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KINETICS OF THREE-DIMENSIONALNORMAL GRAIN GROWTH�M. NiemieInstitute of Physis, Opole UniversityOleska 48, 45-052 Opole, Polande-mail: mariusz.niemie�uni.opole.plA. GadomskiInstitute of Mathematis and PhysisUniversity of Tehnology and Agriultureal. S. Kaliskiego 7, 85-796 Bydgoszz, Polande-mail:agad�atr.bydgoszz.pland J. �uzkaInstitute of Physis, Silesia UniversityUniwersyteka 4, 40-007 Katowie, Polande-mail: luzka�us.edu.pl(Reeived November 21, 2000)Kinetis of three-dimensional normal grain growth and related proesses(e.g., soap froth evolutions) desribed by the Mulheran�Harding model isstudied. The model is represented by a di�usion equation with the grain�size�dependent di�usion oe�ient. The equation is solved for an arbitraryinitial distribution of grain sizes. It is proved that asymptoti kinetis donot depend on the initial state.PACS numbers: 05.40.�a, 64.60.�i, 81.10.Jt1. IntrodutionThroughout this study, we wish to reveal kineti e�ets harateristiof the so-alled normal grain growth [1, 2℄. One may ask: Whih are thebasi (kineti) signatures of the Normal Grain Growth (NGG) and why isthe proess of a ertain importane? To answer at least the �rst question,one may start from a set of simple observations of the proess of interestlooking arefully at its temporal behavior. First, one an observe that the� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (581)



582 M. Niemie, A. Gadomski, J. �uzkanumber of grains onstituting the system dereases with time. Seond, theaverage size of the grain inreases with time. Another qualitative observationassigned to the NGG states that it passes quite smoothly over all stagesthat it meets on its way. One ould say that the evolution is realized in auniform manner. Moreover, it an naturally be desribed by zero or Dirihletboundary onditions. Mathematially speaking, suh onditions give notolerane for existene of grains of zero as well as of in�nite sizes. Theyassure the proess as being realized in the so-alled normal regime, withno re-nuleation as well as giants' domination events. Physially speaking,in turn, one may expet some abnormalities while more losely inspetingthe growing onditions. On the level of a statistial-mehanial desriptionof the phenomenon they are mostly subjeted to some violation of eitherboundary onditions or when one is apable of keeping the system in theregime of preservation of its total volume [3, 4℄.To understand the driving mehanism(s) of the NGG, one is kindly sentto have a look at [5℄. For the purpose of our desription we would like to statethat there are a few types of fores driving the system and/or damping itsevolution. Among several types of fores driving the system let us mentiona deterministi one, very muh related to the surfae tension e�et (forbubbles, with a pressure di�erene) and named the apillary fore. It isknown [6℄ that this fore may readily be aompanied by material density�utuations present in the system. The fores that try to damp the systemevolution are alled the drag (�damping�) fores, among whih the Zenerfore, due to pinning, as well as the Mullins fore, likely emerging in thehigh-temperature limit, an be mentioned [7℄. They are, however, not takeninto onsideration in the present study. Therefore the presented study anbe antiipated as some simpli�ation of a real problem due to polyrystalevolution; for realizing the simpli�ed mehanism of the growing proess, seeFig. 1 and have also a look at a mini-review [8℄.It is worth listing main types of a theoretial desription of the three-dimensional NGG kinetis, whih is here of major interest. Aording to [2℄,these are the following:(i) the topologial approah [9℄;(ii) the metri and ombined approah, whih may split into three sub-approahes:� the grain growth as a deterministi proess, desribed by a on-tinuity equation [10℄;� the grain-di�usion approximation [11℄;� the stohasti desription [12℄.
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1Fig. 1. Two snapshots representing a possible loal senario of the Normal GrainGrowth taken at two suessive time instants t1 and t2, in whih the ontent ofthe grain 1 has been absorbed by the grain 2, presumed that the grain 3 had tosurvive under suh growing irumstanes (t2 > t1). Some basi signatures of theproess an be undersored: (i) neighboring rystallites 1, 2 and 3 pak entirely theavailable physial spae; (ii) the proess seems to be e�ient (lose-paking, butnot of the Apollonian type, f. Appendix) and its prinipal driving fore appearsto be the urvature-dependent apillary fore; (iii) the grain boundaries undergo astrong �utuation e�et (see the orresponding double-arrows); (iv) the enters ofinertia of the rystallites seem to undergo at most a short-range di�usional motionand the proess keeps on growing toward some inrease of the average grain radius.There is a variety of papers that try to solve the basi kineti problemsrelated to the NGG phenomenon by means of omputer simulation teh-niques, like [13,14℄, but their onnetions to the grain growth or evolution ofpolyrystals (bubbles) are unfortunately not very muh established yet [15℄.As seems to be known, the NGG proesses an be desribed by theirkinetis, whih an be best seen while examining their asymptoti behaviorthough the obtained solutions are valid for the entire time domain. Thus,the goal of this paper is to reveal some harateristi kineti features ofthe NGG, mostly by inspeting the temporal behavior of its main physialquantities like the number of grains onstituting the system as well as theiraverage radius [16℄.The paper is organized as follows. In the next setion we brie�y reallthe Mulheran�Harding (M�H) model1, whih stands for a random walk ap-proximation of the NGG proess, with some emphasis that the random walkis realized in the spae of grain sizes. In Setion 3, we provide a sketh ofthe method of a formal solution of the M�H model generally based upon themethod of separation of variables. We also present expliitly the propagatorof the system evolution, whih ontains a possibility of inluding arbitrarypresribed initial state f(v; 0). Then, in Setion 4 we arrive at the mostinteresting asymptotis of the model whih appears to be onsistent with1 It would perhaps be equally well named the Mulheran�Harding�Louat model beauseLouat ontributed �rst to this issue [10℄, and solved the problem in a one-dimensionalase.



