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We explain in this paper in simple terms the behavior of two-photon
lasers and describe recent results that have led to the realization of the
first continuous-wave two-photon optical laser. We stress the differences
between one- and two-photon lasers to develop an appreciation of their
dynamics and the difficulties associated with achieving two-photon lasing.
We find similarities and significant differences between the one- and two-
photon polarizations of the medium, population inversion and mode-pulling
formula. The theory is treated semiclassically by using Maxwell-Bloch
equations. We study the linear stability analysis of the steady state of the
system which is taken to be contained in a ring cavity. The results are
illustrated with an application to a specific atomic system in a long sample
of sodium vapor as an amplifying medium, in which the possibility of short
pulse train generation is exhibited.

PACS numbers: 42.55.Ah, 41.20.Jb, 42.25.Ja

1. Overview

The phenomenon of the laser action involving one-photon emission per
atomic transition has long been successfully explained [1]. Consider a single
photon that is incident on an excited atom and resonant with an internal
atomic transition leading to a lower energy state. This photon may stimulate
the atom to jump to its lower energy state and emit an energy conserving
photon having essentially the same frequency as the stimulating photon.
Lasers come in many different designs but a simple and often used scheme
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consists of a cavity which is two highly reflecting mirrors between which the
field can build up. If that was all, of course nothing would happen, since
the mirrors are lossy. To compensate for this loss, we have to pump the
cavity, which is done by a beam of excited atoms. When an atom in the
beam enters the cavity, it feels the field existing there, and if the photon in
the cavity is in resonance with a dipole transition in the atom, the atom can
jump to this lower state by stimulated emission of a photon to the cavity
mode. If the atomic pump rate i.e. in this scheme, the number of atoms
flying through the cavity per unit time is high enough, the gain of photons
in the cavity (due to stimulated emission) will exceed the loss (through the
mirrors) and hence the field can build up between the mirrors and we have
lasing. The possibility of achieving laser action involving two-photon per
atomic transition was first suggested in [2,3]. It has received much attention
in recent years, not only because this novel type of laser may be potential
as a high power optical amplifier and as a tunable source, but also because
the self-organization features of a system with nonlinear interaction between
the field and matter are interesting. Unfortunately, the practical benefits of
the laser have not been realized nor have the theories been tested because it
has been difficult to achieve two-photon lasing [4] due to the lack of suitable
gain media. An obvious question that might arise here is: What is a two-
photon laser? The answer to this question is quite simple if we compare and
contrast the origin of gain in one- and two-photon lasers.
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Fig.1. (a) The one-photon stimulated emission process. The states have opposite
parity. (b) The two-photon stimulated emission process. The states have the same
parity.

In this process, an incident photon can stimulate an atom from the upper
state | b') to the lower state | a’) and two-photon are scattered by the atom.
The scattered photons have the same frequency, phase and direction of the
incident photon which give the laser its unique coherence properties. The
stimulated emission rate is proportional to the incident photon flux and pro-
ceeds most efficient when the frequency of the incident photon w is equal to
the transition frequency wy o and when the states have opposite parity (con-
nected by an allowed electric dipole transition matrix element). In contrast,
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the gain in two-photon lasers is due to the two-photon stimulated emission
process. In this process, two incident photons can stimulate an atom from
the upper state | b) to the lower state | a) and four photons can take on any
value so long as 2w’ ~ wp,, where wy, is the two-photon transition frequency.
The process is the most efficient when the states have the same parity (not
connected by an allowed electric dipole transition matrix element). The scat-
tered photons have the same frequency, phase and direction of the incident
photons give the laser coherence properties different than these of normal
one-photon laser [5-13].

