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SEMICLASSICAL STABILITY ANALYSISOF A TWO-PHOTON LASER���Mahmoud Abdel-AtyMathemati
s Department, Fa
ulty of S
ien
eSouth Valley University82524 Sohag, Egypte-mail: abdelaty�sohag.jwnet.eun.eg, abdel-aty�usa.net(Re
eived September 18, 2000)We explain in this paper in simple terms the behavior of two-photonlasers and des
ribe re
ent results that have led to the realization of the�rst 
ontinuous-wave two-photon opti
al laser. We stress the di�eren
esbetween one- and two-photon lasers to develop an appre
iation of theirdynami
s and the di�
ulties asso
iated with a
hieving two-photon lasing.We �nd similarities and signi�
ant di�eren
es between the one- and two-photon polarizations of the medium, population inversion and mode-pullingformula. The theory is treated semi
lassi
ally by using Maxwell�Blo
hequations. We study the linear stability analysis of the steady state of thesystem whi
h is taken to be 
ontained in a ring 
avity. The results areillustrated with an appli
ation to a spe
i�
 atomi
 system in a long sampleof sodium vapor as an amplifying medium, in whi
h the possibility of shortpulse train generation is exhibited.PACS numbers: 42.55.Ah, 41.20.Jb, 42.25.Ja1. OverviewThe phenomenon of the laser a
tion involving one-photon emission peratomi
 transition has long been su

essfully explained [1℄. Consider a singlephoton that is in
ident on an ex
ited atom and resonant with an internalatomi
 transition leading to a lower energy state. This photon may stimulatethe atom to jump to its lower energy state and emit an energy 
onservingphoton having essentially the same frequen
y as the stimulating photon.Lasers 
ome in many di�erent designs but a simple and often used s
heme� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000.�� This arti
le has not been proofread by the author.(563)
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onsists of a 
avity whi
h is two highly re�e
ting mirrors between whi
h the�eld 
an build up. If that was all, of 
ourse nothing would happen, sin
ethe mirrors are lossy. To 
ompensate for this loss, we have to pump the
avity, whi
h is done by a beam of ex
ited atoms. When an atom in thebeam enters the 
avity, it feels the �eld existing there, and if the photon inthe 
avity is in resonan
e with a dipole transition in the atom, the atom 
anjump to this lower state by stimulated emission of a photon to the 
avitymode. If the atomi
 pump rate i.e. in this s
heme, the number of atoms�ying through the 
avity per unit time is high enough, the gain of photonsin the 
avity (due to stimulated emission) will ex
eed the loss (through themirrors) and hen
e the �eld 
an build up between the mirrors and we havelasing. The possibility of a
hieving laser a
tion involving two-photon peratomi
 transition was �rst suggested in [2,3℄. It has re
eived mu
h attentionin re
ent years, not only be
ause this novel type of laser may be potentialas a high power opti
al ampli�er and as a tunable sour
e, but also be
ausethe self-organization features of a system with nonlinear intera
tion betweenthe �eld and matter are interesting. Unfortunately, the pra
ti
al bene�ts ofthe laser have not been realized nor have the theories been tested be
ause ithas been di�
ult to a
hieve two-photon lasing [4℄ due to the la
k of suitablegain media. An obvious question that might arise here is: What is a two-photon laser? The answer to this question is quite simple if we 
ompare and
ontrast the origin of gain in one- and two-photon lasers.
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Fig. 1. (a) The one-photon stimulated emission pro
ess. The states have oppositeparity. (b) The two-photon stimulated emission pro
ess. The states have the sameparity.In this pro
ess, an in
ident photon 
an stimulate an atom from the upperstate j b0i to the lower state j a0i and two-photon are s
attered by the atom.The s
attered photons have the same frequen
y, phase and dire
tion of thein
ident photon whi
h give the laser its unique 
oheren
e properties. Thestimulated emission rate is proportional to the in
ident photon �ux and pro-
eeds most e�
ient when the frequen
y of the in
ident photon ! is equal tothe transition frequen
y !b0a0 and when the states have opposite parity (
on-ne
ted by an allowed ele
tri
 dipole transition matrix element). In 
ontrast,