584 M. Niemie, A. Gadomski, J. �uzkathe M�H asymptotis, though they do not mention expliitly how do theasymptotis depend upon f(v; 0), if this is the ase. We �nish the paper bysending a �nal address and preparing a quite reent list of literature, alsoinorporating some links to appliational aspets of our study, f. Appendixfor having a wider outlook.2. Mulheran�Harding modelIn the M�H model it has been argued [10,11,16℄ that the grain size- andtime-dependent evolution of the system satis�es the ontinuity equation ofdi�usion type, namely,��tf(v; t) = � ��v j(v; t) = D0 �2�v2 v2=3f(v; t); v 2 [0;1); (1)where v is a volume of a grain, D0 is a onstant representing a random walkbehavior in grain growth (we hoose D0 � 1 beause it enters only into theprodut D0t leading to the resaling of time t), f(v; t) is the distributionfuntion of grains (bubbles) at time t, i.e., f(v; t)dv is a relative number ofgrains of sizes in the volume range [v; v+dv℄. The �ux j(v; t) takes the formj(v; t) = �D0 ��v v2=3f(v; t): (2)In this model it is assumed that the �ux j(v; t) is proportional to the hangeof number of partiles on the surfae v2=3 of the grain. Unfortunately, themirosopial justi�ation of the M�H model does not exist. Nevertheless,it desribes quite well kinetis of a ertain lass of grain-growth proesses.Eq. (1) is ompleted by the following onditions [10, 16℄:(a) The initial distribution of grains,f(v; 0) = f0(v); (3)where f0(v) is a given funtion.(b) The boundary onditions,f(0; t) = f(1; t) = 0: (4)They signify that the number of grains of zero volume as well as ofin�nite volume at arbitrary time is zero. The former means that theboundary v = 0 is absorbing. The latter is natural and minimal forexisting statistial moments of the distribution f(v; t).