The problem for an experimental realization of a two-photon laser is
that two-photon coupling in general is very small, since it is hard to find
an atom where two-levels of the same parity have an almost resonant in-
termediate level with opposite parity and separated by photons of optical
frequencies. The existence of the almost intermediate level is demanded for
reaching a sufficiently large two-photon coupling. This problem has, how-
ever, been circumvented in two ways; (i) between high-lying Rydberg states
in alkali atoms, quite large two-photon matrix elements can be found, due
to existence of an almost resonant intermediate level of the opposite par-
ity. The photons involved in such a transition are, however, quite small,
actually in the microwave region. The corresponding laser pumped by this
transition is called a micromaser and has been the subject of intense the-
oretical studies [14-16], and was the first two-photon micromaser realized
experimentally [17]. The two-photon micromaser has many interesting prop-
erties, which distinguishes it from two-photon laser. This difference mainly
arises because the spontaneous life-time of Rydberg atoms is much longer
than for lower lying states and the atoms will decay spontaneously in the
cavity, whereas this does not happen in the micromaser. Any decay is quan-
tum noise, and the effects characterizing the two-photon micromaser are
therefore in some sense washed out because of this noise and therefore not
seen in the two-photon laser; and (77) in the optical regime, a clever scheme
has been adopted by Mossberg and collaborators in which they use dressed
atoms (The energy levels of an atom in a strong field are eigenstates of the
Hamiltonian describing field+atom. These energy levels form a ladder and
differ substantially from those of an atom in zero field. An atom exposed to
a strong field is called a dressed atom.) as pump media, and the two-photon
transition is then between the dressed-atom energy levels. We shall not en-
ter a discussion of the properties of two-photon dressed-atom laser, but refer
instead to the literature [18-23|.

Although a definitive experimental implementation of a Two-Photon
Laser (TPL) has not been possible until very recently [23], TPL’s have been
the subject of continued theoretical attention since the early days of the
laser era [13,14]. The theoretical interest of the TPL lies in the intrinsic
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nonlinear nature of the two-photon interaction. This fact makes this sys-
tem a potential source for non-classical light and thus the major part of
the literature has been devoted to the quantum description of such a laser
[24-29]. Contrarily there is not much work on semi-classical modeling of TPL
and, in particular, there still lacks a complete understanding of its stability
and dynamical properties [30]. On the other hand the two-photon resonant
interaction has been investigated in detail when the temporal width 7y of
the pulse is much less than both of population and polarization lifetimes 4.e.
To < 711,72 holds [31,32]. (Here 71 and 79 are population and polarization
lifetimes respectively). Recently nonlinear propagation of picosecond pulses
interacting with a three-level system in the intermediate region 71 > 79 > 79
has been carried out [33]. TPL’s are a recurrent theme in the literature
and have attracted considerable theoretical semiclassically [34-36] as well as
quantum mechanically [24-29]. On the experimental side, a TPL has been
realized and studied extensively in the microwave region of the spectrum
[24] and in the optical regime by Mossberg and collaborators [28-30] in a
clever, slightly different scheme, where the atomic pump transition in be-
tween levels of dressed atoms. In order to obtain the pure two-photon laser,
in which the laser works without one-photon processes contributions, some
conditions must be fulfilled. These conditions imply that, (i) the detun-
ing of the fields with respect to the one-photon transitions are much larger
than the relaxation rates and the two-photon cavity detuning in order to
ensure that the cavity is tuned to the two-photon transition at the time that
it is highly detuned from the one photon transition; (ii) the deviations of
the field frequencies are negligible in order to ensure far off-resonant one-
photon processes; and (74) the ac-Stark shifts do not modify the above far
off-resonance conditions [37-42]. If the above conditions are verified we can
apply the adiabatic elimination of the dipoles and of the intermediate level
population.

Recent work [43] in view of continuing technological improvements in
micro-cavities even at optical frequencies has motivated the examination of
certain aspects of the two-photon laser theory that are fundamental to the
process. These aspects have their counterpart in the usual single-photon
laser but rather different behavior is to be expected in the two-photon case,
owing to the essential nonlinearity of the process even at weak signal. We
have here in mind a degenerate two-photon laser with the atom pumped to
the upper state connected to the lower one of the lasing transition by a two-
photon process. Although not realized as yet in this pure form, it probably
is a matter of short time before that occurs [26,27]. The situation here is
somewhat different from the dressed states scheme that has already been

demonstrated experimentally some time ago by Mossberg and collaborators
[18—20].
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The issue we have in mind has to do with the steady-state behavior
of the system, taking into account the spatio-temporal dependence of the
relevant magnitudes such as the field strength and the inversion. This is
most conveniently accomplished in a semi-classical formalism in terms of
the Maxwell-Bloch equations. Related treatments based on either single
rate equations [34], discussing threshold conditions, or the Maxwell-Bloch
equations without the spatial dependence, have been presented in the liter-
ature [45-47]. What we have studied and presented below is essentially the
generalization of the complete Maxwell-Bloch equations, usually employed
in the single-photon laser theory, to the two-photon case. We have found it
most convenient to use a formulation presented some time ago by Narducci
in the semi-classical theory of the single-photon laser [48].

