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Kinetics of three-dimensional normal grain growth and related processes
(e.g., soap froth evolutions) described by the Mulheran—Harding model is
studied. The model is represented by a diffusion equation with the grain—
size—dependent diffusion coefficient. The equation is solved for an arbitrary
initial distribution of grain sizes. It is proved that asymptotic kinetics do
not depend on the initial state.
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1. Introduction

Throughout this study, we wish to reveal kinetic effects characteristic
of the so-called normal grain growth [1,2]|. One may ask: Which are the
basic (kinetic) signatures of the Normal Grain Growth (NGG) and why is
the process of a certain importance? To answer at least the first question,
one may start from a set of simple observations of the process of interest
looking carefully at its temporal behavior. First, one can observe that the
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number of grains constituting the system decreases with time. Second, the
average size of the grain increases with time. Another qualitative observation
assigned to the NGG states that it passes quite smoothly over all stages
that it meets on its way. One could say that the evolution is realized in a
uniform manner. Moreover, it can naturally be described by zero or Dirichlet
boundary conditions. Mathematically speaking, such conditions give no
tolerance for existence of grains of zero as well as of infinite sizes. They
assure the process as being realized in the so-called normal regime, with
no re-nucleation as well as giants’ domination events. Physically speaking,
in turn, one may expect some abnormalities while more closely inspecting
the growing conditions. On the level of a statistical-mechanical description
of the phenomenon they are mostly subjected to some violation of either
boundary conditions or when one is capable of keeping the system in the
regime of preservation of its total volume [3,4].

To understand the driving mechanism(s) of the NGG, one is kindly sent
to have a look at [5]. For the purpose of our description we would like to state
that there are a few types of forces driving the system and/or damping its
evolution. Among several types of forces driving the system let us mention
a deterministic one, very much related to the surface tension effect (for
bubbles, with a pressure difference) and named the capillary force. It is
known [6] that this force may readily be accompanied by material density
fluctuations present in the system. The forces that try to damp the system
evolution are called the drag (“damping”) forces, among which the Zener
force, due to pinning, as well as the Mullins force, likely emerging in the
high-temperature limit, can be mentioned [7|. They are, however, not taken
into consideration in the present study. Therefore the presented study can
be anticipated as some simplification of a real problem due to polycrystal
evolution; for realizing the simplified mechanism of the growing process, see
Fig. 1 and have also a look at a mini-review [8].

It is worth listing main types of a theoretical description of the three-
dimensional NGG kinetics, which is here of major interest. According to [2],
these are the following:

(i) the topological approach [9];

(ii) the metric and combined approach, which may split into three sub-
approaches:

— the grain growth as a deterministic process, described by a con-
tinuity equation [10];
— the grain-diffusion approximation [11];

— the stochastic description [12].
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Fig.1. Two snapshots representing a possible local scenario of the Normal Grain
Growth taken at two successive time instants ¢; and ¢5, in which the content of
the grain 1 has been absorbed by the grain 2, presumed that the grain 3 had to
survive under such growing circumstances (¢ > t;). Some basic signatures of the
process can be underscored: (1) neighboring crystallites 1, 2 and 3 pack entirely the
available physical space; (i7) the process seems to be efficient (close-packing, but
not of the Apollonian type, ¢f. Appendix) and its principal driving force appears
to be the curvature-dependent capillary force; (i) the grain boundaries undergo a
strong fluctuation effect (see the corresponding double-arrows); (iw) the centers of
inertia of the crystallites seem to undergo at most a short-range diffusional motion
and the process keeps on growing toward some increase of the average grain radius.

There is a variety of papers that try to solve the basic kinetic problems
related to the NGG phenomenon by means of computer simulation tech-
niques, like [13,14], but their connections to the grain growth or evolution of
polycrystals (bubbles) are unfortunately not very much established yet [15].

As seems to be known, the NGG processes can be described by their
kinetics, which can be best seen while examining their asymptotic behavior
though the obtained solutions are valid for the entire time domain. Thus,
the goal of this paper is to reveal some characteristic kinetic features of
the NGG, mostly by inspecting the temporal behavior of its main physical
quantities like the number of grains constituting the system as well as their
average radius [16].

