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AT THE EXTREMES OF NUCLEAR CHARGEAND SPIN�W.D. Myers and W.J. �wi¡te
kiNu
lear S
ien
e Division, Lawren
e Berkeley LaboratoryBerkeley, California 94720, USA(Re
eived O
tober 31, 2000)Using s
aling rules valid in the liquid drop model of nu
lei, as well asuniversal rules asso
iated with ex
hanges of stability in families of equilib-rium 
on�gurations, we 
onstru
ted 
losed formulae in terms of the atomi
and mass numbers Z and A and the angular momentum L, whi
h repre-sent the properties of nu
lei rotating syn
hronously (with `rigid' momentsof inertia), as 
al
ulated numeri
ally using the Thomas�Fermi model ofW.D. Myers, W.J. Swiate
ki, A
ta Phys. Pol. B27, 99 (1996); Nu
l.Phys. A612, 249 (1997); Nu
l. Phys. A601, 141 (1996). The formulaeare a

urate in the range of mass numbers where the transition to rapidlyelongating triaxial `Ja
obi' shapes takes pla
e. An improved set of for-mulae is also provided, whi
h takes a

ount of the de
reased moments ofinertia at low angular momenta. The formulae should be useful in guidingexperimental sear
hes for the Ja
obi transition. In the se
ond part of thepaper we dis
uss qualitatively some aspe
ts of the dynami
s of nu
leus�nu
leus fusion, and outline a possible way of estimating 
ross-se
tions forthe synthesis of superheavy nu
lei.PACS numbers: 21.10.Dr, 21.60.Ev, 24.10.Nz1. Introdu
tionIn 1834 C.G.J. Ja
obi made a startling dis
overy whi
h led to the reali-sation that, at a 
ertain 
riti
al angular momentum, the stable equilibriumshape of a gravitating mass rotating syn
hronously (i.e., with all mass ele-ments sharing a 
ommon angular velo
ity) 
hanges abruptly from a slightlyoblate spheroid to a triaxial ellipsoid rotating about its shortest axis [1℄.In 1961 the suggestion was made in [2℄ that a similar phenomenon might� Presented by W.J. �wi¡te
ki at the XXXV Zakopane S
hool of Physi
s �Trends inNu
lear Physi
s�, Zakopane, Poland, September 5�13, 2000.(1033)
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kibe expe
ted in the 
ase of atomi
 nu
lei idealized as 
harged in
ompress-ible liquid drops endowed with a surfa
e tension. This was 
on�rmed andquanti�ed in 1974 [3℄ and 1986 [4℄. In 1996 the oblate-to-triaxial transitionwas demonstrated also in the more realisti
 self-
onsistent, semi-
lassi
alnu
lear Thomas�Fermi model under the same assumption of syn
hronousrotation [5℄. The Thomas�Fermi model [6℄ provides a good des
ription ofshell-averaged stati
 nu
lear properties, but the assumption of syn
hronousrotation is known to be strongly violated at low angular momenta, wheremeasured moments of inertia are 
onsiderably smaller than the `rigid-body'values implied by syn
hronous rotation [7℄. In the �rst part of the presentpaper we provide: (a) 
losed formulae that represent a

urately the ener-gies and �ssion barriers of syn
hronously rotating Thomas�Fermi nu
lei inthe range of mass numbers where the Ja
obi transition takes pla
e, and (b)modi�ed formulae that take into a