2. Derivation of equations

We consider the coupled set of Maxwell-Bloch equations, in the usual
rotating wave approximation, which govern our two-level atom when the
dipole forbidden transition is replaced by a non-degenerate two-photon one,
in which pairs of photons with the different frequency are created or ab-
sorbed, and we analyze the stability of the steady state. We adopt a semi-
classical laser model based on a microscopic two-level Hamiltonian. We
assume a collection of identical homogeneously broadened two-level atoms,
with energies wy and we such that (we > wi) with wy — w1 = hwsy, woy
the atomic transition frequency and a generated unidirectional single-mode
classical electric field

B(z,t) = §{Bje’*74) 1 e}, j=ab (1)

inside a ring cavity. Here Ej is the real field amplitude, k; the wave-number,
z the cavity axial direction and w; represents the unloaded cavity frequency
(j = a,b). The atoms interact with the field in the dipole approximation via
a two-photon transition, where these states are assumed to have the same
parity, and thus are not connected by a one-photon transition. By using
the rotating wave approximation one obtains the following equations for the
probability amplitudes of the form

. 8a1 1 m
hﬁ w1a1 1 Em 7’§1) | En, |2 ay
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where u(g) the effective dipole matrix element for the two-photon transition,
rj; is the ac-Stark shift and are given by
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Adopting the plane-wave approximation and by using equations (2) and
(3), we reduce the Maxwell-Bloch equations to

OE, 10E,
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where Ej,P and D are the normalized output field, two-photon polariza-
tion and population difference, respectively, v, and 79 are the decay rates
of two-photon polarization and population difference, respectively. «; de-
notes the unsaturated gain constant per unit length of the active medium
(aj = 2rNw;ju® /cep), where N is the number of atoms per unit vol-
ume, €g the vacuum electric permeability and ¢ the speed of light. A, =
4h Do ab(r£2) - 7'11 ) | Em |2 We denote by Agy = wy + wp — woa,
the detumng of the cavity mode from two-photon off resonance. 3; =
2“;‘121\7(21"5?) — rﬁn)) and §; = 2“;21\7(7’57;) + rﬁn)). It is to be noted that
when we put E, = Ej, we get the results of [18]. The term proportional
to (71 + (A9 — Ay)) is similar to that of the one-photon case. Equations
(4)—(7) here are non-linear in Ej, as is the case for the one-photon two-
level system [48]. The major difference between the two cases is that the
equations governing this system involve non-linearity of higher order.

In the case of a degenerate two-photon model we assume the frequen-
cies of the two fields to be equal and we deal with the only field F(z,t) =
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%{Eoei(kz_“’t) +c.c.} that interacts with both the dipole-allowed atomic tran-
sitions. The degenerate two-photon laser model constitutes a limiting case
of the non-degenerate one. Thus, the laser behavior predicted from a non-
degenerate two-photon laser model with equal cavity losses for both fields
coincides with that predicted from a degenerate two-photon laser model
(when analyzing the steady solution of the two-photon laser [49]). The fact
that there is a difference in a factor 2 in the gain parameter that makes
the pump parameter different in both cases was commented. In particular
this implies that the minimum population inversion required for laser action
in the non-degenerate case must be twice that in the degenerate case, and
was interpreted by [34]. What occurs is that the validity conditions of both
models do not coincide: in the degenerate case the field interacts with both
atomic transitions, whereas in the non-degenerate case each field interacts
with only one transition. This explains, roughly, the factor 2 in the gain
parameter.

