ALPHA DECAY STUDIES OF TRANSLEAD NUCLEI AT THE PROTON DRIP LINE* **

J. UUSITALO^a, H. KETTUNEN^a, A.N. ANDREYEV^b, K. ESKOLA^c
P.T. GREENLEES^a, K. HELARIUTTA^a, M. HUYSE^b, P. JONES^a
R. JULIN^a, S. JUUTINEN^a, H. KANKAANPÄÄ^a, P. KUUSINIEMI^a
M. LEINO^a, M. MUIKKU^a, P. NIEMINEN^a, P. RAHKILA^a
K. VAN DE VEL^b AND P. VAN DUPPEN^b

^aDepartment of Physics, University of Jyväskylä FIN-40351, Jyväskylä, Finland ^bInstitut voor Kern- en Stralingsfysica, K. U. Leuven Leuven, Belgium ^cDept. of Physics, University of Helsinki FIN-00014 Helsinki, Finland

(Received November 28, 2000)

Extensive α -decay studies of the very neutron deficient isotopes ¹⁹¹Po, ¹⁹⁵Rn, and ¹⁹⁶Rn have been performed at the RITU gas-filled recoil separator. The recoil- α -(α) correlation technique and the α - γ coincidence technique have been utilized to unambiguously connect the observed α decays to proper nuclei. Illustrative examples on how the α -decay can yield spectroscopic information on the nuclei studied will be presented.

PACS numbers: 23.60.+e, 27.80.+w, 29.30.-h

1. Introduction

In this work evaporation residues from the heavy ion induced fusion reactions have been separated from the beam using the JYFL gas-filled recoil separator RITU. In addition to nuclear mass information, α -decay in the Pb region can provide important spectroscopic information on intruder states, shape coexistence and onset of deformation especially when fine structure is observed.

^{*} Presented at the XXXV Zakopane School of Physics "Trends in Nuclear Physics", Zakopane, Poland, September 5–13, 2000.

^{**} This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2000-2005 (Project No. 44875, Nuclear and Condensed Matter Programme at JYFL).

2. Alpha decay study of ¹⁹¹Po

In the work performed at JYFL [1–3] the neutron deficient ¹⁹¹Po isotope was studied utilizing α - γ coincidence technique. The first experiment to study the fine structure in the α -decay of ¹⁹¹Po was carried out using the fusion evaporation reaction 160 Dy $({}^{36}$ Ar, $5n)^{191}$ Po [1,2]. Later on a complementary experiment was performed using the reaction 142 Nd $(^{52}$ Cr.3n $)^{191}$ Po [3]. In these experiments two α -decaying isomeric states were observed with $E_{\alpha} = 7334(5)$ keV and $T_{1/2} = 22(1)$ ms $(I_{\alpha} = 77(3) \%)$ assigned to ¹⁹¹ Po and the other $E_{\alpha} = 7376(5)$ keV and $T_{1/2} = 93(3)$ ms $(I_{\alpha} = 50(3) \%)$ assigned to ^{191m}Po. In addition, α -decay lines with $E_{\alpha} = 6888(5)$ keV $(I_{\alpha} = 46(4) \%)$ and $E_{\alpha} = 6966(10)$ keV $(I_{\alpha} = 8(3) \%)$, feeding the γ decaying excited $\nu i_{13/2} \otimes [\pi(2p-2h)]_{0^+}$ and $\nu p_{3/2} \otimes [\pi(2p-2h)]_{0^+}$ states in 187g Pb and 187m Pb, respectively, were observed. In fact it turned out that the 6888 keV α -decay is unhindered (HF = 0.63) and the 7376 keV α -decay is strongly hindered (HF = 26). The detailed α -decay scheme for ¹⁹¹Po is shown in Fig. 1. An extensive discussion of the ¹⁹¹Po part of the scheme is presented in the references [1-3].

Fig. 1. Level scheme for ¹⁹¹Po and ¹⁹⁵Rn and observed hindrance factors HF.

3. Alpha decay study of ¹⁹⁶Rn and ¹⁹⁵Rn

Fusion evaporation reactions of the type ${}^{142}\mathrm{Nd}({}^{56}\mathrm{Fe}, xn){}^{198-x}\mathrm{Rn}$ were used to synthesize neutron deficient Rn isotopes [4]. Altogether 19 ER- α decay chains assigned to the ${}^{196}\mathrm{Rn}$ isotope were observed. For nine of the chains a full energy daughter decay was also found. The measured decay properties for the daughter activity $E_{\alpha} = 7167(11)$ keV and $T_{1/2} = (29^{+15}_{-8})$ ms point to ${}^{192}\mathrm{Po}$ for which $E_{\alpha} = 7167(7)$ keV and $T_{1/2} = 33.2(14)$ ms [5] have been reported. The decay properties of $E_{\alpha} = 7461(9)$ keV and $T_{1/2} = (4.4^{+1.3}_{-0.9})$ ms were determined for the isotope ¹⁹⁶Rn. These values are compatible with those reported in [6], where $E_{\alpha} = 7492(30)$ keV and $T_{1/2} = (3^{+7}_{-2})$ ms are given for ¹⁹⁶Rn.