The paper is organized as follows. In the next section we briefly recall
the Mulheran-Harding (M-H) model', which stands for a random walk ap-
proximation of the NGG process, with some emphasis that the random walk
is realized in the space of grain sizes. In Section 3, we provide a sketch of
the method of a formal solution of the M—H model generally based upon the
method of separation of variables. We also present explicitly the propagator
of the system evolution, which contains a possibility of including arbitrary
prescribed initial state f(v,0). Then, in Section 4 we arrive at the most
interesting asymptotics of the model which appears to be consistent with

1 It would perhaps be equally well named the Mulheran-Harding-Louat model because
Louat contributed first to this issue [10], and solved the problem in a one-dimensional
case.
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the M—H asymptotics, though they do not mention explicitly how do the
asymptotics depend upon f(v,0), if this is the case. We finish the paper by
sending a final address and preparing a quite recent list of literature, also
incorporating some links to applicational aspects of our study, ¢f. Appendix
for having a wider outlook.

2. Mulheran—Harding model

In the M—H model it has been argued [10,11,16] that the grain size- and
time-dependent evolution of the system satisfies the continuity equation of
diffusion type, namely,

0 0?
E (Uat) = __U .(Uat) = DOWU2/3f(Uat)7 CAS [Oa OO), (1)
where v is a volume of a grain, Dy is a constant representing a random walk
behavior in grain growth (we choose Dy = 1 because it enters only into the
product Dyt leading to the rescaling of time t), f(v,t) is the distribution
function of grains (bubbles) at time ¢, i.e., f(v,t)dv is a relative number of
grains of sizes in the volume range [v,v+dv]. The flux j(v,t) takes the form

0.1) = Do (o, 1). &)

In this model it is assumed that the flux j(v,t) is proportional to the change

of number of particles on the surface v2/3 of the grain. Unfortunately, the

microscopical justification of the M—H model does not exist. Nevertheless,

it describes quite well kinetics of a certain class of grain-growth processes.
Eq. (1) is completed by the following conditions [10,16]:

(a) The initial distribution of grains,

f(U,O) = fO(U)a (3)
where fo(v) is a given function.

(b) The boundary conditions,

f(0,2) = f(o0,t) = 0. (4)

They signify that the number of grains of zero volume as well as of
infinite volume at arbitrary time is zero. The former means that the
boundary v = 0 is absorbing. The latter is natural and minimal for
existing statistical moments of the distribution f(v,1).
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3. Propagator of evolution

A fundamental problem concerning the grain growth process is to deter-
mine the solution f(v,t) of (1) with the conditions (3) and (4). The relation
between the distribution f(v,t) at the instant ¢ and the distribution f(v,s)
at the earlier instant s defines an evolution operator U (t, s) via the formal
equality

f,t) =U(t,s)f(v,s), t>s. (5)
The evolution operator U'(t, s) is an integral operator given by the relation
o
/U v, tlw, s) f(w, s)dw, (6)
0

where U (v, t|w, s) is an integral kernel of the operator U (t, s). The function
(or more precisely the distribution) U (v, t|w,s) is called a propagator and
has the following properties

U(v,tlw,s) /U v, tlz, U (2, T|w,s)dz, t>T12>s, (7)
0
%gr; U, tlw,s) = d(v — w) (8)

which follow from the equality (6). What we need is in fact the propagator
for the particular time s, namely, for the initial time s = 0. Then (6) is
given by

Fo,1) = /U(v,t|w, 0) f (w, 0)dw ()
0

and it is sufficient for solving Eq. (1) with the initial condition (3).
To find the propagator we assume that

flo,t) = / Gy (v)dA, (10)
0

where Gy (v) is an unknown function of two variables A\ and v. The repre-
sentation (10) is the version of the method of separation of variables in the
case when the spectrum A of the diffusion operator in (1) is continuous.
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From (1) and (10) it follows that Gy(v) is a solution to the ordinary
differential equation of the second order, namely,

4 2
PG (w) + 0 PG W) = So1Gx(0) = MG (v), (11)

where the prime denotes a derivative with respect to v. Eq. (11) can be
reduced to a simpler form by introducing the new variable

y = 0?3, (12)
Let us define a new function Fy(y) by the relation

Fx(y) = Ga(v). (13)

In consequence, Eq. (11) can be rewritten in terms of the new function F) (y)

as follows 3 9 .

PR+ SuE 0 + (T - 3 ) B =0, (1)
It is the Bessel equation [17], the solutions of which are well known. In our
case, the solution has the form [17]

Fa(s) = Galo) =0 o0 s (3VA 027, (15

where J,, () stands for the Bessel function [18]. The ‘constant’ of integration
C(A) is determined by the initial condition (3). Now, using the same method
as in [4], one readily finds for the propagator the explicit result

W 2/3
s (%) - (16)

where I,,(z) is the modified Bessel function [18]. Hence, Eq. (9) with the
propagator (16) is a solution of (1) for an arbitrary initial distribution f(v,0)
of the grains. It is worth to note that the propagator (16) is not symmetric
under the transformation v <+ w. It is in clear contrast to the case considered
in [4], where a slightly different model describing the phase transformation
has been analyzed.