Kinetis of Three-Dimensional Normal Grain Growth 5853. Propagator of evolutionA fundamental problem onerning the grain growth proess is to deter-mine the solution f(v; t) of (1) with the onditions (3) and (4). The relationbetween the distribution f(v; t) at the instant t and the distribution f(v; s)at the earlier instant s de�nes an evolution operator Û(t; s) via the formalequality f(v; t) = Û(t; s)f(v; s); t � s: (5)The evolution operator Û(t; s) is an integral operator given by the relationf(v; t) = 1Z0 U(v; tjw; s)f(w; s)dw; (6)where U(v; tjw; s) is an integral kernel of the operator Û(t; s). The funtion(or more preisely the distribution) U(v; tjw; s) is alled a propagator andhas the following propertiesU(v; tjw; s) = 1Z0 U(v; tjz; �)U(z; � jw; s)dz; t � � � s; (7)limt!sU(v; tjw; s) = Æ(v � w) (8)whih follow from the equality (6). What we need is in fat the propagatorfor the partiular time s, namely, for the initial time s = 0. Then (6) isgiven by f(v; t) = 1Z0 U(v; tjw; 0)f(w; 0)dw (9)and it is su�ient for solving Eq. (1) with the initial ondition (3).To �nd the propagator we assume thatf(v; t) = 1Z0 e��tG�(v)d�; (10)where G�(v) is an unknown funtion of two variables � and v. The repre-sentation (10) is the version of the method of separation of variables in thease when the spetrum � of the di�usion operator in (1) is ontinuous.



586 M. Niemie, A. Gadomski, J. �uzkaFrom (1) and (10) it follows that G�(v) is a solution to the ordinarydi�erential equation of the seond order, namely,v2=3G00�(v) + 43v�1=3G0�(v) � 29v�4=3G�(v) = ��G�(v); (11)where the prime denotes a derivative with respet to v. Eq. (11) an beredued to a simpler form by introduing the new variabley = v2=3: (12)Let us de�ne a new funtion F�(y) by the relationF�(y) = G�(v): (13)In onsequene, Eq. (11) an be rewritten in terms of the new funtion F�(y)as follows y2F 00� (y) + 32yF 0�(y) +�94�y2 � 12�F�(y) = 0: (14)It is the Bessel equation [17℄, the solutions of whih are well known. In ourase, the solution has the form [17℄F�(y) = G�(v) = v�1=6C(�) J3=4�32p� v2=3� ; (15)where J�(x) stands for the Bessel funtion [18℄. The `onstant' of integrationC(�) is determined by the initial ondition (3). Now, using the same methodas in [4℄, one readily �nds for the propagator the expliit resultU(v; tjw; 0) = 3v�1=6w1=24t exp "�9(v4=3 + w4=3)16t # I3=4 9(vw)2=38t ! ; (16)where I�(x) is the modi�ed Bessel funtion [18℄. Hene, Eq. (9) with thepropagator (16) is a solution of (1) for an arbitrary initial distribution f(v; 0)of the grains. It is worth to note that the propagator (16) is not symmetriunder the transformation v $ w. It is in lear ontrast to the ase onsideredin [4℄, where a slightly di�erent model desribing the phase transformationhas been analyzed.



Kinetis of Three-Dimensional Normal Grain Growth 5874. Analysis of solutionSome general properties of the grain growth proess desribed by (1) anbe obtained from the representation (9) of the solution of (1). Firstly, let usonsider the zero-order moment, designated by N(t), namelyN(t) = 1Z0 f(v; t)dv (17)whih is the relative number of grains at the instant t, f. statements beneathEq. (1). Inserting (9), ompleted by (16), into (17) and integrating it overthe variable v yields N(t) = 4�3=4(t)3� (3=4) 1Z0 F (w; t)dw; (18)where F (w; t) = we��(t)w4=3M�1; 7=4;�(t)w4=3� f(w; 0) (19)and �(t) = 916t : (20)The funtion M(a; b; z) is the on�uent hypergeometri (Kummer) funtionand � (z) is the Euler gamma funtion [18℄.Now, we prove that for long time, t� 1, the asymptotisN(t) � t�3=4 (21)holds, independently on the initial distribution f(v; 0) of the grains, whihmeans, that some algebrai fall of the total number of grains (bubbles) isobserved. Indeed, from the de�nition of the Kummer funtion [18℄ it followsthat M (1; 7=4; z) � M (1; 1; z) � ez (22)and therefore F (w; t) � wf(w; 0) (23)for any time t. It enables us to exploit the Lebesgue's dominated onvergenetheorem [19℄, namely,limt!124 1Z0 F (w; t)dw35 = 1Z0 h limt!1F (w; t)i dw: (24)



