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KINETICS OF THREE-DIMENSIONALNORMAL GRAIN GROWTH�M. Niemie
Institute of Physi
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s, Silesia UniversityUniwersyte
ka 4, 40-007 Katowi
e, Polande-mail: lu
zka�us.edu.pl(Re
eived November 21, 2000)Kineti
s of three-dimensional normal grain growth and related pro
esses(e.g., soap froth evolutions) des
ribed by the Mulheran�Harding model isstudied. The model is represented by a di�usion equation with the grain�size�dependent di�usion 
oe�
ient. The equation is solved for an arbitraryinitial distribution of grain sizes. It is proved that asymptoti
 kineti
s donot depend on the initial state.PACS numbers: 05.40.�a, 64.60.�i, 81.10.Jt1. Introdu
tionThroughout this study, we wish to reveal kineti
 e�e
ts 
hara
teristi
of the so-
alled normal grain growth [1, 2℄. One may ask: Whi
h are thebasi
 (kineti
) signatures of the Normal Grain Growth (NGG) and why isthe pro
ess of a 
ertain importan
e? To answer at least the �rst question,one may start from a set of simple observations of the pro
ess of interestlooking 
arefully at its temporal behavior. First, one 
an observe that the� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000. (581)
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zkanumber of grains 
onstituting the system de
reases with time. Se
ond, theaverage size of the grain in
reases with time. Another qualitative observationassigned to the NGG states that it passes quite smoothly over all stagesthat it meets on its way. One 
ould say that the evolution is realized in auniform manner. Moreover, it 
an naturally be des
ribed by zero or Diri
hletboundary 
onditions. Mathemati
ally speaking, su
h 
onditions give notoleran
e for existen
e of grains of zero as well as of in�nite sizes. Theyassure the pro
ess as being realized in the so-
alled normal regime, withno re-nu
leation as well as giants' domination events. Physi
ally speaking,in turn, one may expe
t some abnormalities while more 
losely inspe
tingthe growing 
onditions. On the level of a statisti
al-me
hani
al des
riptionof the phenomenon they are mostly subje
ted to some violation of eitherboundary 
onditions or when one is 
apable of keeping the system in theregime of preservation of its total volume [3, 4℄.To understand the driving me
hanism(s) of the NGG, one is kindly sentto have a look at [5℄. For the purpose of our des
ription we would like to statethat there are a few types of for
es driving the system and/or damping itsevolution. Among several types of for
es driving the system let us mentiona deterministi
 one, very mu
h related to the surfa
e tension e�e
t (forbubbles, with a pressure di�eren
e) and named the 
apillary for
e. It isknown [6℄ that this for
e may readily be a

ompanied by material density�u
tuations present in the system. The for
es that try to damp the systemevolution are 
alled the drag (�damping�) for
es, among whi
h the Zenerfor
e, due to pinning, as well as the Mullins for
e, likely emerging in thehigh-temperature limit, 
an be mentioned [7℄. They are, however, not takeninto 
onsideration in the present study. Therefore the presented study 
anbe anti
ipated as some simpli�
ation of a real problem due to poly
rystalevolution; for realizing the simpli�ed me
hanism of the growing pro
ess, seeFig. 1 and have also a look at a mini-review [8℄.It is worth listing main types of a theoreti
al des
ription of the three-dimensional NGG kineti
s, whi
h is here of major interest. A

ording to [2℄,these are the following:(i) the topologi
al approa
h [9℄;(ii) the metri
 and 
ombined approa
h, whi
h may split into three sub-approa
hes:� the grain growth as a deterministi
 pro
ess, des
ribed by a 
on-tinuity equation [10℄;� the grain-di�usion approximation [11℄;� the sto
hasti
 des
ription [12℄.