U(v,tlw,0) =

3= 1/641/2 9(v'/3 + w3)
4t 16t
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4. Analysis of solution

Some general properties of the grain growth process described by (1) can
be obtained from the representation (9) of the solution of (1). Firstly, let us
consider the zero-order moment, designated by N (t), namely

Nt)z/f(v,t)dv (17)
0

which is the relative number of grains at the instant ¢, ¢f. statements beneath
Eq. (1). Inserting (9), completed by (16), into (17) and integrating it over
the variable v yields

/83/4 7
N0 = 35678 /F (18)
0
where
F(w, ) = we BOW*\ (1; 7/4: ﬁ(t)w4/3> F(w,0) (19)
and 9
B) = 1 (20)

The function M(a; b; z) is the confluent hypergeometric (Kummer) function
and I'(z) is the Euler gamma function [18].
Now, we prove that for long time, ¢ > 1, the asymptotics

N(t) ~ 3/ (21)

holds, independently on the initial distribution f(v,0) of the grains, which
means, that some algebraic fall of the total number of grains (bubbles) is
observed. Indeed, from the definition of the Kummer function [18] it follows
that

M(1;7/4;2) <M(1;1;2) =e° (22)

and therefore
Fw,t) < wf(w,0) (23)

for any time ¢. It enables us to exploit the Lebesgue’s dominated convergence
theorem [19], namely,

o o0

tlinono /F(w,t)dw :/LliréloF(w,t)} dw. (24)

0 0
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Because limy_, o, F'(w,t) exists, the function N (¢) behaves asymptotically as
N(t) ~ B34(t) ~ t=3/%. Tt completes the proof.

The next important characteristics of the process is the average value of
volume of the single grain. It is defined by the relation

o0

[vf(v,t)dv
(v(t)) = g (25)
Off(v,t)dv

Using (9) and (16), one can show by an explicit evaluation of the integrals
that the average total volume V' (£) of the system is preserved in the course
of time, i.e.

V() = /vf(v,t)dv _ /vf(v,O)dv —V(0). (26)
0 0

In consequence, the average grain volume is closely related to evolution of
the average number of grains,

(v(t)) = V(O)NT'(2), (27)

cf. (17) and (26), so that a quantitative volumetric “fragmentation” relation
can be obtained this way. Because the average volume (v(¢)) of the single
grain is proportional to the third power? of its average radius (r(t)), therefore

(r(t)) ~ (w(E)'? ~ NT1(). (28)

Independently of the initial conditions, the average radius of the grains dis-
plays at large times the power-law dependence, namely

{r(t)) ~ (29)

with the exponent p = 1/4.

From (18) and more explicitly from (21) it is seen that the average num-
ber of grains drops with time. We observe that, by integrating (1) over the
phase space v € [0, 00), the change of the grain number is related to the flux
across the absorbing boundary at v = 0,

dN (t)

— =i(0,1) <0 (30)

2 A discussion of considering the (average) grain as a non-Euclidean object of a certain
fractal dimension dy is left for the Appendix.
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(the total flux at infinity j(oco,?) = 0). So, there are less and less grains
since infinitesimally small grains disappear attaching some bigger ones.

Now, let us present examples of the grain distributions. F.g., let us
assume that initially at £ = 0 there are Ny grains each of non-zero volume
vp. Hence, the total volume of the system is V(0) = vg Ny (see (26)) and the
initial distribution f(v,0) reads

V(0)

f(v,0) = Nob(v —vg) = o

d(v — vg), (31)

where §(z) denotes the Dirac delta distribution. In this case one gets
f(v,t) = fi(v,t) = NoU (v, t|vg,0) (32)

and the solution of the problem (1)-(4) is expressed by the well-known func-
tions.

In the papers [10,11], only the particular solution of (1) has been pre-
sented. It reads

_9“4/3] . (33)

5 = )~ = T/A1/3

f(U, ) fQ(Ua ) v exXp 16t
This solution can be obtained for a special initial distribution. We have
guessed the function f(v,0) which reads