Semi
lassi
al Stability Analysis of a Two-Photon Laser 565the gain in two-photon lasers is due to the two-photon stimulated emissionpro
ess. In this pro
ess, two in
ident photons 
an stimulate an atom fromthe upper state j bi to the lower state j ai and four photons 
an take on anyvalue so long as 2!0 ' !ba, where !ba is the two-photon transition frequen
y.The pro
ess is the most e�
ient when the states have the same parity (not
onne
ted by an allowed ele
tri
 dipole transition matrix element). The s
at-tered photons have the same frequen
y, phase and dire
tion of the in
identphotons give the laser 
oheren
e properties di�erent than these of normalone-photon laser [5-13℄.The problem for an experimental realization of a two-photon laser isthat two-photon 
oupling in general is very small, sin
e it is hard to �ndan atom where two-levels of the same parity have an almost resonant in-termediate level with opposite parity and separated by photons of opti
alfrequen
ies. The existen
e of the almost intermediate level is demanded forrea
hing a su�
iently large two-photon 
oupling. This problem has, how-ever, been 
ir
umvented in two ways; (i) between high-lying Rydberg statesin alkali atoms, quite large two-photon matrix elements 
an be found, dueto existen
e of an almost resonant intermediate level of the opposite par-ity. The photons involved in su
h a transition are, however, quite small,a
tually in the mi
rowave region. The 
orresponding laser pumped by thistransition is 
alled a mi
romaser and has been the subje
t of intense the-oreti
al studies [14�16℄, and was the �rst two-photon mi
romaser realizedexperimentally [17℄. The two-photon mi
romaser has many interesting prop-erties, whi
h distinguishes it from two-photon laser. This di�eren
e mainlyarises be
ause the spontaneous life-time of Rydberg atoms is mu
h longerthan for lower lying states and the atoms will de
ay spontaneously in the
avity, whereas this does not happen in the mi
romaser. Any de
ay is quan-tum noise, and the e�e
ts 
hara
terizing the two-photon mi
romaser aretherefore in some sense washed out be
ause of this noise and therefore notseen in the two-photon laser; and (ii) in the opti
al regime, a 
lever s
hemehas been adopted by Mossberg and 
ollaborators in whi
h they use dressedatoms (The energy levels of an atom in a strong �eld are eigenstates of theHamiltonian des
ribing �eld+atom. These energy levels form a ladder anddi�er substantially from those of an atom in zero �eld. An atom exposed toa strong �eld is 
alled a dressed atom.) as pump media, and the two-photontransition is then between the dressed-atom energy levels. We shall not en-ter a dis
ussion of the properties of two-photon dressed-atom laser, but referinstead to the literature [18�23℄.Although a de�nitive experimental implementation of a Two-PhotonLaser (TPL) has not been possible until very re
ently [23℄, TPL's have beenthe subje
t of 
ontinued theoreti
al attention sin
e the early days of thelaser era [13,14℄. The theoreti
al interest of the TPL lies in the intrinsi




566 M. Abdel-Atynonlinear nature of the two-photon intera
tion. This fa
t makes this sys-tem a potential sour
e for non-
lassi
al light and thus the major part ofthe literature has been devoted to the quantum des
ription of su
h a laser[24�29℄. Contrarily there is not mu
h work on semi-
lassi
al modeling of TPLand, in parti
ular, there still la
ks a 
omplete understanding of its stabilityand dynami
al properties [30℄. On the other hand the two-photon resonantintera
tion has been investigated in detail when the temporal width �0 ofthe pulse is mu
h less than both of population and polarization lifetimes i.e.�Æ � �1; �2 holds [31,32℄. (Here �1 and �2 are population and polarizationlifetimes respe
tively). Re
ently nonlinear propagation of pi
ose
ond pulsesintera
ting with a three-level system in the intermediate region �1 > �0 > �2has been 
arried out [33℄. TPL's are a re
urrent theme in the literatureand have attra
ted 
onsiderable theoreti
al semi
lassi
ally [34�36℄ as well asquantum me
hani
ally [24�29℄. On the experimental side, a TPL has beenrealized and studied extensively in the mi
rowave region of the spe
trum[24℄ and in the opti
al regime by Mossberg and 
ollaborators [28�30℄ in a
lever, slightly di�erent s
heme, where the atomi
 pump transition in be-tween levels of dressed atoms. In order to obtain the pure two-photon laser,in whi
h the laser works without one-photon pro
esses 
ontributions, some
onditions must be ful�lled. These 
onditions imply that, (i) the detun-ing of the �elds with respe
t to the one-photon transitions are mu
h largerthan the relaxation rates and the two-photon 
avity detuning in order toensure that the 
avity is tuned to the two-photon transition at the time thatit is highly detuned from the one photon transition; (ii) the deviations ofthe �eld frequen
ies are negligible in order to ensure far o�-resonant one-photon pro
esses; and (iii) the a
-Stark shifts do not modify the above faro�-resonan
e 
onditions [37�42℄. If the above 
onditions are veri�ed we 
anapply the adiabati
 elimination of the dipoles and of the intermediate levelpopulation.Re
ent work [43℄ in view of 
ontinuing te
hnologi
al improvements inmi
ro-
avities even at opti
al frequen
ies has motivated the examination of
ertain aspe
ts of the two-photon laser theory that are fundamental to thepro
ess. These aspe
ts have their 
ounterpart in the usual single-photonlaser but rather di�erent behavior is to be expe
ted in the two-photon 
ase,owing to the essential nonlinearity of the pro
ess even at weak signal. Wehave here in mind a degenerate two-photon laser with the atom pumped tothe upper state 
onne
ted to the lower one of the lasing transition by a two-photon pro
ess. Although not realized as yet in this pure form, it probablyis a matter of short time before that o