Maxwell-Bloch equations for a degenerate two-photon laser with the
atom pumped to the upper state connected to the lower one of the lasing
transition by a two-photon process and its steady state have been derived
and discussed previously in [49]. For simplicity, we neglect the Stark shift
terms. The Maxwell-Bloch equations (4)—(7) reduced to

OF 10F

AN

0z + c ot @ ’ (8)
oP ] _ o
ot = —(71+15AC)P—71F2D, 9)
D __ _ _
gﬁ—::fﬁ{%(PF“2+I”FQ)—l)+1}, (10)

where F, P and D are the normalized output field, two-photon polarization
and population difference, respectively, (F = /(2 /hy1y2Fp ). In this case,
the unsaturated gain constant per unit length of the active medium is given
by a = 2ch(,u(2))2/3/20h5071. We denote by d4. = wa — 2w, the detuning
of the cavity mode from two-photon resonance. wy is the atomic transition
frequency.

The model is completed by appropriate boundary conditions which, in
the case of a traveling wave ring-cavity resonator, take the form

F@J)zRF(Lt—A;L), (11)

where L is the length of the active medium; while the full length of the ring
resonator is A, and R is the amplitude reflectivity of two of the mirrors. For
simplicity, the remaining optical surfaces that are needed to complete the
ring are assumed to be ideal reflectors.
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3. Steady state

In order to gain some physical understanding of the process and discuss
some aspects of the threshold conditions, we analyze first the steady-state
behavior of the system. To study the steady state, we consider the equations
in the long-time limit by setting the time derivatives equal to zero, for an
active medium detuned by an arbitrary amount d 4. from the resonant cavity
mode. Under these conditions, the output field is expected to oscillate with
a carrier frequency wy which is neither equal to w. nor w4 /2, but to some
intermediate value determined by the cavity and atomic parameters. For
this reason, we look for steady-state solutions of the type

F(z,t) = Fy(z)e ", (12)
P(z,t) = Py (z)e 20t (13)
D(z,t) = Dg(z), (14)

where dw is the frequency offset of the operating laser line from the resonant
mode (i.e. dw = wy, — w,). The atomic variables can be determined at once
as functions of the stationary field profile

_ _ 1—3A
_ 2
e = RO R e
14 A2

Dal#) = 1oy | Falz) [* (16)

(15)

where the detuning parameter A is defined as A = (04, — 20w) /1. The
steady state polarization and the field envelope are generally out of phase
from one another by an amount that depends on the detuning d 4. and the
position of the operating laser line. On resonance, however, Py and Fy
have the same phase. The steady state population difference (inversion)
saturates at high intensity levels in the sense that Dg — 0 as | Fy |— oc.
To determine the value of the output field and the form of its longitudinal
profile in steady state, it is convenient to represent the field amplitude in
terms of its modulus only, because here we simply assume no phase change
during the steady state evolution

dFy(2) _ aF3(2)
dz 1+ A2+ Fi(2)°

(17)
The boundary condition, expressed in terms of the field modulus is given
by Fy(0) = RFy(L). The output laser intensity can be calculated as [13],

2oL 1+ A%
:TRQ St()_ RZ

Fg (L) (18)
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where A; = (d4c — 20wj) /71, dw; is the operating laser frequency. Equation
(18) has two roots and at laser threshold the intensity is not vanishing.
There is coexistence of three solutions (above threshold): the trivial and
two other solutions with intensity different from zero. One solution grows
with the pumping parameter up to an asymptotic value for pumping going
to infinite. The other solution decreases towards the zero solution as the
pumping grows to infinity. This means that the threshold is not a second
order phase transition as in the case of single photon lasers.

The quantity ¢ | InR | /71 A represents the decay rate of the cavity
field, and 27c/A is the spacing between adjacent cavity resonances. After
introducing the abbreviations K = ¢ |InR | /A, a1 = 2wc/A, we obtain

Koépe + a171g

19
e, (19)

dwj = wy, — We =

where the sub-index j reminds us of the possible existence of multiple solu-
tions. This is the well known mode-pulling formula. It shows that the laser
operating frequency is a weighted average of the atomic resonant frequency
and the frequency of one of the cavity modes.