Altogether seven $\text{ER} - \alpha_m - \alpha_d$ decay chains, where the mother activity $E_{\alpha} = 7555(13)$ keV and $T_{1/2} = (3^{+2}_{-1})$ ms was followed by daughter activity $E_{\alpha} = 6878(12)$ keV and $T_{1/2} = (110^{+70}_{-30})$ ms, were observed. In addition eleven $\text{ER} - \alpha_m - \alpha_d$ decay chains where the mother activity $E_{\alpha} = 7536(11)$ keV and $T_{1/2} = (6^{+3}_{-2})$ ms was followed by daughter activity $E_{\alpha} = 7331(11)$ keV and $T_{1/2} = (15^{+7}_{-3})$ ms, were found. Finally, three decay chains, where the mother activity $E_{\alpha} = 7355(20)$ keV and $T_{1/2} = (9^{+12}_{-4})$ ms was followed by an activity with $E_{\alpha} = 7364(20)$ keV and $T_{1/2} = (95^{+130}_{-60})$ ms, were identified. The measured decay properties for the daughter activities are compatible with those reported for ¹⁹¹Po (see above). Based on these the decay properties of $E_{\alpha} = 7555(11)$ keV and $T_{1/2} = (5^{+3}_{-2})$ ms (^{195m}Rn) and $E_{\alpha} = 7536(11)$ keV and $T_{1/2} = (6^{+3}_{-2})$ ms (^{195m}Rn) can be proposed to belong to the new nuclide ¹⁹⁵Rn.

4. Discussion

Through systematic study of α -decay hindrance factors HF and reduced widths δ^2 some structure information on the decaying states can be deduced. As can be seen from the level scheme (Fig. 1) although the α -decay energy of the $13/2^+$ isomeric state in ¹⁹¹Po is slightly higher than the decay energy of the $3/2^-$ ground state, its half-life is nearly 5 times longer. On the other hand, the existence of the unhindered (HF = 0.63) decay to the excited oblate $13/2^+$ state in ^{187g}Pb points to a deformed $13/2^+$ isomeric state in ¹⁹¹Po. This has been interpreted as a weak coupling of the odd neutron to an intruder deformed 0^+ state in the even–even core. The situation is completely different from the α -decay of the $3/2^-$ ground state in ¹⁹¹Po, where the feeding of the $3/2^-$ isomeric state and the excited $3/2^-$ state have equal strengths.

The hindrance factors determined for 195m Rn and 195g Rn lead to the conclusion that the α -decays occur between states of equal spin, parity and configuration. Thus the α -decay with the energy 7536 keV originates from the $3/2^-$ ground state of 195 Rn and the α -decay with the energy 7555 keV originates from the $13/2^+$ isomeric state of 195 Rn as illustrated in Fig. 1.

The reduced α -decay widths for neutron deficient even-mass Po, Rn and Ra isotopes, including ¹⁹⁶Rn studied in this work, are shown in Fig. 2. The reduced α -decay widths of even-mass Po isotopes with neutron numbers $112 \le N \le 126$ increase smoothly with decreasing neutron number. The reduced widths for the ground state to ground state transitions remain constant for ¹⁹⁰⁻¹⁹⁶Po and decrease markedly for ¹⁸⁸Po. The reason for this

Fig. 2. Reduced width values for Po, Rn and Ra nuclides.

is that the α -decays from the ground state to 0^+ intruder states in Pb are getting more favorable. This feature can be seen in Fig. 2 where also reduced widths for decays between the ground state and two particle two hole $\pi(2p-2h)$ proton intruder states are shown. An interpretation has been given that the ground states of neutron deficient Po isotopes starting from ¹⁹⁴Po are mixed with different configurations, spherical $\pi(2p-0h)$, oblate $\pi(4p-2h)$ (and prolate $\pi(6p-4h)$), and therefore the ground states of these nuclei are deformed. The reduced α -decay widths of even-mass Rn isotopes with neutron numbers of $114 \le N \le 126$ increase smoothly with decreasing neutron number. The reduced α -decay width value for ¹⁹⁸Rn is slightly higher and the α -decay of ¹⁹⁶Rn is clearly faster than the smooth behavior predicts. In the latter case the α -decay could be considered to take place between the mixed deformed 0^+ ground state in ¹⁹⁶Rn and mixed deformed 0^+ ground state in ¹⁹²Po. This is in good agreement with results from recent γ -ray studies where the same kind of intruder structures were exposed in 198 Rn, 194 Po, and 192 Po [7,8].

REFERENCES

- [1] A.N. Andreyev et al., Phys. Rev. Lett. 82, 1819 (1999).
- [2] A.N. Andreyev et al., ENPE, Sevilla, Spain, AIP Conf. Proc. 495, 121 (1999).
- [3] A.N. Andreyev et al., submitted for publication.
- [4] H. Kettunen et al., Phys. Rev. C, to be submitted.
- [5] N. Bijnens et al., Z. Phys. A356, 3 (1996).
- [6] Y.H. Pu et al., Z. Phys. A54, 1 (1997).
- [7] K. Helariutta et al., Eur. Phys. J. A6, 289 (1999).
- [8] R.B. Taylor et al., Phys. Rev. C59, 673 (1999).