588 M. Niemie, A. Gadomski, J. �uzkaBeause limt!1 F (w; t) exists, the funtion N(t) behaves asymptotially asN(t) � �3=4(t) � t�3=4. It ompletes the proof.The next important harateristis of the proess is the average value ofvolume of the single grain. It is de�ned by the relationhv(t)i = 1R0 vf(v; t)dv1R0 f(v; t)dv : (25)Using (9) and (16), one an show by an expliit evaluation of the integralsthat the average total volume V (t) of the system is preserved in the ourseof time, i.e. V (t) = 1Z0 vf(v; t)dv = 1Z0 vf(v; 0)dv = V (0): (26)In onsequene, the average grain volume is losely related to evolution ofthe average number of grains,hv(t)i = V (0)N�1(t); (27)f. (17) and (26), so that a quantitative volumetri �fragmentation� relationan be obtained this way. Beause the average volume hv(t)i of the singlegrain is proportional to the third power2 of its average radius hr(t)i, thereforehr(t)i � hv(t)i1=3 � N�1=3(t): (28)Independently of the initial onditions, the average radius of the grains dis-plays at large times the power-law dependene, namelyhr(t)i � t� (29)with the exponent � = 1=4.From (18) and more expliitly from (21) it is seen that the average num-ber of grains drops with time. We observe that, by integrating (1) over thephase spae v 2 [0;1), the hange of the grain number is related to the �uxaross the absorbing boundary at v = 0,dN(t)dt = j(0; t) < 0 (30)2 A disussion of onsidering the (average) grain as a non-Eulidean objet of a ertainfratal dimension df is left for the Appendix.



Kinetis of Three-Dimensional Normal Grain Growth 589(the total �ux at in�nity j(1; t) = 0). So, there are less and less grainssine in�nitesimally small grains disappear attahing some bigger ones.Now, let us present examples of the grain distributions. E.g., let usassume that initially at t = 0 there are N0 grains eah of non-zero volumev0. Hene, the total volume of the system is V (0) = v0N0 (see (26)) and theinitial distribution f(v; 0) readsf(v; 0) = N0Æ(v � v0) = V (0)v0 Æ(v � v0); (31)where Æ(x) denotes the Dira delta distribution. In this ase one getsf(v; t) = f1(v; t) = N0U(v; tjv0; 0) (32)and the solution of the problem (1)�(4) is expressed by the well-known fun-tions.In the papers [10, 11℄, only the partiular solution of (1) has been pre-sented. It readsf(v; t) = f2(v; t) � t�7=4v1=3 exp"�9v4=316t # : (33)This solution an be obtained for a speial initial distribution. We haveguessed the funtion f(v; 0) whih readsf(v; 0) = V (0)v Æ(v); (34)where V (0) is the average total volume of the system, f. (26). Indeed,let us insert this distribution to (9), represent the modi�ed Bessel funtionI3=4(z) in (16) as a power series with respet to the argument z [18℄ and usethe de�nition of the Dira delta distribution. Then one obtains (33). Theinitial ondition (34) is rather a non-typial distribution. For it, the initialmean number of grains N(0) is in�nite and the initial mean volume of thesingle grain hv(0)i is zero. On the other hand, the initial distribution (31)gives as a result a �nite N(0) and a non-zero value of hv(0)i. Moreover, theboundary ondition (4) is ful�lled for (31) but not for (34). It implies thatthe value of the funtion f2(v; t) for v = 0 suddenly jumps from in�nity tozero at in�nitesimally small time, i.e., f2(v = 0; t = 0) = 1 and f2(v =0; t > 0) = 0. It is inonsistent and unphysial. Nevertheless, from themathematial point of view, the solution (33) is orret. The omparisonof the distributions (32) and (33) is shown in Figs 2 and 3 at two variousinstants. The normalization onstants of two distributions have been hosenin suh a way that the average total volume (26) is the same in both ases.