4. Linear stability analysis

The general stability analysis of the Maxwell-Bloch equations
(8)-(10) is a rather difficult problem. The main source of complication
originates from the spatial dependence of the field and of the atomic vari-
ables. In an attempt to get around this problem, mostly linear stability
analysis have been carried out within the uniform field limit. While this
may not appear to be a very realistic approach, there are good reasons, in
fact, why useful information can be extracted even from this limiting case:
(i) we can reformulate the Maxwell-Bloch problem in terms of a new set of
atomic and field variables that are not very sensitive to limited departures
from the ideal limit. For this reason it is not necessary to operate with
unrealistically low values of the gain or the mirror transmittivity; (i) the
mean field limit is a good indicator of instabilities and functions as a rough
diagnostic tool. This is fortunate because the numerical solutions of the
time-dependent Maxwell-Bloch equations require considerable efforts and
some guidance can produce significant saving of time. The resonant case,
is not very complicated and can be studied exactly with limited effort. For
this reason, in this section we limit ourselves to the exact analysis of the
resonant laser problem, without any restrictions on the gain of the active
medium or the reflectivity of the mirrors. Our starting point is the full set of
Maxwell-Bloch equations (8)—(10) with §4. = 0. Because the phase of the
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stationary field is undetermined, it is possible to select Fy(z) as a real quan-
tity. In principle, a random fluctuation of the cavity field could force the
growth of the imaginary part through a process called phase instability. In
this section we simply assume that no phase instability can develop, so that
both the field and polarization variables remain real during the linearized
evolution. The steady state of this system of equations is given in equations
(15), (16) and (17). To study the stability of this steady state, we set

F(z,t) = Fg(2) + e>‘t5f(z),

P(z,t) = Ps(2) + e>‘t5p(z),

D(z,t) = Dg(2) + e Mdd(z) (20)

into equations (8)-(10), upon neglecting fluctuation terms of order higher
than one. The linearized equation of the field fluctuation takes the form

d
251(z) = M(2)34(2) (21)
z
where
A A+3y aF? aFS 2y 4+ A
M(Z) = 24 st4 _ st4
c Atm 1+F; 14+F; A+m
279172
X . 22
A+71) A +72) + 72 Fy (22)

The formal solution of equation (14) is

z

5f(z) = 6£(0) exp / dz’M(2') | = 6f(0)e?*). (23)

0

The problem is that Fy is not known in closed analytic form. We can get
around this difficulty with a change of independent variable from z to Fy, if
we take advantage of the fact that dz = dFy/ (dFy/dz) and that dFy /dz is
known explicitly from equation (10) and the field fluctuation takes the form

5f(z,t) = Mf(z) = eMof(0)e??), (24)

Next, imposing the boundary condition

5f(0,t) = Réf (L,t - A—;L) (25)
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we obtain the characteristic equation

N = —ig (M3 n)[InR| ¢ AMt+2m
" " 24 >\n+'71 44 >\n+'71

< An 4 71) (An +72) + M2 F5 (L) ) (26)
(An +71)An + 72) + 1172R2F4(L) )’