ount the de
reased moments of inertiaat low angular momenta.In the se
ond part (Se
tion 5) we present a dis
ussion of some aspe
tsof the dynami
s of nu
leus-nu
leus fusion, and we sket
h a possible way ofestimating fusion 
ross-se
tions for the synthesis of heavy and superheavynu
lei. 2. Thomas�Fermi formulaeFor ea
h of the following six nu
lei: 74Se, 94Mo, 108Cd, 126Xe, 140Nd,168Yb, we generated self-
onsistent stable as well as saddle-point solutionsof rotating 
on�gurations using the Thomas�Fermi model of [5,6℄. As a rule,the angular momenta ranged between L = 0, through L = L1, where theJa
obi transition takes pla
e, to L = L2, where the barrier against �ssion ofthe Ja
obi shapes vanishes. Using as a guide s
aling rules valid in the liquiddrop model (whi
h is a lowest-order approximation to the Thomas�Fermimodel [8℄), as well as universal rules asso
iated with bifur
ations and limitingpoints in families of equilibrium shapes [9℄, we 
onstru
ted formulae in termsof the atomi
 and mass numbers Z and A and the angular momentum L,whi
h represent a

urately the numeri
ally 
al
ulated properties of the abovesix nu
lei. These formulae, listed below, 
an then be used for neighbouringnu
lei, thus avoiding the need for a separate Thomas�Fermi 
al
ulation forea
h additional nu
leus of interest. In the following formulae all energies arein MeV, and angular momenta are in units of ~.The 
riti
al angular momentum at whi
h the Ja
obi transition takespla
e: L1 = 0:06029A7=6p40:83 � � ; (1)



At the Extremes of Nu
lear Charge and Spin 1035where the �ssility � is de�ned by� = Z2A h1� 1:7826 �A�2ZA �2i : (2)The angular momentum at whi
h the �ssion barrier vanishes:L2 = 0:09108A7=6p36:34 � � : (3)The energy of the oblate (Ma
laurin-like) equilibrium shapes (with respe
tto the non-rotating ground state):EM(L) = 
1L1 �0:3�2 � 0:025�4� ; (4)where 
1 = 6:2811r44:60 � �A ; (5)and � = LL1 : (6)The energy of the Ja
obi shapes (for L1 � L � L2):EJ(L) = 0:275
1L1 + 12
1 (L2 � L1) h�2(1�X)+12 (1� �2 � �) �1�X2�+ 23� �1�X3=2� i ; (7)where �2 = 0:6118�1� � �38:91�2�2�1� � �33:49�2� ; (8)X = L2 � LL2 � L1 ; (9)� = 0:3078 : (10)The energy of saddle-point shapes for L � L2:ES(L) = 0:275
1L1 + 12
1 (L2 � L1) h�2(1�X)+12 (1� �2 � �) �1�X2�+ 23� �1 +X3=2� i : (11)
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kiThe �ssion barrier for Ja
obi shapes (with L1 � L � L2):BJ(L) = B1X3=2 ; (12)where B1 = 23
1� (L2 � L1) : (13)The �ssion barrier for Ma
laurin shapes with L � L1:BM(L) = 12
1 (L2 � L1) h�2(1�X) + 12 (1� �2 � �) �1�X2�+23� �1 +X3=2� i� 
1L1 �0:3�2 � 0:025�4 � 0:275� : (14)Now de�ne energy derivatives by
(L) � 2 dE(L)dL ; (15)so that 
L � 
(L� 1) (16)is an a

urate approximation to a nominal quadrupole transition energyfrom the state L to the state L�2. Then for the Ma
laurin shapes we have:
M(L) = 
1 �1:2�� 0:2�3� (17)and for the Ja
obi shapes with L1 � L � L2 we �nd
J(L) = 
1 h�2 + (1� �2 � �)X + �pXi : (18)For L = L1 we have 
M(L1)=
J(L1)=
1. For L=L2 we have 
J(L2)=
1�2.The above equations are a

urate representations of the numeri
alThomas�Fermi solutions for mass numbers A greater than about 70 andless than about 170, or for �ssilities � greater than about 15.8 and less thanabout 30.7. They may also be adequate for A less than 70, but should notbe used for A greater than about 170 (�ssility greater than about 30.7). Theexpression for BM(L) may not be reliable for L mu
h below L1.Fig. 1 
ompares the values of L1 and L2 with the liquid drop modelvalues of [3℄ and with the �nite range liquid drop model values of [4℄. The
urves for L1 up to A � 170 are essentially the same in all three models.The Thomas�Fermi 
urve for L2 is usually intermediate between those ofthe other two models.Fig. 2 shows the energies EM; EJ; ES and the barrier B for the nu
leus108Cd.