urs [26,27℄. The situation here issomewhat di�erent from the dressed states s
heme that has already beendemonstrated experimentally some time ago by Mossberg and 
ollaborators[18�20℄.



Semi
lassi
al Stability Analysis of a Two-Photon Laser 567The issue we have in mind has to do with the steady-state behaviorof the system, taking into a

ount the spatio-temporal dependen
e of therelevant magnitudes su
h as the �eld strength and the inversion. This ismost 
onveniently a

omplished in a semi-
lassi
al formalism in terms ofthe Maxwell�Blo
h equations. Related treatments based on either singlerate equations [34℄, dis
ussing threshold 
onditions, or the Maxwell�Blo
hequations without the spatial dependen
e, have been presented in the liter-ature [45�47℄. What we have studied and presented below is essentially thegeneralization of the 
omplete Maxwell�Blo
h equations, usually employedin the single-photon laser theory, to the two-photon 
ase. We have found itmost 
onvenient to use a formulation presented some time ago by Nardu

iin the semi-
lassi
al theory of the single-photon laser [48℄.2. Derivation of equationsWe 
onsider the 
oupled set of Maxwell�Blo
h equations, in the usualrotating wave approximation, whi
h govern our two-level atom when thedipole forbidden transition is repla
ed by a non-degenerate two-photon one,in whi
h pairs of photons with the di�erent frequen
y are 
reated or ab-sorbed, and we analyze the stability of the steady state. We adopt a semi-
lassi
al laser model based on a mi
ros
opi
 two-level Hamiltonian. Weassume a 
olle
tion of identi
al homogeneously broadened two-level atoms,with energies !1 and !2 su
h that (!2 > !1) with !2 � !1 = ~!21, !21the atomi
 transition frequen
y and a generated unidire
tional single-mode
lassi
al ele
tri
 �eldE(z; t) = 12fEjei(kjz�!jt) + 
.
.g; j = a; b (1)inside a ring 
avity. Here Ej is the real �eld amplitude, kj the wave-number,z the 
avity axial dire
tion and !j represents the unloaded 
avity frequen
y(j = a; b). The atoms intera
t with the �eld in the dipole approximation viaa two-photon transition, where these states are assumed to have the sameparity, and thus are not 
onne
ted by a one-photon transition. By usingthe rotating wave approximation one obtains the following equations for theprobability amplitudes of the formih�a1�t = !1a1 � 14Xm r(m)11 j Em j2 a1�14�(2)EaEba2e�i((ka+kb)z�(!a+!b)t); (2)