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1Fig. 1. Two snapshots representing a possible lo
al s
enario of the Normal GrainGrowth taken at two su

essive time instants t1 and t2, in whi
h the 
ontent ofthe grain 1 has been absorbed by the grain 2, presumed that the grain 3 had tosurvive under su
h growing 
ir
umstan
es (t2 > t1). Some basi
 signatures of thepro
ess 
an be unders
ored: (i) neighboring 
rystallites 1, 2 and 3 pa
k entirely theavailable physi
al spa
e; (ii) the pro
ess seems to be e�
ient (
lose-pa
king, butnot of the Apollonian type, 
f. Appendix) and its prin
ipal driving for
e appearsto be the 
urvature-dependent 
apillary for
e; (iii) the grain boundaries undergo astrong �u
tuation e�e
t (see the 
orresponding double-arrows); (iv) the 
enters ofinertia of the 
rystallites seem to undergo at most a short-range di�usional motionand the pro
ess keeps on growing toward some in
rease of the average grain radius.There is a variety of papers that try to solve the basi
 kineti
 problemsrelated to the NGG phenomenon by means of 
omputer simulation te
h-niques, like [13,14℄, but their 
onne
tions to the grain growth or evolution ofpoly
rystals (bubbles) are unfortunately not very mu
h established yet [15℄.As seems to be known, the NGG pro
esses 
an be des
ribed by theirkineti
s, whi
h 
an be best seen while examining their asymptoti
 behaviorthough the obtained solutions are valid for the entire time domain. Thus,the goal of this paper is to reveal some 
hara
teristi
 kineti
 features ofthe NGG, mostly by inspe
ting the temporal behavior of its main physi
alquantities like the number of grains 
onstituting the system as well as theiraverage radius [16℄.The paper is organized as follows. In the next se
tion we brie�y re
allthe Mulheran�Harding (M�H) model1, whi
h stands for a random walk ap-proximation of the NGG pro
ess, with some emphasis that the random walkis realized in the spa
e of grain sizes. In Se
tion 3, we provide a sket
h ofthe method of a formal solution of the M�H model generally based upon themethod of separation of variables. We also present expli
itly the propagatorof the system evolution, whi
h 
ontains a possibility of in
luding arbitrarypres
ribed initial state f(v; 0). Then, in Se
tion 4 we arrive at the mostinteresting asymptoti
s of the model whi
h appears to be 
onsistent with1 It would perhaps be equally well named the Mulheran�Harding�Louat model be
auseLouat 
ontributed �rst to this issue [10℄, and solved the problem in a one-dimensional
ase.
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s, though they do not mention expli
itly how do theasymptoti
s depend upon f(v; 0), if this is the 
ase. We �nish the paper bysending a �nal address and preparing a quite re
ent list of literature, alsoin
orporating some links to appli
ational aspe
ts of our study, 
f. Appendixfor having a wider outlook.2. Mulheran�Harding modelIn the M�H model it has been argued [10,11,16℄ that the grain size- andtime-dependent evolution of the system satis�es the 
ontinuity equation ofdi�usion type, namely,��tf(v; t) = � ��v j(v; t) = D0 �2�v2 v2=3f(v; t); v 2 [0;1); (1)where v is a volume of a grain, D0 is a 
onstant representing a random walkbehavior in grain growth (we 
hoose D0 � 1 be
ause it enters only into theprodu
t D0t leading to the res
aling of time t), f(v; t) is the distributionfun
tion of grains (bubbles) at time t, i.e., f(v; t)dv is a relative number ofgrains of sizes in the volume range [v; v+dv℄. The �ux j(v; t) takes the formj(v; t) = �D0 ��v v2=3f(v; t): (2)In this model it is assumed that the �ux j(v; t) is proportional to the 
hangeof number of parti
les on the surfa
e v2=3 of the grain. Unfortunately, themi
ros
opi
al justi�
ation of the M�H model does not exist. Nevertheless,it des
ribes quite well kineti
s of a 
ertain 
lass of grain-growth pro
esses.Eq. (1) is 
ompleted by the following 
onditions [10, 16℄:(a) The initial distribution of grains,f(v; 0) = f0(v); (3)where f0(v) is a given fun
tion.(b) The boundary 
onditions,f(0; t) = f(1; t) = 0: (4)They signify that the number of grains of zero volume as well as ofin�nite volume at arbitrary time is zero. The former means that theboundary v = 0 is absorbing. The latter is natural and minimal forexisting statisti
al moments of the distribution f(v; t).