590 M. Niemie, A. Gadomski, J. �uzkaOne an notie that in the ase of the M�H initial ondition, there area greater number of smaller grains than for (32) and a smaller number ofgreater grains than for (32). It seems to be obvious beause the mean volumeof both systems is the same.
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Fig. 2. The distribution funtion f(v) = f(v; t = 1) of grains for two variousinitial onditions: for the Mulheran�Harding initial distribution (34) and for theDira-delta distribution (31) with v0 = 1. For both systems the mean total volumeV (t) = V (0) = 100.
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Fig. 3. Same as in Fig. 2 but taken at the later moment t = 1:5.It turns out that the asymptoti kinetis (like � = 1=4 in (29)) ob-tained above di�ers distintly from the standard or normal ase (for whihhr(t)i / t1=2 and whih has been also got by Louat [10℄ for one-dimensionalsystems). It is also in disagreement with �ndings of omputer simula-tions [14℄ for two-dimensional systems. It is not a surprise beause exponentslike � depend on the dimension of the system as well as on mehanisms taken(or not taken) into aount in modelling of the growth phenomena.



Kinetis of Three-Dimensional Normal Grain Growth 5915. Final remarksWe have solved the Mulheran-Harding model for an arbitrary initial dis-tribution of the grain sizes, see (9), (16), (18) and (26)�(28). It allows, infat, to investigate the in�uene of the initial preparation of the system onits later evolution, f. [20℄. Conerning the very basis of the NGG kinetisof the three-dimensional system as well as soap froth3 evolution, one maystate the following:(1) The proess under study an be treated as the random walk in thespae of grain sizes. However, the distribution funtion is not normal-ized as it does in the ase of di�usion motion of the Brownian partile.In the ase onsidered, the �rst statistial moment is onserved in time,see (26).(2) In the asymptoti (late times) regime, the evolution does not dependupon the presribed initial state. It resembles the ergodi behavior ofa lass of standard stohasti proesses.(3) In the non-asymptoti regime, one may expet some di�erenes be-tween various presribed initial onditions (in the early times limit,for example), but further the proess goes smoothly towards some vis-ible inrease of the average grain size [12℄.(4) If some onditions of the NGG, i.e. the onstany of average totalvolume or the presribed boundary (Dirihlet) ondition(s), are vio-lated, the system is supposed to enter the so-alled abnormal regime,f. [1,7℄. It is also known that the abnormality may be aused by, e.g.,preparing a speial initial state of the grain growth proess in stainlesssteels, when (indiretly) post-rerystallization strains e�et on the mi-rostruture as well as the grain misorientation texture, so that someinorporation of suh a behavior would ertainly make the modellingmore advantageous as well as appliable to polyrystals [21℄.Why is the kineti study of some importane? We prefer to make a re-sponse to the posed question just by realling one example. The exampleonerns the bumpers of ars, and one an think of the proess of astingthe bumper struture as being of NGG type (metalli soap froths), and onemight imagine that the evolution will go up to the large times regime. But itmay also be stopped somehow arti�ially in some earlier time domain, so that3 Notie that in our model no expliit notion of texture and/or rystallographi(mis)orientations, very harateristi of polyrystals but learly absent in soap froths,has appeared.