568 M. Abdel-Atyih�a2�t = !2a2 � 14Xm r(m)22 j Em j2 a2�14�(2)E�aE�b a1ei((ka+kb)z�(!a+!b)t); (3)where �(2) the e�e
tive dipole matrix element for the two-photon transition,rjj is the a
-Stark shift and are given by�(2) = 1hXi>2 �1i�i2� 1!i2 + !a + 1!i2 + !b�;r(m)jj = 2hXi>2 �ji�ij!ji!2ij � !2m :Adopting the plane-wave approximation and by using equations (2) and(3), we redu
e the Maxwell�Blo
h equations to� �Ea�z + 1
 � �Ea�t = �i(�a �D + �a) �Ea � i�a2 �P �E�b ; (4)� �Eb�z + 1
 � �Eb�t = �i(�b �D + �b) �Eb � i�b2 �P �E�a ; (5)� �P�t = �(
1 � i(�21 ��s)) �P � i�(2)2h �Ea �Eb �D; (6)� �D�t = i�(2)4h f �P �E�a �E�b + �P � �Ea �Ebg � 
2( �D � 1); (7)where �Ej ; �P and �D are the normalized output �eld, two-photon polariza-tion and population di�eren
e, respe
tively, 
1 and 
2 are the de
ay ratesof two-photon polarization and population di�eren
e, respe
tively. �j de-notes the unsaturated gain 
onstant per unit length of the a
tive medium(�j = 2�N!j�(2)=
"0); where N is the number of atoms per unit vol-ume, "0 the va
uum ele
tri
 permeability and 
 the speed of light. �s =14hPm=a;b(r(m)22 � r(m)11 ) j Em j2. We denote by �21 = !a + !b � !21,the detuning of the 
avity mode from two-photon o� resonan
e. �j =2�!jN2
 (2r(m)22 � r(m)11 ) and �j = 2�!jN2
 (r(m)22 + r(m)11 ). It is to be noted thatwhen we put Ea = Eb, we get the results of [18℄. The term proportionalto (
1 + i(�21 ��s)) is similar to that of the one-photon 
ase. Equations(4)�(7) here are non-linear in �Ej, as is the 
ase for the one-photon two-level system [48℄. The major di�eren
e between the two 
ases is that theequations governing this system involve non-linearity of higher order.In the 
ase of a degenerate two-photon model we assume the frequen-
ies of the two �elds to be equal and we deal with the only �eld E(z; t) =
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.
.g that intera
ts with both the dipole-allowed atomi
 tran-sitions. The degenerate two-photon laser model 
onstitutes a limiting 
aseof the non-degenerate one. Thus, the laser behavior predi
ted from a non-degenerate two-photon laser model with equal 
avity losses for both �elds
oin
ides with that predi
ted from a degenerate two-photon laser model(when analyzing the steady solution of the two-photon laser [49℄). The fa
tthat there is a di�eren
e in a fa
tor 2 in the gain parameter that makesthe pump parameter di�erent in both 
ases was 
ommented. In parti
ularthis implies that the minimum population inversion required for laser a
tionin the non-degenerate 
ase must be twi
e that in the degenerate 
ase, andwas interpreted by [34℄. What o

urs is that the validity 
onditions of bothmodels do not 
oin
ide: in the degenerate 
ase the �eld intera
ts with bothatomi
 transitions, whereas in the non-degenerate 
ase ea
h �eld intera
tswith only one transition. This explains, roughly, the fa
tor 2 in the gainparameter.Maxwell�Blo
h equations for a degenerate two-photon laser with theatom pumped to the upper state 
onne
ted to the lower one of the lasingtransition by a two-photon pro
ess and its steady state have been derivedand dis
ussed previously in [49℄. For simpli
ity, we negle
t the Stark shiftterms. The Maxwell�Blo
h equations (4)�(7) redu
ed to� �F�z + 1
 � �F�t = �� �P �F �; (8)� �P�t = �(
1 + iÆA
) �P � 
1 �F 2 �D; (9)� �D�t = 
2 �12( �P �F �2 + �P � �F 2)� �D + 1	 ; (10)where �F ; �P and �D are the normalized output �eld, two-photon polarizationand population di�eren
e, respe
tively, ( �F =p�(2)=~
1
2 �E0 ). In this 
ase,the unsaturated gain 
onstant per unit length of the a
tive medium is givenby � = 2N!
(�(2))2=3=2
~"0
1. We denote by ÆA
 = !A � 2!
 the detuningof the 
avity mode from two-photon resonan
e. !A is the atomi
 transitionfrequen
y.The model is 
ompleted by appropriate boundary 
onditions whi
h, inthe 
ase of a traveling wave ring-
avity resonator, take the form�F (0; t) = R �F �L; t� �� L
 � ; (11)where L is the length of the a
tive medium; while the full length of the ringresonator is �, and R is the amplitude re�e
tivity of two of the mirrors. Forsimpli
ity, the remaining opti
al surfa
es that are needed to 
omplete thering are assumed to be ideal re�e
tors.



