, Y. Lee, S. Datta, Phys. Rev. B43, 13846 (1991).