At the Extremes of Nu
lear Charge and Spin 1037

0

2 0

4 0

6 0

8 0

1 0 0

0 1 0 0 2 0 0 3 0 0

Mass number  A

A
n

g
u

la
r 

m
o

m
en

tu
m

  L

A =    94  108   140   168

L1

L2

L1

Fig. 1. For angular momenta below the 
urves labeled L1 the equilibrium shape is an oblate
on�guration rotating about its axis of symmetry. The three models in question are identi�ed bythe dashed, solid and 
ir
led 
urves, representing the liquid drop model of [3℄, the �nite rangeliquid drop model of [4℄ and the present Thomas�Fermi model, respe
tively. Between L1 and L2the equilibrium shapes are triaxial Ja
obi 
on�gurations rotating about the shortest axis. The
urves L1 and L2 
ome together at the solid 
ir
les, beyond whi
h mass numbers Ja
obi shapesdo not exist. Disintegration takes pla
e for angular momenta ex
eeding L1 in the upper rangeof mass numbers, or L2 below the solid 
ir
les. The 
urves refer to nu
lei on the valley of betastability. The four arrows identify approximately the mass numbers of nu
lei studied in [10℄.
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Fig. 2. The energies of the Ma
laurin-like oblate shapes, the Ja
obi-like triaxial shapes and the(triaxial) saddle-point shapes are shown in their dependen
e on angular momentum for 108Cd.The Ja
obi shapes �rst appear at L1 and exist up to L2. The �ssion barrier B is the energydi�eren
e between the saddle energy and either the Ja
obi energy for L � L1 or the Ma
laurinenergy for L � L1. It vanishes at L2.



1038 W.D. Myers, W.J. �wi¡te
kiFig. 3 shows the nominal quadrupole transition energies 
L for 94Mo,108Cd, 140Nd and 168Yb, the nu
lei that would result after emission of fourneutrons from the 
ompound nu
lei formed in the bombardments of 50Ti,64Ni, 96Zr and 124Sn by 48Ca. These are the rea
tions re
ently studiedin [10℄. Fig. 3 implies `giant ba
kbends' in the gamma ray energies 
L at the
riti
al values given by L = L1 + 1, where the originally in
reasing gammaray energies suddenly begin to de
rease. This de
rease is a hallmark of theJa
obi regime of shapes, asso
iated with their rapidly in
reasing momentsof inertia. (Note: Eqs. (15),(16) imply that if 
(L) has a maximum at L1,then 
L has a maximum at L1 + 1.)
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Fig. 3. The nominal quadrupole gamma ray energies 
L are shown in their dependen
eon L for four nu
lei. These 
urves represent the unmodi�ed Thomas�Fermi model, withsharp giant ba
kbends at the angular momenta indi
ated. The Ja
obi shapes exist beyondthe ba
kbend and terminate at the 
ir
led points.3. Modi�ed formulaeMeasured rotational spe
tra 
orrespond to energies that, for low angularmomenta, in
rease 
onsiderably faster than des
ribed by Eq. (4) or illus-trated in Fig. 2. The implied low e�e
tive moments of inertia are asso
iatedwith nu
lear pairing e�e
ts, and are expe
ted to disappear at higher valuesof L [7℄. In parti
ular, in the regime of the very deformed Ja
obi shapes ro-tating about the shortest axis, the energy estimated using moments of inertiaasso
iated with syn
hronous rotation (`rigid' moments of inertia) should berelatively a