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on
erning the grain growth pro
ess is to deter-mine the solution f(v; t) of (1) with the 
onditions (3) and (4). The relationbetween the distribution f(v; t) at the instant t and the distribution f(v; s)at the earlier instant s de�nes an evolution operator Û(t; s) via the formalequality f(v; t) = Û(t; s)f(v; s); t � s: (5)The evolution operator Û(t; s) is an integral operator given by the relationf(v; t) = 1Z0 U(v; tjw; s)f(w; s)dw; (6)where U(v; tjw; s) is an integral kernel of the operator Û(t; s). The fun
tion(or more pre
isely the distribution) U(v; tjw; s) is 
alled a propagator andhas the following propertiesU(v; tjw; s) = 1Z0 U(v; tjz; �)U(z; � jw; s)dz; t � � � s; (7)limt!sU(v; tjw; s) = Æ(v � w) (8)whi
h follow from the equality (6). What we need is in fa
t the propagatorfor the parti
ular time s, namely, for the initial time s = 0. Then (6) isgiven by f(v; t) = 1Z0 U(v; tjw; 0)f(w; 0)dw (9)and it is su�
ient for solving Eq. (1) with the initial 
ondition (3).To �nd the propagator we assume thatf(v; t) = 1Z0 e��tG�(v)d�; (10)where G�(v) is an unknown fun
tion of two variables � and v. The repre-sentation (10) is the version of the method of separation of variables in the
ase when the spe
trum � of the di�usion operator in (1) is 
ontinuous.
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zkaFrom (1) and (10) it follows that G�(v) is a solution to the ordinarydi�erential equation of the se
ond order, namely,v2=3G00�(v) + 43v�1=3G0�(v) � 29v�4=3G�(v) = ��G�(v); (11)where the prime denotes a derivative with respe
t to v. Eq. (11) 
an beredu
ed to a simpler form by introdu
ing the new variabley = v2=3: (12)Let us de�ne a new fun
tion F�(y) by the relationF�(y) = G�(v): (13)In 
onsequen
e, Eq. (11) 
an be rewritten in terms of the new fun
tion F�(y)as follows y2F 00� (y) + 32yF 0�(y) +�94�y2 � 12�F�(y) = 0: (14)It is the Bessel equation [17℄, the solutions of whi
h are well known. In our
ase, the solution has the form [17℄F�(y) = G�(v) = v�1=6C(�) J3=4�32p� v2=3� ; (15)where J�(x) stands for the Bessel fun
tion [18℄. The `
onstant' of integrationC(�) is determined by the initial 
ondition (3). Now, using the same methodas in [4℄, one readily �nds for the propagator the expli
it resultU(v; tjw; 0) = 3v�1=6w1=24t exp "�9(v4=3 + w4=3)16t # I3=4 9(vw)2=38t ! ; (16)where I�(x) is the modi�ed Bessel fun
tion [18℄. Hen
e, Eq. (9) with thepropagator (16) is a solution of (1) for an arbitrary initial distribution f(v; 0)of the grains. It is worth to note that the propagator (16) is not symmetri
under the transformation v $ w. It is in 
lear 
ontrast to the 
ase 
onsideredin [4℄, where a slightly di�erent model des
ribing the phase transformationhas been analyzed.
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ess des
ribed by (1) 
anbe obtained from the representation (9) of the solution of (1). Firstly, let us
onsider the zero-order moment, designated by N(t), namelyN(t) = 1Z0 f(v; t)dv (17)whi
h is the relative number of grains at the instant t, 
f. statements beneathEq. (1). Inserting (9), 
ompleted by (16), into (17) and integrating it overthe variable v yields N(t) = 4�3=4(t)3� (3=4) 1Z0 F (w; t)dw; (18)where F (w; t) = we��(t)w4=3M�1; 7=4;�(t)w4=3� f(w; 0) (19)and �(t) = 916t : (20)The fun
tion M(a; b; z) is the 
on�uent hypergeometri
 (Kummer) fun
tionand � (z) is the Euler gamma fun
tion [18℄.Now, we prove that for long time, t� 1, the asymptoti
sN(t) � t�3=4 (21)holds, independently on the initial distribution f(v; 0) of the grains, whi
hmeans, that some algebrai
 fall of the total number of grains (bubbles) isobserved. Indeed, from the de�nition of the Kummer fun
tion [18℄ it followsthat M (1; 7=4; z) � M (1; 1; z) � ez (22)and therefore F (w; t) � wf(w; 0) (23)for any time t. It enables us to exploit the Lebesgue's dominated 
onvergen
etheorem [19℄, namely,limt!124 1Z0 F (w; t)dw35 = 1Z0 h limt!1F (w; t)i dw: (24)
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ause limt!1 F (w; t) exists, the fun
tion N(t) behaves asymptoti
ally asN(t) � �3=4(t) � t�3=4. It 
ompletes the proof.The next important 
hara
teristi
s of the pro
ess is the average value ofvolume of the single grain. It is de�ned by the relationhv(t)i = 1R0 vf(v; t)dv1R0 f(v; t)dv : (25)Using (9) and (16), one 
an show by an expli
it evaluation of the integralsthat the average total volume V (t) of the system is preserved in the 
ourseof time, i.e. V (t) = 1Z0 vf(v; t)dv = 1Z0 vf(v; 0)dv = V (0): (26)In 
onsequen
e, the average grain volume is 
losely related to evolution ofthe average number of grains,hv(t)i = V (0)N�1(t); (27)
f. (17) and (26), so that a quantitative volumetri
 �fragmentation� relation
an be obtained this way. Be
ause the average volume hv(t)i of the singlegrain is proportional to the third power2 of its average radius hr(t)i, thereforehr(t)i � hv(t)i1=3 � N�1=3(t): (28)Independently of the initial 
onditions, the average radius of the grains dis-plays at large times the power-law dependen
e, namelyhr(t)i � t� (29)with the exponent � = 1=4.From (18) and more expli
itly from (21) it is seen that the average num-ber of grains drops with time. We observe that, by integrating (1) over thephase spa
e v 2 [0;1), the 
hange of the grain number is related to the �uxa
ross the absorbing boundary at v = 0,dN(t)dt = j(0; t) < 0 (30)2 A dis
ussion of 
onsidering the (average) grain as a non-Eu
lidean obje
t of a 
ertainfra
tal dimension df is left for the Appendix.