Vo)

f(v,0) = 6(v), (34)
where V(0) is the average total volume of the system, c¢f. (26). Indeed,
let us insert this distribution to (9), represent the modified Bessel function
I3/4(2) in (16) as a power series with respect to the argument z [18] and use
the definition of the Dirac delta distribution. Then one obtains (33). The
initial condition (34) is rather a non-typical distribution. For it, the initial
mean number of grains N(0) is infinite and the initial mean volume of the
single grain (v(0)) is zero. On the other hand, the initial distribution (31)
gives as a result a finite N(0) and a non-zero value of (v(0)). Moreover, the
boundary condition (4) is fulfilled for (31) but not for (34). It implies that
the value of the function fy(v,t) for v = 0 suddenly jumps from infinity to
zero at infinitesimally small time, i.e., fo(v = 0,t = 0) = oo and fo(v =
0,t > 0) = 0. It is inconsistent and unphysical. Nevertheless, from the
mathematical point of view, the solution (33) is correct. The comparison
of the distributions (32) and (33) is shown in Figs 2 and 3 at two various
instants. The normalization constants of two distributions have been chosen
in such a way that the average total volume (26) is the same in both cases.
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One can notice that in the case of the M-H initial condition, there are
a greater number of smaller grains than for (32) and a smaller number of
greater grains than for (32). It seems to be obvious because the mean volume
of both systems is the same.

35

f(v)

30 <- Mulheran-Harding model

25
20
15
10

5

0

0 1 2 3 4 5 6
\

Fig.2. The distribution function f(v) = f(v,t = 1) of grains for two various
initial conditions: for the Mulheran—-Harding initial distribution (34) and for the
Dirac-delta distribution (31) with vg = 1. For both systems the mean total volume
V(t) = V(0) = 100.

f(v)

<- Mulheran-Harding model

Fig.3. Same as in Fig. 2 but taken at the later moment ¢ = 1.5.

It turns out that the asymptotic kinetics (like 4 = 1/4 in (29)) ob-
tained above differs distinctly from the standard or normal case (for which
(r(t)) o t'/2 and which has been also got by Louat [10] for one-dimensional
systems). It is also in disagreement with findings of computer simula-
tions [14] for two-dimensional systems. It is not a surprise because exponents
like 4 depend on the dimension of the system as well as on mechanisms taken
(or not taken) into account in modelling of the growth phenomena.
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5. Final remarks

We have solved the Mulheran-Harding model for an arbitrary initial dis-
tribution of the grain sizes, see (9), (16), (18) and (26)—(28). It allows, in
fact, to investigate the influence of the initial preparation of the system on
its later evolution, cf. [20]. Concerning the very basics of the NGG kinetics
of the three-dimensional system as well as soap froth? evolution, one may
state the following:

(1)

The process under study can be treated as the random walk in the
space of grain sizes. However, the distribution function is not normal-
ized as it does in the case of diffusion motion of the Brownian particle.
In the case considered, the first statistical moment is conserved in time,
see (26).

In the asymptotic (late times) regime, the evolution does not depend
upon the prescribed initial state. It resembles the ergodic behavior of
a class of standard stochastic processes.

In the non-asymptotic regime, one may expect some differences be-
tween various prescribed initial conditions (in the early times limit,
for example), but further the process goes smoothly towards some vis-
ible increase of the average grain size [12].

If some conditions of the NGG@G, i.e. the constancy of average total
volume or the prescribed boundary (Dirichlet) condition(s), are vio-
lated, the system is supposed to enter the so-called abnormal regime,
cf. [1,7]. Tt is also known that the abnormality may be caused by, e.g.,
preparing a special initial state of the grain growth process in stainless
steels, when (indirectly) post-recrystallization strains effect on the mi-
crostructure as well as the grain misorientation texture, so that some
incorporation of such a behavior would certainly make the modelling
more advantageous as well as applicable to polycrystals [21].

Why is the kinetic study of some importance? We prefer to make a re-
sponse to the posed question just by recalling one example. The example
concerns the bumpers of cars, and one can think of the process of casting
the bumper structure as being of NGG type (metallic soap froths), and one
might imagine that the evolution will go up to the large times regime. But it
may also be stopped somehow artificially in some earlier time domain, so that

3 Notice that in our model no explicit notion of texture and/or crystallographic
(mis)orientations, very characteristic of polycrystals but clearly absent in soap froths,
has appeared.
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a fine-grained structure will be a certain result thereof. Fine-graining typi-
cally implies that the structure can be mechanically more robust, whereas a
structure containing bigger grains (bubbles), though perhaps not very tough
(but rather brittle), may also be of use in another maybe equally important
context, cf. [22]. Moreover, the reader is also encouraged to see the book
by Okatsaki [23], where grain growth processes in ceramics (BaTiO3) have
been analyzed and where the obtained asymptotics conform very much to
ours (for them the exponent p = 1/4 is quite often fulfilled). Last but not
least according to [13] one may think about possible applications in mag-
netic (recording) tapes, in which certain (cylindrical) microdomains emerge,
e.g. in garnet or ferrite tapes typically about a few um thick [24].