592 M. Niemie, A. Gadomski, J. �uzkaa �ne-grained struture will be a ertain result thereof. Fine-graining typi-ally implies that the struture an be mehanially more robust, whereas astruture ontaining bigger grains (bubbles), though perhaps not very tough(but rather brittle), may also be of use in another maybe equally importantontext, f. [22℄. Moreover, the reader is also enouraged to see the bookby Okatsaki [23℄, where grain growth proesses in eramis (BaTiO3) havebeen analyzed and where the obtained asymptotis onform very muh toours (for them the exponent � = 1=4 is quite often ful�lled). Last but notleast aording to [13℄ one may think about possible appliations in mag-neti (reording) tapes, in whih ertain (ylindrial) mirodomains emerge,e.g. in garnet or ferrite tapes typially about a few �m thik [24℄.A.G. wishes to thank D.E. Czekaj and M. Cieplak for providing someuseful informations about spei� systems that may exemplify our study.AppendixIt is not exlusively an intelletual puzzle, if one tried to argue, whatwould happen, when a formal substitution of d = 3 by 2 < df < 3 would berealized, where df stands for a fratal dimension. We might even proposeto hoose df ' 2:47, whih was pointed out as a very aurate numeri-al estimate by Borkove et al. [25℄ as being very harateristi of somealmost perfet lose-pakings of Apollonian type, generally alled the ob-sulatory pakings. The Apollonian sphere-paking ould be a model of aporous �ne-grained mirostruture under evolution, or for an Apollonian-like soap froths, met sometimes in nature, f. Ref. [1℄ by Mandelbrot in [25℄,or [26℄, and Ref. [32℄ therein. One an quite generally think about a defets-ontaining partly ordered system, e.g. that of perolation-type, not forget-ting, however, that this notion is preferred to be used for amorphous media;by the way, note that for 3D-perolation a typial value of df ' 2:6, f. [27℄,and referenes therein. From the physial point of view, the problem ofsphere-paking in a three-dimensional spae was probably �rst studied byLieb and Lebowitz [28℄ in a ontext of fundamental onstitution of the mat-ter organisation, being a thermodynamial system omposed of eletronsand nulei (perhaps, if one wished to be in agreement with history of nat-ural sienes, one would even be enouraged to move bak to R. Desartes,who wanted to examine `the disposition of matter in the solar system and itsenvirons', i.e., to propose a quasi-ellular as well as voids-ontaining modelof the large-sale matter organisation in the universe [29℄). If the aboveis taken into aount, the relation (28) must be replaed by the similarityrelation hr(t)i � hv(t)i1=df � N�1=df (t); (35)



Kinetis of Three-Dimensional Normal Grain Growth 593with the Hausdor��Besikovith dimension df ' 2:47 [25℄, whih yields asomewhat di�erent value for the growth exponent �, namely� = 34df � 0:3: (36)That means, that under some e�etive geometrial lose-paking onditionsthe average radius (harateristi linear quantity) of the Apollonian gasketgrows faster with time than in the afore presented standard ase, f. therelation (29), i.e. hr(t)i � t0:3; (37)roughly; here, the exponent � = 0:3 may probably be a �rst signature ofthe ellular system auto-separation or formation of (miro)voids, f. [30℄ andreferenes therein, that would failitate the grain-growth or the evolution ofbubbles-ontaining system. Notie, however, that the ondition (26) has tobe replaed by a weaker (limiting) one, namelylimt!1V (t) = V (0); (38)whih by the way stands for ompleteness ondition for the osulatory pak-ings [31℄. This remains an open question: Whether the natural lose-pakingonept ould be proposed as a way of relaxing the ondition (26), whih inreality may easily be violated, e.g. by exerting, or even taking into aount,a small mehanial stress on the system as a whole (or inside the system).The argumentation may also be of use while studying statistial proper-ties of foal oni textures of smeti liquid rystals of type A, f. [32℄; alsosoap froths belong to the same ategory of patterns. Some relation of thepresented problem to Moon raters' formation as well as to the evolutionof Earth-impating meteorites would be antiipated [13℄. For them someApollonian-like strutural arrangement appears to be always a key feature.Some doubts may arise while asking whether an Apollonian grain, orsimply the Apollonian gasket (maybe a �perolated grain� too?), even undergrowth, may solely be determined by a single fratal dimension, representingits volumetri (or mass) harateristis. Suh a question an also be posedin our ontext, sine after readily performing the di�erentiation in (2), oneautomatially shows up the two basi signatures of the mehanism of theevolution in question. After so doing, one immediately noties a urvature-dependent part of the mehanism proportional to v�1=3f(v; t), and beausev / r3, it is proportional to (1=r) � f(r3; t), where ertainly r � r(t) andv � v(t). For the `fratal-ase' one should formally replae 3 by df , butnevertheless the last equality holds also for this ase. In onsequene, onemay reognize that every subtleness being assigned to a urvature hange
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