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s of Three-Dimensional Normal Grain Growth 589(the total �ux at in�nity j(1; t) = 0). So, there are less and less grainssin
e in�nitesimally small grains disappear atta
hing some bigger ones.Now, let us present examples of the grain distributions. E.g., let usassume that initially at t = 0 there are N0 grains ea
h of non-zero volumev0. Hen
e, the total volume of the system is V (0) = v0N0 (see (26)) and theinitial distribution f(v; 0) readsf(v; 0) = N0Æ(v � v0) = V (0)v0 Æ(v � v0); (31)where Æ(x) denotes the Dira
 delta distribution. In this 
ase one getsf(v; t) = f1(v; t) = N0U(v; tjv0; 0) (32)and the solution of the problem (1)�(4) is expressed by the well-known fun
-tions.In the papers [10, 11℄, only the parti
ular solution of (1) has been pre-sented. It readsf(v; t) = f2(v; t) � t�7=4v1=3 exp"�9v4=316t # : (33)This solution 
an be obtained for a spe
ial initial distribution. We haveguessed the fun
tion f(v; 0) whi
h readsf(v; 0) = V (0)v Æ(v); (34)where V (0) is the average total volume of the system, 
f. (26). Indeed,let us insert this distribution to (9), represent the modi�ed Bessel fun
tionI3=4(z) in (16) as a power series with respe
t to the argument z [18℄ and usethe de�nition of the Dira
 delta distribution. Then one obtains (33). Theinitial 
ondition (34) is rather a non-typi
al distribution. For it, the initialmean number of grains N(0) is in�nite and the initial mean volume of thesingle grain hv(0)i is zero. On the other hand, the initial distribution (31)gives as a result a �nite N(0) and a non-zero value of hv(0)i. Moreover, theboundary 
ondition (4) is ful�lled for (31) but not for (34). It implies thatthe value of the fun
tion f2(v; t) for v = 0 suddenly jumps from in�nity tozero at in�nitesimally small time, i.e., f2(v = 0; t = 0) = 1 and f2(v =0; t > 0) = 0. It is in
onsistent and unphysi
al. Nevertheless, from themathemati
al point of view, the solution (33) is 
orre
t. The 
omparisonof the distributions (32) and (33) is shown in Figs 2 and 3 at two variousinstants. The normalization 
onstants of two distributions have been 
hosenin su
h a way that the average total volume (26) is the same in both 
ases.
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zkaOne 
an noti
e that in the 
ase of the M�H initial 
ondition, there area greater number of smaller grains than for (32) and a smaller number ofgreater grains than for (32). It seems to be obvious be
ause the mean volumeof both systems is the same.
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Fig. 2. The distribution fun
tion f(v) = f(v; t = 1) of grains for two variousinitial 
onditions: for the Mulheran�Harding initial distribution (34) and for theDira
-delta distribution (31) with v0 = 1. For both systems the mean total volumeV (t) = V (0) = 100.