urate. We have a

ordingly modi�ed the energy plots E(L)
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lear Charge and Spin 1039by interpolating between k times EM(L), Eq. (4), for small L (where k is anumber greater than 1, whi
h implies moments of inertia less than 1), andthe formula for EJ(L), Eq. (7), near L = L2. Expli
itly, the interpolationwas done as follows:E< = 
1L1 �k �0:3�2 � 0:025�4�� a�n� for L � L1 ; (19)E> = 0:275
1L1 + 12
1 (L2 � L1) h�2(1�X) + 12 (1� �2 � �) �1�X2�+23� �1�X3=2�+ bX2i for L1 � L � L2 ; (20)where, for a given k, the three quantities n; a; b are determined by the re-quirement of 
ontinuity of value, slope and 
urvature at L = L1. The de-mand for 
ontinuity of the 
urvature is motivated by re
ognition of the fa
tthat 
olle
tive rotations about axially symmetri
 (Ma
laurin-like) shapes donot take pla
e in nu
lei. This implies that, also at low angular momenta,
olle
tive nu
lear rotations must take pla
e about an axis that is not anaxis of symmetry, for example about a minor axis of a prolate or triaxialshape. In that 
ase the transition from su
h a shape to the rapidly elongatingJa
obi-like shape does not involve a spontaneous oblate-to-triaxial symmetrybreaking, and would be smooth rather than abrupt. The asso
iated gammaray energies would now be expe
ted to 
hange gradually from in
reasing tode
reasing fun
tions of L, whi
h implies 
ontinuity of the se
ond derivativeof E(L). (We shall 
ontinue to refer to the regime of de
reasing gamma rayenergies as the Ja
obi regime.)The abovementioned requirements of 
ontinuity lead to the followingformulae for n; a; b: n = �B +pB2 + 4AC2A ; (21)a = A4 + 2n� ; (22)b = 12(1� k + 2na) ; (23)where A = (1:1 + �)(k � 1) ; (24)B = �A+ A� � k(1 + 0:6�) + �2 + �2 ; (25)C = 2� �A� �A�B� ; (26)where � = L2L1 � 1 : (27)



1040 W.D. Myers, W.J. �wi¡te
kiFig. 4 illustrates the modi�ed energies and �ssion barriers in the 
ase of108Cd. The value of k was taken to be 1.5 (see below).
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Fig. 4. The dashed 
urves repeat the plot from Fig. 2, and the solid 
urves show themodi�
ation resulting from taking a

ount of the redu
tion of the moment of inertia atlow L by a fa
tor of 1.5. The Ja
obi regime of de
reasing gamma ray energies begins nowat the angular momentum Lm. The two 
ir
led points refer to �ssion barriers obtainedwith the 
ranked-Strutinsky method in [11℄.The formulae for the energy derivative fun
tions are now as follows:
<(L) = 
1 �k �1:2�� 0:2�3�� 2na�n�1� for L � L1 (28)
>(L) = 
1 h�2 + (1� �2 � �)X + �pX � 2bXi for L1 � L � L2 :(29)The Ja
obi regime of de
reasing values of 
(L) begins now at the giantba
k-bend angular momentum Lm (always less than L1) where 
<(L) hasits maximum. It is given by the solution ofk �0:6 � 0:3�2m�� n(n� 1)a�n�2m = 0 ; (30)where �m = LmL1 . (The maximum in 
L is then at Lm + 1 � see above.)Varying k results in a one-parameter family of interpolation fun
tionsfor 
L, illustrated for 94Mo in Fig. 5. The 
hoi
e k=1.5 leads to 
L plotsshown in Fig. 6. This 
hoi
e turned out to give a rough 
orresponden
e withthe preliminary results of the measurements referred to earlier [10℄. Theoriginal, unmodi�ed 
urves in Fig. 3 bear little resemblan
e to the data.