570 M. Abdel-Aty3. Steady stateIn order to gain some physi
al understanding of the pro
ess and dis
usssome aspe
ts of the threshold 
onditions, we analyze �rst the steady-statebehavior of the system. To study the steady state, we 
onsider the equationsin the long-time limit by setting the time derivatives equal to zero, for ana
tive medium detuned by an arbitrary amount ÆA
 from the resonant 
avitymode. Under these 
onditions, the output �eld is expe
ted to os
illate witha 
arrier frequen
y !L whi
h is neither equal to !
 nor !A=2, but to someintermediate value determined by the 
avity and atomi
 parameters. Forthis reason, we look for steady-state solutions of the type�F (z; t) = �Fst(z)e�iÆ!t; (12)�P (z; t) = �Pst(z)e�i2Æ!t; (13)�D(z; t) = �Dst(z); (14)where Æ! is the frequen
y o�set of the operating laser line from the resonantmode (i.e. Æ! = !L � !
). The atomi
 variables 
an be determined at on
eas fun
tions of the stationary �eld pro�le�Pst(z) = � �F 2st(z) 1� i�1 +�2+ j �Fst(z) j4 ; (15)�Dst(z) = 1 +�21 +�2+ j �Fst(z) j4 ; (16)where the detuning parameter � is de�ned as � = (ÆA
 � 2Æ!)=
1: Thesteady state polarization and the �eld envelope are generally out of phasefrom one another by an amount that depends on the detuning ÆA
 and theposition of the operating laser line. On resonan
e, however, �Pst and �Fsthave the same phase. The steady state population di�eren
e (inversion)saturates at high intensity levels in the sense that �Dst ! 0 as j �Fst j! 1.To determine the value of the output �eld and the form of its longitudinalpro�le in steady state, it is 
onvenient to represent the �eld amplitude interms of its modulus only, be
ause here we simply assume no phase 
hangeduring the steady state evolutiond �Fst(z)dz = � �F 3st(z)1 +�2 + �F 4st(z) : (17)The boundary 
ondition, expressed in terms of the �eld modulus is givenby Fst(0) = RFst(L): The output laser intensity 
an be 
al
ulated as [13℄,F 4st(L) = 2�L1�R2F 2st(L)� 1 +�2jR2 ; (18)
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� 2Æ!j)=
1, Æ!j is the operating laser frequen
y. Equation(18) has two roots and at laser threshold the intensity is not vanishing.There is 
oexisten
e of three solutions (above threshold): the trivial andtwo other solutions with intensity di�erent from zero. One solution growswith the pumping parameter up to an asymptoti
 value for pumping goingto in�nite. The other solution de
reases towards the zero solution as thepumping grows to in�nity. This means that the threshold is not a se
ondorder phase transition as in the 
ase of single photon lasers.The quantity 
 j lnR j =
1� represents the de
ay rate of the 
avity�eld, and 2�
=� is the spa
ing between adja
ent 
avity resonan
es. Afterintrodu
ing the abbreviations K = 
 j lnR j =�; �1 = 2�
=�; we obtainÆ!j = !L � !
 = KÆA
 + �1
1j
1 + 2K ; (19)where the sub-index j reminds us of the possible existen
e of multiple solu-tions. This is the well known mode-pulling formula. It shows that the laseroperating frequen
y is a weighted average of the atomi
 resonant frequen
yand the frequen
y of one of the 
avity modes.4. Linear stability analysisThe general stability analysis of the Maxwell�Blo
h equations(8)�(10) is a rather di�
ult problem. The main sour
e of 
ompli
ationoriginates from the spatial dependen
e of the �eld and of the atomi
 vari-ables. In an attempt to get around this problem, mostly linear stabilityanalysis have been 
arried out within the uniform �eld limit. While thismay not appear to be a very realisti
 approa
h, there are good reasons, infa
t, why useful information 
an be extra
ted even from this limiting 
ase:(i) we 
an reformulate the Maxwell�Blo
h problem in terms of a new set ofatomi
 and �eld variables that are not very sensitive to limited departuresfrom the ideal limit. For this reason it is not ne
essary to operate withunrealisti
ally low values of the gain or the mirror transmittivity; (ii) themean �eld limit is a good indi
ator of instabilities and fun
tions as a roughdiagnosti
 tool. This is fortunate be
ause the numeri
al solutions of thetime-dependent Maxwell�Blo
h equations require 
onsiderable e�orts andsome guidan
e 
an produ
e signi�
ant saving of time. The resonant 
ase,is not very 
ompli
ated and 
an be studied exa
tly with limited e�ort. Forthis reason, in this se
tion we limit ourselves to the exa
t analysis of theresonant laser problem, without any restri
tions on the gain of the a
tivemedium or the re�e
tivity of the mirrors. Our starting point is the full set ofMaxwell�Blo
h equations (8)�(10) with ÆA
 = 0. Be
ause the phase of the