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Fig. 3. Same as in Fig. 2 but taken at the later moment t = 1:5.It turns out that the asymptoti
 kineti
s (like � = 1=4 in (29)) ob-tained above di�ers distin
tly from the standard or normal 
ase (for whi
hhr(t)i / t1=2 and whi
h has been also got by Louat [10℄ for one-dimensionalsystems). It is also in disagreement with �ndings of 
omputer simula-tions [14℄ for two-dimensional systems. It is not a surprise be
ause exponentslike � depend on the dimension of the system as well as on me
hanisms taken(or not taken) into a

ount in modelling of the growth phenomena.
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s of Three-Dimensional Normal Grain Growth 5915. Final remarksWe have solved the Mulheran-Harding model for an arbitrary initial dis-tribution of the grain sizes, see (9), (16), (18) and (26)�(28). It allows, infa
t, to investigate the in�uen
e of the initial preparation of the system onits later evolution, 
f. [20℄. Con
erning the very basi
s of the NGG kineti
sof the three-dimensional system as well as soap froth3 evolution, one maystate the following:(1) The pro
ess under study 
an be treated as the random walk in thespa
e of grain sizes. However, the distribution fun
tion is not normal-ized as it does in the 
ase of di�usion motion of the Brownian parti
le.In the 
ase 
onsidered, the �rst statisti
al moment is 
onserved in time,see (26).(2) In the asymptoti
 (late times) regime, the evolution does not dependupon the pres
ribed initial state. It resembles the ergodi
 behavior ofa 
lass of standard sto
hasti
 pro
esses.(3) In the non-asymptoti
 regime, one may expe
t some di�eren
es be-tween various pres
ribed initial 
onditions (in the early times limit,for example), but further the pro
ess goes smoothly towards some vis-ible in
rease of the average grain size [12℄.(4) If some 
onditions of the NGG, i.e. the 
onstan
y of average totalvolume or the pres
ribed boundary (Diri
hlet) 
ondition(s), are vio-lated, the system is supposed to enter the so-
alled abnormal regime,
f. [1,7℄. It is also known that the abnormality may be 
aused by, e.g.,preparing a spe
ial initial state of the grain growth pro
ess in stainlesssteels, when (indire
tly) post-re
rystallization strains e�e
t on the mi-
rostru
ture as well as the grain misorientation texture, so that somein
orporation of su
h a behavior would 
ertainly make the modellingmore advantageous as well as appli
able to poly
rystals [21℄.Why is the kineti
 study of some importan
e? We prefer to make a re-sponse to the posed question just by re
alling one example. The example
on
erns the bumpers of 
ars, and one 
an think of the pro
ess of 
astingthe bumper stru
ture as being of NGG type (metalli
 soap froths), and onemight imagine that the evolution will go up to the large times regime. But itmay also be stopped somehow arti�
ially in some earlier time domain, so that3 Noti
e that in our model no expli
it notion of texture and/or 
rystallographi
(mis)orientations, very 
hara
teristi
 of poly
rystals but 
learly absent in soap froths,has appeared.
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ture will be a 
ertain result thereof. Fine-graining typi-
ally implies that the stru
ture 
an be me
hani
ally more robust, whereas astru
ture 
ontaining bigger grains (bubbles), though perhaps not very tough(but rather brittle), may also be of use in another maybe equally important
ontext, 
f. [22℄. Moreover, the reader is also en
ouraged to see the bookby Okatsaki [23℄, where grain growth pro
esses in 
erami
s (BaTiO3) havebeen analyzed and where the obtained asymptoti
s 
onform very mu
h toours (for them the exponent � = 1=4 is quite often ful�lled). Last but notleast a

ording to [13℄ one may think about possible appli
ations in mag-neti
 (re
ording) tapes, in whi
h 
ertain (
ylindri
al) mi
rodomains emerge,e.g. in garnet or ferrite tapes typi
ally about a few �m thi
k [24℄.A.G. wishes to thank D.E. Czekaj and M. Cieplak for providing someuseful informations about spe
i�
 systems that may exemplify our study.AppendixIt is not ex
lusively an intelle
tual puzzle, if one tried to argue, whatwould happen, when a formal substitution of d = 3 by 2 < df < 3 would berealized, where df stands for a fra
tal dimension. We might even proposeto 
hoose df ' 2:47, whi
h was pointed out as a very a

urate numeri-
al estimate by Borkove
 et al. [25℄ as being very 
hara
teristi
 of somealmost perfe
t 
lose-pa
kings of Apollonian type, generally 