A.G. wishes to thank D.E. Czekaj and M. Cieplak for providing some
useful informations about specific systems that may exemplify our study.

Appendix

It is not exclusively an intellectual puzzle, if one tried to argue, what
would happen, when a formal substitution of d = 3 by 2 < dy < 3 would be
realized, where d; stands for a fractal dimension. We might even propose
to choose d;y ~ 2.47, which was pointed out as a very accurate numeri-
cal estimate by Borkovec et al. [25] as being very characteristic of some
almost perfect close-packings of Apollonian type, generally called the ob-
sculatory packings. The Apollonian sphere-packing could be a model of a
porous fine-grained microstructure under evolution, or for an Apollonian-
like soap froths, met sometimes in nature, cf. Ref. [1] by Mandelbrot in [25],
or [26], and Ref. [32] therein. One can quite generally think about a defects-
containing partly ordered system, e.g. that of percolation-type, not forget-
ting, however, that this notion is preferred to be used for amorphous media;
by the way, note that for 3D-percolation a typical value of df ~ 2.6, cf. [27],
and references therein. From the physical point of view, the problem of
sphere-packing in a three-dimensional space was probably first studied by
Lieb and Lebowitz [28] in a context of fundamental constitution of the mat-
ter organisation, being a thermodynamical system composed of electrons
and nuclei (perhaps, if one wished to be in agreement with history of nat-
ural sciences, one would even be encouraged to move back to R. Descartes,
who wanted to examine ‘the disposition of matter in the solar system and its
environs’, i.e., to propose a quasi-cellular as well as voids-containing model
of the large-scale matter organisation in the universe [29]). If the above
is taken into account, the relation (28) must be replaced by the similarity
relation

(r(t)) ~ () /4 ~ N1 (1), (35)
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with the Hausdorff-Besikovitch dimension d; ~ 2.47 [25], which yields a
somewhat different value for the growth exponent u, namely

3

= — x~0.3. 36
v (36)

I

That means, that under some effective geometrical close-packing conditions
the average radius (characteristic linear quantity) of the Apollonian gasket
grows faster with time than in the afore presented standard case, cf. the
relation (29), i.e.

(r(t)) ~t*2, (37)

roughly; here, the exponent y = 0.3 may probably be a first signature of
the cellular system auto-separation or formation of (micro)voids, cf. [30] and
references therein, that would facilitate the grain-growth or the evolution of
bubbles-containing system. Notice, however, that the condition (26) has to
be replaced by a weaker (limiting) one, namely

Jim V(1) = V(0), (39)
which by the way stands for completeness condition for the osculatory pack-
ings [31]. This remains an open question: Whether the natural close-packing
concept could be proposed as a way of relaxing the condition (26), which in
reality may easily be violated, e.g. by exerting, or even taking into account,
a small mechanical stress on the system as a whole (or inside the system).
The argumentation may also be of use while studying statistical proper-
ties of focal conic textures of smectic liquid crystals of type A, cf. [32]; also
soap froths belong to the same category of patterns. Some relation of the
presented problem to Moon craters’ formation as well as to the evolution
of Earth-impacting meteorites would be anticipated [13]. For them some
Apollonian-like structural arrangement appears to be always a key feature.
Some doubts may arise while asking whether an Apollonian grain, or
simply the Apollonian gasket (maybe a “percolated grain” too?), even under
growth, may solely be determined by a single fractal dimension, representing
its volumetric (or mass) characteristics. Such a question can also be posed
in our context, since after readily performing the differentiation in (2), one
automatically shows up the two basic signatures of the mechanism of the
evolution in question. After so doing, one immediately notices a curvature-
dependent part of the mechanism proportional to Uﬁl/3f(v, t), and because
v oc 73, it is proportional to (1/r) x f(r3,t), where certainly r = r(¢) and
v = v(t). For the ‘fractal-case’ one should formally replace 3 by dy, but
nevertheless the last equality holds also for this case. In consequence, one
may recognize that every subtleness being assigned to a curvature change
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may also change the overall system’s behavior. But Apollonian gaskets seem
to have quite typical curvature behavior, they are mass fractals rather than
surface fractals, so that we are likely to presume quite trivial surface char-
acteristics of them, ¢f. discussions about fractal characteristics for soil (and,
related) systems, or for some polymeric crystals, revealed mostly by the
X-ray scattering method [33]. In short, the single fractal characteristics, dy,
would probably suffice at least in the first attempt towards modelling the
evolution of self-similar close-packings.
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