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The real part of antinucleon—nucleus potential is determined in the
framework of the Relativistic Mean Field model using the charge conjuga-
tion. The solution of the Dirac equation for antiproton is given in case of
208Ph. The bound state antiprotonic wave functions are compared to those
obtained from the pure point charge Coulomb potential. The spectrum of
p is shown.

PACS numbers: 24.10.Jv

The antinucleon-nucleus (N N) potentials (Vy 4) are meaningful in stud-
ies of nuclear reactions involving antiparticles, e.g., the p anihilation on the
atomic nuclei [1]. The N A interaction consists of the Coulomb potential and
at the intermediate distances some kind of annihilation mechanism. In case
of pure NN interaction the annihilation cross section is rather large and in
order to simulate this one usually introduces an ad hoc optical potential.

In the calculations of the anihilation halo factors (e.g., [2]) the NA po-
tential is given phenomenologically or is assumed as the Coulomb potential
of the nucleus in question [3]. The resulting p-wave function does not con-
tain any informations on the finiteness of the nucleus. Additionally, only
the circular states with [ = n — 1 are assumed to contribute to the anihila-
tion process. As it is shown here the circular p-states up to n = 20 can be
deeply bound and do not contribute to the annihilation process. The finite
dimensions of the nucleus and the deformation of the nuclear system results
in a completely new picture of the p-wave functions and different binding
energies as compared to the Coulomb case.

* Presented at the XXXV Zakopane School of Physics “Trends in Nuclear Physics”,
Zakopane, Poland, September 5-13, 2000.
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In the paper we construct the real part of the N A potential in framework
of relativistic mean field model (RMF) starting from the properties of the
C-parity symmetry of NN interactions. As in case of the bar NN interaction
[4,5] one can apply the C- or G-parity [6] to the potentials generated by RMF
model or the WS potential.

The paper is organized as follows. First we define the RMF model as well
as scalar and vector potentials. Next the C-parity properties of the nucleon—
nucleus potentials and the NA potentials are shown. Finally an examples
of the antiprotonic spectra and the eigenfunctions of p in WS potential of
208Ph are shown. The dissimilarities with the point charge Coulomb spectra
are pointed out.

The nuclear interactions in RMF model |7,8] are governed by the one me-
son exchange potentials. The fields have the properties of the fundamental
scalar o, vector w and p mesons.

The Lagrangian of the RMF model reads

E(N,O’,w,p):ﬁq/,+£g+ﬁp+£w+£NJ+ENP+ENM+£7, (1)

where
1 1 1 1 -
L, = —5m302 - <59203 + 19304) + 5901/1?/10, (2)
1 1, 1 .
L, = Emwwﬂw“ — Zwu Wy + §gww/¢7u¢¢7 (3)
1 N 1. 1 -
Ep = 577’1%,0# . ﬁ’ﬂ - Zp;u/ . [31“/ + E.gpp#’yu : T1ﬁ/ll}, (4)
1 - 1—m73
£ = L ey O g, ®
Fermion fields fulfill the Dirac equation
{—i@ -V + Vy(7) + B(m + Vi(7) Yo = eithi, (6)

where the attractive scalar potential and the effective nucleon mass are given
by

Vi) = o0 (), m*(7) = m -+ Vi(7). @
The repulsive vector potential
R 147
Va(7) = gutwn (F)h + gyapo(7) + e~ Ao (7). (8)

Both the vector and the scalar potential are the linear functions of the
mesonic fields. The scalar potential and the effective mass m* depend on
the scalar ¢ field only.
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The mesonic fields are described by the Klein-Gordon equations.

—A+mi X(F) = Sx (7, (9)
where
—9ops(7) = g20*(7) — g30°(7) i X =0,
Sx0 =4 i X
ep(r) if X =Ap.

The densities entering the right hand sides of the equations are
A - A
ps(T) = Z?lmﬁi ; Pv(F):Z?lJZT?lJi,

ps(f)zzz/);wp wan, pe(F) = Zw;;wp
p=1

The solution of the equations of motion leads to the nucleon—nucleus poten-
tials: V (o), V(w), V(p) entering V, in Eq. (8).