where a,, = 2mne/A. The characteristic equation (26) depends on the cavity
linewidth K (¢/Ay; = K/ | In R |) of the population difference, and the gain
of the active medium through the output field intensity F2. The characteris-
tic equation (26) is similar to that for the one-photon two-level system with
the following substitutions Fy; — F2, and in a factor 2 in the denominator
of the second and third terms of the equation which govern the two-photon
laser case equation (26). The origin of the term —ia;, here can be traced
back to the equality exp(0) = exp(27ni) for n = 0,4+1,£2.... Note that
setting exp(0) = 1 would be a mistake because it would eliminate practically
the entire spectrum of eigenvalues. At this point, we have reduced the lin-
earized problem (14) to the solution of an infinite number of characteristic
equations, one for each value of «,. The existence of an infinite number of
eigenvalues is not surprising in view of the space-time dependent nature of
the field and atomic variables and of the boundary conditions of the laser
resonator. One is reminded of the ordinary vibration problems, linear string,
two-dimensional membrane, etc., except that here we are dealing simulta-
neously with three fluctuation variables equation (20), and thus on physical
grounds, one expects three characteristic roots )\511), )\7(12), )\7(13) for each value
of n. Because a,, represents the frequency separation between the n'' empty
cavity resonance and the selected reference mode, it is easy to interpret the
set of roots )\7(5), 1 = 1,2,3, as descriptive of the growth or decay of an
initial fluctuation that develops in correspondence to the n'" mode of the
cavity. This interpretation forms the basis for a classification of the possible
unstable behaviors of the system. If Re Ag is positive and Re A\, (n # 0) are
all negative, an initial fluctuation of the resonant mode will grow exponen-
tially and evolve with the same carrier frequency as the stationary state.
Thus, the linearized dynamics of the laser can be described only in terms
of the behavior of the resonant mode fluctuation (all the other fluctuations
are damped because Re A, < 0,n # 0) and the instability will be of the
single-mode type. If, on the other hand, Re A, < 0 and, for some value of
n, ReX, > 0, the n'!" cavity mode will support the growth of a fluctuation
whose carrier frequency is different from that of the stationary state. Here,
we have suggested the existence of a one-to-one correspondence between the
index n, that appears in equation (26), and the longitudinal cavity modes.
Our informal suggestion is founded on physical grounds. The main concep-
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tual difficulty with this interpretation is that the notion of “mode” is not
well defined when the resonator mirrors have a finite reflectivity, and the
elementary cavity excitations have a finite lifetime. In fact, in solving the
linearized problem, we have not even introduced resonator eigenfunctions, as
one normally would in a standard boundary value problem. For this reason,
we continue to refer to )\,(f) as the set of linearized eigenvalues of the nth
cavity resonator.

A complete analysis of equation (26), particularly with regard to role
played by the basic laser parameters, gain, internode spacing, reflectivity
and the atomic decay rates, has not been carried out. Equation (26) predicts
that both single and multimode unstable behavior can be established with
confidence. We begin our analysis by scaling all the relevant rates of the
problem to the linewidth 7; of the active medium. In this way, equation
(26) takes the form

< . c M +3)|InR| c An+2
An = —i0y, — = — =

2y, 4 Ap + 1 dyi AN, + 1
3 N LA A
(et U0t ) 400 )

(27)

An+1)(An +79) + YR2F4 (L

where A\, = A\n/71, @n = an/v1, and 7 = ¥o /1. A numerical study of this
problem shows that single-mode instabilities @, = 0 tend to be favored in
the presence of high gain and laser cavity losses K > 1. These conditions are
difficult to realize in a practical system. In general, it appears from equation
(27) that single-mode instabilities require a scaled cavity linewidth which is
sufficiently larger than unity. In order to keep the calculations presented in
this paper as realistic as possible, we have chosen to apply our model for
a real atomic system, (for the transition 4ps/,—6p3/o in Potassium). The
reason for choosing this transition is the result of a compromise. On one
hand, one wants the energy of the photons involved to be as large as possible,
and preferably in the optical regime. On the other hand, it is hard to find
a two-photon transition in the optical regime with a large coupling, since
a large two-photon coupling demands the existence of an almost resonant
intermediate level with opposite parity. The transition mentioned above
involves photons with an energy of ~ 7980 cm™' i.e. near-infrared, and
has a two-photon coupling that is orders of magnitude larger than the other
candidates we looked at, due to the almost resonant 5s state. Besides the
atom, we should also choose a cavity. In the model presented in this paper,
we are assuming that only one mode of the cavity field is excited. For this
to be true, the cavity should be rather small, since it then supports fewer
modes, and these will be better separated in energy. Another advantage of
having a small cavity is that the two-photon coupling x® will be larger,
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since it is proportional to V=1 (following the notation of Loudon) [50], V

being the cavity volume. We have chosen the cavity volume V = 10~ m3.

In figure 2 the largest real parts of the linearized eigenvalues are plotted

30
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Fig.2. The largest real parts of the linearized eigenvalues are plotted as functions
of &, viewed as a continuous variable. For all the curves displayed in the figure we
have selected R = 0.8,5 = 0.1, and k = 3.55, where (a) — aL =1, (b) — aL =3
and (c) —al =5.