alled the ob-s
ulatory pa
kings. The Apollonian sphere-pa
king 
ould be a model of aporous �ne-grained mi
rostru
ture under evolution, or for an Apollonian-like soap froths, met sometimes in nature, 
f. Ref. [1℄ by Mandelbrot in [25℄,or [26℄, and Ref. [32℄ therein. One 
an quite generally think about a defe
ts-
ontaining partly ordered system, e.g. that of per
olation-type, not forget-ting, however, that this notion is preferred to be used for amorphous media;by the way, note that for 3D-per
olation a typi
al value of df ' 2:6, 
f. [27℄,and referen
es therein. From the physi
al point of view, the problem ofsphere-pa
king in a three-dimensional spa
e was probably �rst studied byLieb and Lebowitz [28℄ in a 
ontext of fundamental 
onstitution of the mat-ter organisation, being a thermodynami
al system 
omposed of ele
tronsand nu
lei (perhaps, if one wished to be in agreement with history of nat-ural s
ien
es, one would even be en
ouraged to move ba
k to R. Des
artes,who wanted to examine `the disposition of matter in the solar system and itsenvirons', i.e., to propose a quasi-
ellular as well as voids-
ontaining modelof the large-s
ale matter organisation in the universe [29℄). If the aboveis taken into a

ount, the relation (28) must be repla
ed by the similarityrelation hr(t)i � hv(t)i1=df � N�1=df (t); (35)
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h dimension df ' 2:47 [25℄, whi
h yields asomewhat di�erent value for the growth exponent �, namely� = 34df � 0:3: (36)That means, that under some e�e
tive geometri
al 
lose-pa
king 
onditionsthe average radius (
hara
teristi
 linear quantity) of the Apollonian gasketgrows faster with time than in the afore presented standard 
ase, 
f. therelation (29), i.e. hr(t)i � t0:3; (37)roughly; here, the exponent � = 0:3 may probably be a �rst signature ofthe 
ellular system auto-separation or formation of (mi
ro)voids, 
f. [30℄ andreferen
es therein, that would fa
ilitate the grain-growth or the evolution ofbubbles-
ontaining system. Noti
e, however, that the 
ondition (26) has tobe repla
ed by a weaker (limiting) one, namelylimt!1V (t) = V (0); (38)whi
h by the way stands for 
ompleteness 
ondition for the os
ulatory pa
k-ings [31℄. This remains an open question: Whether the natural 
lose-pa
king
on
ept 
ould be proposed as a way of relaxing the 
ondition (26), whi
h inreality may easily be violated, e.g. by exerting, or even taking into a

ount,a small me
hani
al stress on the system as a whole (or inside the system).The argumentation may also be of use while studying statisti
al proper-ties of fo
al 
oni
 textures of sme
ti
 liquid 
rystals of type A, 
f. [32℄; alsosoap froths belong to the same 
ategory of patterns. Some relation of thepresented problem to Moon 
raters' formation as well as to the evolutionof Earth-impa
ting meteorites would be anti
ipated [13℄. For them someApollonian-like stru
tural arrangement appears to be always a key feature.Some doubts may arise while asking whether an Apollonian grain, orsimply the Apollonian gasket (maybe a �per
olated grain� too?), even undergrowth, may solely be determined by a single fra
tal dimension, representingits volumetri
 (or mass) 
hara
teristi
s. Su
h a question 
an also be posedin our 
ontext, sin
e after readily performing the di�erentiation in (2), oneautomati
ally shows up the two basi
 signatures of the me
hanism of theevolution in question. After so doing, one immediately noti
es a 
urvature-dependent part of the me
hanism proportional to v�1=3f(v; t), and be
ausev / r3, it is proportional to (1=r) � f(r3; t), where 
ertainly r � r(t) andv � v(t). For the `fra
tal-
ase' one should formally repla
e 3 by df , butnevertheless the last equality holds also for this 
ase. In 
onsequen
e, onemay re
ognize that every subtleness being assigned to a 
urvature 
hange
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zkamay also 
hange the overall system's behavior. But Apollonian gaskets seemto have quite typi
al 
urvature behavior, they are mass fra
tals rather thansurfa
e fra
tals, so that we are likely to presume quite trivial surfa
e 
har-a
teristi
s of them, 
f. dis
ussions about fra
tal 
hara
teristi
s for soil (and,related) systems, or for some polymeri
 
rystals, revealed mostly by theX-ray s
attering method [33℄. In short, the single fra
tal 
hara
teristi
s, df ,would probably su�
e at least in the �rst attempt towards modelling theevolution of self-similar 
lose-pa
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