At the Extremes of Nu
lear Charge and Spin 1041

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

0 2 0 4 0 6 0 8 0 1 0 0

Angular momentum  L

G
am

m
a 

ra
y 

en
er

g
y 

 γ
L 

 (
M

eV
)

94Mo

k = 1.5

1.1

1.0
1.01

Fig. 5. The nominal quadrupole gamma ray energies for 94Mo, 
al
ulated using a modi-�
ation of the Thomas�Fermi results, the modi�
ation 
onsisting of assuming the low-Lmoments of inertia to be redu
ed by 1.01, 1.1 and 1.5, respe
tively. The 
urve labeled 1.0is the unmodi�ed Thomas�Fermi result.
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Fig. 6. This is like Fig. 3, but after the modi�
ation 
onsisting of redu
ing the low-Lmoments of inertia by a fa
tor 1.5. The giant ba
kbends, marking the beginnings of theJa
obi regimes, are indi
ated by the arrows.4. Relation to mi
ros
opi
 
al
ulationsIn a re
ent preprint entitled �Very extended nu
lear shapes near A = 100�Chasman des
ribes a `
ranked-Strutinsky' study of 37 nu
lei between 100Zrand 122Xe, at angular momenta L = 60 and L = 70 [11℄. Many of these nu
lei
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kiare found to have strongly deformed prolate or triaxial shapes, and to have�ssion barriers in the range from about 4 MeV to about 17 MeV. The 
ir
lesin Fig. 4 show these barriers in the 
ase of 108Cd. For a sample of 17 outof the 37 
ases studied by Chasman the deviations between the mi
ros
opi