572 M. Abdel-Atystationary �eld is undetermined, it is possible to sele
t Fst(z) as a real quan-tity. In prin
iple, a random �u
tuation of the 
avity �eld 
ould for
e thegrowth of the imaginary part through a pro
ess 
alled phase instability. Inthis se
tion we simply assume that no phase instability 
an develop, so thatboth the �eld and polarization variables remain real during the linearizedevolution. The steady state of this system of equations is given in equations(15), (16) and (17). To study the stability of this steady state, we setF (z; t) = Fst(z) + e�tÆf(z);P (z; t) = Pst(z) + e�tÆp(z);D(z; t) = Dst(z) + e�tÆd(z) (20)into equations (8)�(10), upon negle
ting �u
tuation terms of order higherthan one. The linearized equation of the �eld �u
tuation takes the formddz Æf(z) = M(z)Æf(z); (21)where M(z) = ��
 + �+ 3
1�+ 
1 �F 2st1 + F 4st � �F 6st1 + F 4st 2
1 + ��+ 
1� 2
1
2(�+ 
1)(�+ 
2) + 
1
2F 4st : (22)The formal solution of equation (14) isÆf(z) = Æf(0) exp0� zZ0 dz0M(z0)1A = Æf(0)e	(z): (23)The problem is that �Fst is not known in 
losed analyti
 form. We 
an getaround this di�
ulty with a 
hange of independent variable from z to �Fst, ifwe take advantage of the fa
t that dz = d �Fst= (d �Fst=dz) and that d �Fst=dz isknown expli
itly from equation (10) and the �eld �u
tuation takes the formÆf(z; t) = e�tf(z) = e�tÆf(0)e	(z): (24)Next, imposing the boundary 
onditionÆf(0; t) = RÆf �L; t� �� L
 � (25)
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lassi
al Stability Analysis of a Two-Photon Laser 573we obtain the 
hara
teristi
 equation�n = �i�n � 
2� (�n + 3
1) j lnR j�n + 
1 � 
4� �n + 2
1�n + 
1� ln� (�n + 
1)(�n + 
2) + 
1
2F 4st(L)(�n + 
1)(�n + 
2) + 
1
2R2F 4st(L)�; (26)where �n = 2�n
=�. The 
hara
teristi
 equation (26) depends on the 
avitylinewidth K ( 
=�
1 = K= j lnR j) of the population di�eren
e, and the gainof the a
tive medium through the output �eld intensity �F 2st. The 
hara
teris-ti
 equation (26) is similar to that for the one-photon two-level system withthe following substitutions �Fst ! �F 2st, and in a fa
tor 2 in the denominatorof the se
ond and third terms of the equation whi
h govern the two-photonlaser 
ase equation (26). The origin of the term �i�n here 
an be tra
edba
k to the equality exp(0) = exp(2�ni) for n = 0;�1;�2 : : : : Note thatsetting exp(0) = 1 would be a mistake be
ause it would eliminate pra
ti
allythe entire spe
trum of eigenvalues. At this point, we have redu
ed the lin-earized problem (14) to the solution of an in�nite number of 
hara
teristi
equations, one for ea
h value of �n. The existen
e of an in�nite number ofeigenvalues is not surprising in view of the spa
e�time dependent nature ofthe �eld and atomi
 variables and of the boundary 
onditions of the laserresonator. One is reminded of the ordinary vibration problems, linear string,two-dimensional membrane, et
., ex
ept that here we are dealing simulta-neously with three �u
tuation variables equation (20), and thus on physi
algrounds, one expe
ts three 
hara
teristi
 roots �(1)n ; �(2)n ; �(3)n for ea
h valueof n. Be
ause �n represents the frequen
y separation between the nth empty
avity resonan
e and the sele
ted referen
e mode, it is easy to interpret theset of roots �(i)n ; i = 1; 2; 3, as des
riptive of the growth or de
ay of aninitial �u
tuation that develops in 
orresponden
e to the nth mode of the
avity. This interpretation forms the basis for a 
lassi�
ation of the possibleunstable behaviors of the system. If Re�0 is positive and Re�n(n 6= 0) areall negative, an initial �u
tuation of the resonant mode will grow exponen-tially and evolve with the same 
arrier frequen
y as the stationary state.Thus, the linearized dynami