Introducing the two component wave function 47 = (f, g), leads to the
Dirac equation of the form

(3 WS ) (1) (1)

Eliminating the lower component ¢ and introducing a new effective mass
meg = m—(V,, — V) /2 after expanding the mass term in the small parameter
£/meg one obtains

1
{5"-17 5”-5+V+S}f=€f. (11)
2Mieft

The simple algebra leads to the Schrodinger like equation

1

ﬁ‘f‘ Vcentr 4
(2me)?

o~y 1 SO0\ (7w ~ R
{ps OV Gx b r=asi 02)

where the central V™" and the spin—orbit V®° potentials are, viz.

"W, -V (13)
Meff

Vcentr — Vv 4 Vs ’ Vso —
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Strong interactions are invariant under C operation. If a meson is ex-
changed between two nucleons, and thus contribute to nuclear forces, it can
also be exchanged between a nucleon and an antinucleon (e.g., in QED, since
CTAMC = —A,, repulsive e” e~ Coulomb interaction becomes attractive in
case of e e™).

The C properties of the RMF mesonic fields are the following CfoC =
+0, CtwC = —w, and CtpC = —p. We shall use this in constructing the
antinucleon—nucleus potentials. Assuming an even-even system of nucleons
one has the following C-rule (see e.g., [9]):

V(N,A) =% V(N, A). (14)

In the RMF model the V (N, A) potentials are given in Egs. (7),(8). The
linearity of the vector potential in the meson fields is of great concern for
the application of the C-rule. Under the C operation the vector potential
changes sign.

In case of the Schrédinger equation based on the Woods—Saxon potential
one has

ygentr — Vs,p|n + Vv,p\n 5 V;\% = Vs,p|n - Vv (15)

pln pln -

where V1 and VS are the central and spin-orbit potentials. Let the
effective mass be constant. Assuming a “mesonic content” of the Woods—
Saxon potentials similar to RMF model, using Eq. (13) and the C-rule one
can calculate both scalar and vector potentials for antinucleons, viz.

1 1
Vipin =+3 [V = Vs s Vewm=—3 [Viir"+ve] - (10

Eq. (13) then gives

Vpﬁc\%ntr = Vs,ﬁ\ﬁ + Vu,p\ﬁ = —Vsoa Vﬁs\% = Vv,ﬂﬁ - Vs,ﬁ|ﬁ = —yeenr, (17)
The strengths of both central and spin—orbit potential are interchanged. In
N A interaction the magnitude of the central part is approximately equal to
—50 MeV while the spin—orbit potential is roughly 800 MeV. In case of the
N A potential the strengths are Vﬁc‘%ntr ~ —800 MeV and ;‘% ~ +50 MeV.
The central part of the N A potential becomes very strong whereas the spin—
orbit term is weak. This will cause the spin degeneracy in the antiparticle
spectra. The sign of the spin orbit term is opposite to the spin—orbit term
of NA system and the spectrum shows the sequence of levels characteristic
for the atomic physics.

It was shown [10-12] that the average RMF potentials are equivalent to
some Woods—Saxon potentials.
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The Dirac p-spectrum of 28Pb based on WS potentials [13] is shown in
Fig. 1. To solve the Dirac equation the procedure RADIAL [14] has been used.
The energy levels are plotted vs k — the eigenvalue of K = —B(L -0+ 1).
The spectrum differs significantly from the Coulomb one.
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Fig.1. p spectrum in Woods—Saxon potential in 2°Pb nucleus as a function of the

quantum number x.

The eigenfunctions corresponding to (n, k) =(20,1) p-state in WS+Cou-
lomb potential and the point nucleus Coulomb potential are displayed in
Fig. 2 and Fig. 3 respectively. Both (f,g) components of the Dirac spinor

Coul _

are shown. The single particle energies are e%% = —41.804 and e5;y =

—0.428 MeV.
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Fig.2. The upper and lower components of the Dirac wave function (f,g) of the
state n = 20, k = 1 in 2°%Pb and the WS pA-potential. The radial distance r is in
fm units. The energy of the state is esg1 = —41.804 MeV.
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Fig.3. The same as Fig. 2 but for the point nucleus Coulomb potential. The
corresponding energy esp,; = —0.428 MeV.

In the present work we generated the single antiparticle scalar and vec-
tor potentials in the framework of RMF model and the phenomenological
Woods—Saxon model. The antinucleon potentials were obtained from the
corresponding particle potentials according to charge conjugation rule. As
an example, the Dirac antiproton wave functions (f,g) and the single par-

ticle eigenenergies were calculated by solving the p-eigenvalue problem for
208Pb.
The scheme is easily applicable in case of the deformed nuclei.
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