as functions of &, viewed as a continues variable. For all the curves displayed
in this figure we have selected R = 0.8, a3 = 100, ¥ = 0.1 and for different
values of al.. We show that unstable situation for several values of the
relevent parameters ( the only physical meaningful values of &, are all the
positive and negative multiples of the intermode spacing a;). Multi-mode
instabilities are not bounded by the high-loss requirement, but they still
require large values of the gain to reach their threshold. In figure 3 the
largest real parts of the linearized eigenvalues are plotted as functions of &,
viewed as a continues variable. With the same parameters as in figure 2 but
for different values of 4 and oL = 6. This figure gives an example of some
typical real parts of the linearized eigenvalues for parameter values that lead
to multimode instability. As shown in this figure, the beat frequency due to
the superposition of the stationary solution and of the unstable sidebands is
sensitive to the value of 4. The important feature is the monotonic shift of
the positive real parts of the eigenvalues towards higher and higher values of
ay, for increasing values of the gain. In this case the role of v is played by
~a, so that, for example, the quantities a;, and K must be normalized to ~ys.
As a consequence, our analysis holds not only when the sample contained
in the cavity is a two-level system, but also when it is, for example, a Kerr
medium.
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Fig. 3. The largest real parts of the linearized eigenvalues are plotted as functions
of &,, viewed as a continuous variable. For all the curves displayed in the figure we
have selected R = 0.8, k = 3.55 and aL = 6, where (a) — 5 = 0.1, (b) — 5 = 0.5
and (¢) — ¥ =0.7.

The most salient distinctive features of the two-photon lasers are: the
laser-off solution is always stable (thus implying the necessity of triggering
for laser action) and the laser-on solution is stable for pump values above
(and not below) the laser second (or instability) threshold. Moreover, self-
pulsing emission is still possible in autonomous class-B two-photon lasers
[52] (lasers for which the polarization decay rate largely exceeds the pop-
ulation and photon decay rates and on which no external modulation is
exerted), a behavior that is in contrast with most laser models. The elec-
tric and magnetic dipole interaction of a system of two-level atoms with an
electromagnetic field is considered in the nonlinear regime in [53] through
response theory. They have pointed at the order of the optical Bloch equa-
tions with respect to the nonlinear response theory. Also, they showed that
in the rotating wave and near-resonance approximations and up to order e?
(e is electron charge) the results of the nonlinear response theory reduce to
those of the Bloch equations.

In conclusion, we have derived the general Maxwell-Bloch equations
for the system consisting of the two-level atoms with dipole forbidden transi-
tion, placed in a two-photon one. The treatment has been carried out in the
framework of the semiclassical laser theory. We have calculated the spatial
behavior of the field strength and have shown the effect of the additional
non-linearity due to the two-photon coupling. We have generalized the sta-
bility analysis of the steady-state solution of the complete Maxwell-Bloch
equations, usually employed in the homogeneously broadened single-photon
laser theory [48,51], to the two-photon case. Although the model is rather
idealized, its general features should be relevant to a real single-mode system.
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The analysis presented in this paper has been inspired by the comparison
between the linear stability analysis technique and the so-called weak side-
band approach [54]. In our case the linear stability analysis not only agrees
with the results of the weak sideband approach, but extends its range of ap-
plicability, particularly in the case when the cavity detuning must be taken
into account.

The problem we have formulated and solved in this paper has an inter-
esting counterpart in the microwave regime where one can tailor at will, in
combination with the choice of the principal quantum number of the pumped
Rydberg state. The experimental realization of such a scenario should be rel-
atively easy with present day technology. In our treatment we have focused
on the degenerate two-photon laser. It would thus be interesting to study
the non-degenerate case. We could imagine having a transition in which one
photon is visible, and the other is, say, infrared. The frequencies of these
two photons could be chosen in such a way that we would obtain a large
two-photon coupling and hence this laser type would be easier to realize. In
this laser type, we would also expect Stark shift to play a dominant role.
We hope to report on such issues in a forthcoming paper. The single-mode
and multimode instabilities in one-photon lasers and related optical systems
have been discussed in [51]. Our present discussion generalizes these early
studies.

I am grateful to Professor P. Lambropoulos at Max-Planck-Institut fiir
Quantenoptik, Germany for suggesting the problem and for continuous dis-
cussion. I am especially thankful to Professor L.M. Narducci at Drexel Uni-

versity, USA for many stimulating correspondence and to Professor
A.-S.F. Obada for helpful discussion.
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