s of the laser 
an be des
ribed only in termsof the behavior of the resonant mode �u
tuation (all the other �u
tuationsare damped be
ause Re �n < 0; n 6= 0) and the instability will be of thesingle-mode type. If, on the other hand, Re �n < 0 and, for some value ofn, Re �n > 0, the nth 
avity mode will support the growth of a �u
tuationwhose 
arrier frequen
y is di�erent from that of the stationary state. Here,we have suggested the existen
e of a one-to-one 
orresponden
e between theindex n, that appears in equation (26), and the longitudinal 
avity modes.Our informal suggestion is founded on physi
al grounds. The main 
on
ep-
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ulty with this interpretation is that the notion of �mode� is notwell de�ned when the resonator mirrors have a �nite re�e
tivity, and theelementary 
avity ex
itations have a �nite lifetime. In fa
t, in solving thelinearized problem, we have not even introdu
ed resonator eigenfun
tions, asone normally would in a standard boundary value problem. For this reason,we 
ontinue to refer to �(i)n as the set of linearized eigenvalues of the nth
avity resonator.A 
omplete analysis of equation (26), parti
ularly with regard to roleplayed by the basi
 laser parameters, gain, internode spa
ing, re�e
tivityand the atomi
 de
ay rates, has not been 
arried out. Equation (26) predi
tsthat both single and multimode unstable behavior 
an be established with
on�den
e. We begin our analysis by s
aling all the relevant rates of theproblem to the linewidth 
1 of the a
tive medium. In this way, equation(26) takes the form��n = �i��n � 
2
1� (��n + 3) j lnR j��n + 1 � 
4
1� ��n + 2��n + 1� ln� (��n + 1)(��n + �
) + �
F 4st(L)(��n + 1)(��n + �
) + �
R2F 4st(L)�; (27)where ��n = �n=
1, ��n = �n=
1, and �
 = 
2=
1. A numeri
al study of thisproblem shows that single-mode instabilities ��n = 0 tend to be favored inthe presen
e of high gain and laser 
avity losses �K > 1. These 
onditions aredi�
ult to realize in a pra
ti
al system. In general, it appears from equation(27) that single-mode instabilities require a s
aled 
avity linewidth whi
h issu�
iently larger than unity. In order to keep the 
al
ulations presented inthis paper as realisti
 as possible, we have 
hosen to apply our model fora real atomi
 system, (for the transition 4p3=2�6p3=2 in Potassium). Thereason for 
hoosing this transition is the result of a 
ompromise. On onehand, one wants the energy of the photons involved to be as large as possible,and preferably in the opti
al regime. On the other hand, it is hard to �nda two-photon transition in the opti
al regime with a large 
oupling, sin
ea large two-photon 
oupling demands the existen
e of an almost resonantintermediate level with opposite parity. The transition mentioned aboveinvolves photons with an energy of ' 7980 
m�1 i.e. near-infrared, andhas a two-photon 
oupling that is orders of magnitude larger than the other
andidates we looked at, due to the almost resonant 5s state. Besides theatom, we should also 
hoose a 
avity. In the model presented in this paper,we are assuming that only one mode of the 
avity �eld is ex
ited. For thisto be true, the 
avity should be rather small, sin
e it then supports fewermodes, and these will be better separated in energy. Another advantage ofhaving a small 
avity is that the two-photon 
oupling �(2) will be larger,
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al Stability Analysis of a Two-Photon Laser 575sin
e it is proportional to V �1 (following the notation of Loudon) [50℄, Vbeing the 
avity volume. We have 
hosen the 
avity volume V = 10�15 m3.In �gure 2 the largest real parts of the linearized eigenvalues are plotted�
�
�

�

-��

-��

-��

�

��

��

��

� � � � � ��

a

b
c

αn

�

 Re� nλ

Fig. 2. The largest real parts of the linearized eigenvalues are plotted as fun
tionsof ��n viewed as a 
ontinuous variable. For all the 
urves displayed in the �gure wehave sele
ted R = 0:8; �
 = 0:1; and �k = 3:55, where (a) � �L = 1, (b) � �L = 3and (
) � �L = 5.as fun
tions of ��n viewed as a 
ontinues variable. For all the 
urves displayedin this �gure we have sele
ted R = 0:8, �1 = 100, �
 = 0:1 and for di�erentvalues of �L. We show that unstable situation for several values of therelevent parameters ( the only physi
al meaningful values of ��n are all thepositive and negative multiples of the intermode spa
ing ��1). Multi-modeinstabilities are not bounded by the high-loss requirement, but they stillrequire large values of the gain to rea
h their threshold. In �gure 3 thelargest real parts of the linearized eigenvalues are plotted as fun
tions of ��nviewed as a 
ontinues variable. With the same parameters as in �gure 2 butfor di�erent values of �
 and �L = 6. This �gure gives an example of sometypi
al real parts of the linearized eigenvalues for parameter values that leadto multimode instability. As shown in this �gure, the beat frequen
y due tothe superposition of the stationary solution and of the unstable sidebands issensitive to the value of �
. The important feature is the monotoni
 shift ofthe positive real parts of the eigenvalues towards higher and higher values of��n for in
reasing values of the gain. In this 
ase the role of 
1 is played by
2, so that, for example, the quantities �n and K must be normalized to 
2.As a 
onsequen
e, our analysis holds not only when the sample 
ontainedin the 
avity is a two-level system, but also when it is, for example, a Kerrmedium.
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Fig. 3. The largest real parts of the linearized eigenvalues are plotted as fun
tionsof ��n viewed as a 
ontinuous variable. For all the 
urves displayed in the �gure wehave sele
ted R = 0:8; �k = 3:55 and �L = 6, where (a) � �
 = 0:1, (b) � �
 = 0:5and (
) � �
 = 0:7.The most salient distin
tive features of the two-photon lasers are: thelaser-o� solution is always stable (thus implying the ne
essity of triggeringfor laser a
tion) and the laser-on solution is stable for pump values above(and not below) the laser se
ond (or instability) threshold. Moreover, self-pulsing emission is still possible in autonomous 
lass-B two-photon lasers[52℄ (lasers for whi
h the polarization de
ay rate largely ex
eeds the pop-ulation and photon de
ay rates and on whi
h no external modulation isexerted), a behavior that is in 
ontrast with most laser models. The ele
-tri
 and magneti
 dipole intera
tion of a system of two-level atoms with anele
tromagneti
 �eld is 
onsidered in the nonlinear regime in [53℄ throughresponse theory. They have pointed at the order of the opti
al Blo
h equa-tions with respe
t to the nonlinear response theory. Also, they showed thatin the rotating wave and near-resonan
e approximations and up to order e2(e is ele
tron 
harge) the results of the nonlinear response theory redu
e tothose of the Blo
h equations.In 
on
lusion, we have derived the general Maxwell�Blo
h equationsfor the system 
onsisting of the two-level atoms with dipole forbidden transi-tion, pla
ed in a two-photon one. The treatment has been 
arried out in theframework of the semi
lassi
al laser theory. We have 
al
ulated the spatialbehavior of the �eld strength and have shown the e�e
t of the additionalnon-linearity due to the two-photon 
oupling. We have generalized the sta-bility analysis of the steady-state solution of the 
omplete Maxwell�Blo
hequations, usually employed in the homogeneously broadened single-photonlaser theory [48,51℄, to the two-photon 
ase. Although the model is ratheridealized, its general features should be relevant to a real single-mode system.
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lassi
al Stability Analysis of a Two-Photon Laser 577The analysis presented in this paper has been inspired by the 
omparisonbetween the linear stability analysis te
hnique and the so-
alled weak side-band approa
h [54℄. In our 
ase the linear stability analysis not only agreeswith the results of the weak sideband approa
h, but extends its range of ap-pli
ability, parti
ularly in the 
ase when the 
avity detuning must be takeninto a

ount.The problem we have formulated and solved in this paper has an inter-esting 
ounterpart in the mi
rowave regime where one 
an tailor at will, in
ombination with the 
hoi
e of the prin
ipal quantum number of the pumpedRydberg state. The experimental realization of su
h a s
enario should be rel-atively easy with present day te
hnology. In our treatment we have fo
usedon the degenerate two-photon laser. It would thus be interesting to studythe non-degenerate 
ase. We 
ould imagine having a transition in whi
h onephoton is visible, and the other is, say, infrared. The frequen
ies of thesetwo photons 
ould be 
hosen in su
h a way that we would obtain a largetwo-photon 
oupling and hen
e this laser type would be easier to realize. Inthis laser type, we would also expe
t Stark shift to play a dominant role.We hope to report on su
h issues in a forth
oming paper. The single-modeand multimode instabilities in one-photon lasers and related opti
al systemshave been dis
ussed in [51℄. Our present dis
ussion generalizes these earlystudies.I am grateful to Professor P. Lambropoulos at Max-Plan
k-Institut fürQuantenoptik, Germany for suggesting the problem and for 
ontinuous dis-
ussion. I am espe
ially thankful to Professor L.M. Nardu

i at Drexel Uni-versity, USA for many stimulating 
orresponden
e and to ProfessorA.-S.F. Obada for helpful dis
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