ranked-Strutinsky and the modi�ed Thomas�Fermi barriers were �0:67 �1:18 MeV at L = 60, and 0:41� 1:53 MeV at L = 70. (The deviation for all34 values at both L = 60 and L = 70 was �0:13�1:45 MeV.) It is interestingto note that, sin
e the Thomas�Fermi energies are smooth fun
tions of A,Z and L, one 
on
ludes that the mi
ros
opi
 energies are also smooth towithin about 1.5 MeV on the average (or else that the shell 
orre
tionsfor the equilibrium shape and for the saddle-point shape are approximatelythe same). Also, 
onsidering the very di�erent inputs in the two types of
al
ulation, it is remarkable that, on the average, the absolute values ofthe �ssion barriers agree to within a fra
tion of an MeV. On the whole,one is led to the 
on
lusion that Chasman's �very extended shapes� and theThomas�Fermi�Ja
obi 
on�guarations are the mi
ros
opi
 and ma
ros
opi
des
riptions of the same underlying physi
s that goes ba
k to 1834, namely:�Su�
iently rapidly rotating �uids prefer elongated prolate shapes�.5. Fusion dynami
sIt is an elementary everyday observation that if two �uid drops arebrought into 
onta
t, there takes pla
e a sudden growth of the ne
k � asnap � 
hara
terized by a time s
ale mu
h shorter than those typi
al ofother 
olle
tive degrees of freedom of the system, su
h as its overall length.The driving for
e for this snap is the great saving of surfa
e energy a
hievedwith only a minor rearrangement of the �uid's mass elements in the vi
inityof the ne
k. Thus, insofar as nu
lei 
an be regarded as �uids (see below forex
eptions) the dinu
lear 
on�guration of tou
hing fragments is expe
ted tobe transformed rapidly into a mononu
lear shape with about the originaloverall length (whi
h we shall refer to as the snap length). With referen
eto the potential energy lands
ape underlying the fusion pro
ess, the system,originally in the fusion valley, is inje
ted into the vi
inity of the �ssion valleyat a point along this valley spe
i�ed approximately by the snap length.On
e in the �ssion valley, the system may �nd itself either inside oroutside the saddle-point barrier guarding the 
ompound nu
leus against dis-integration by �ssion. For lighter rea
ting systems the former is the 
aseand, after 
onta
t, fusion takes pla
e automati
ally. But with in
reasingsizes of the rea
ting nu
lei the saddle-point length shrinks rapidly, so that,beyond a 
ertain 
riti
al point, the situation is reversed: after the snap thesystem is outside the saddle. The heavier the fusing partners the fartheraway from the saddle will the system �nd itself, and the greater will be theenergy di�eren
e � between the saddle-point energy and the system's po-
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lear Charge and Spin 1043tential energy after inje
tion into the �ssion valley. This is the physi
s of theentran
e 
hannel hindran
e to fusion dis
ussed in [12℄. This hindran
e maywell be the prin
ipal reason for the rapid de
rease of measured 
ross-se
tionsfor the formation of very heavy elements.A se
ond fa
tor, whi
h a
ts in the opposite dire
tion, is present in the 
aseof rea
tions at bombarding energies designed to leave the 
ompound nu
leuswith a given ex
itation energy, for example the 13 MeV in the 
ase of therea
tions illustrated in Fig. 7. As 
an be seen from this �gure, the typi
alCoulomb barrier in the entran
e 
hannel would prevent the relatively lighterproje
tiles up to 70Zn from even a
hieving 
onta
t between the half-densitynu
lear surfa
es. The implied hindran
e, as represented by the size of theCoulomb barrier that protrudes above the level of the bombarding energy,is most pronoun
ed for the lightest proje
tiles, de
reasing with proje
tilesize, and eventually disappearing altogether for the rea
tion 86Kr + 208Pb.This lowering of the `Coulomb shield' for superheavy rea
tions [13,14℄ is anelementary 
onsequen
e of the energeti
s of nu
lear deformations. Thus,the energy needed to deform a 
ompound nu
leus into the Coulomb barrier
on�guration of two tou
hing fragments is resisted by the surfa
e energy andfavoured by the ele
trostati
 energy. Hen
e, for a su�
iently large 
hargeon the system, the Coulomb barrier will eventually sink below the level ofthe ground-state energy (or this energy augmented by some 
onstant, likethe 13 MeV in the examples above). This is illustrated in Fig. 8.Coming ba
k to Fig. 7, the hindran
e against a
hieving 
onta
t would be100% up to about 70Zn, and zero afterwards, if a 
lassi
al, one-dimensional
al
ulation were used. In a more realisti
 treatment, the hindran
e wouldde
rease gradually, and a quantitative des
ription of su
h `sub-barrier' fusionprobabilities has been available for some time in terms of the notion of barrierheight distributions [15℄.Working together with K. Siwek-Wil
zy«ska and J. Wil
zy«ski, we havebeen led by the above 
onsiderations to the following three-stage pi
ture ofthe fusion pro
ess of heavy nu
lear systems:Stage 1: Over
oming the Coulomb barrier in order to a
hieve 
onta
t.Using existing theories of sub-barrier fusion, the relevant probabilities 
anbe estimated. After 
onta
t, a snap from the fusion valley into the �ssionvalley follows. The asso
iated drop in the potential energy is assumed toheat up the system to a temperature T .Stage 2: Over
oming the energy barrier � ne
essary to rea
h the 
om-pound nu
leus from the �ssion valley after the snap. We assume that thisis a
hieved by a thermal �u
tuation with a probability approximated byexp(��=T ).Stage 3: Surviving the 
ompetition between �ssion and neutron emission.Standard formulae for the relevant probabilities are again available.
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Fig. 7. The upper part refers to 
ross se
tions for synthesizing heavy elements fromZ=102 to 118 in bombardments of 208Pb and 209Bi with proje
tiles from 48Ca to 86Kr.The lower part gives three examples of (
enter-of-mass) potential energy plots along thefusion valley (thi
k solid and dashed 
urves) and �ssion valley (thin 
urves). The plotsare against the overall, tip-to-tip extension of the fusing or �ssioning 
on�gurations. Theground states are indi
ated by diamonds, the saddle-points by squares. The solid verti
alline 
orresponds to 
onta
t between the half-density radii, the dashed verti
al line to
onta
t of the density tails, de�ned by the 
lassi
al turning points of the fastest parti
lesin the approa
hing nu
lei. The horizontal arrow de�nes the bombarding energy, designedto leave the 
ompound nu
leus with 13 MeV of ex
itation energy.
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t to the energy of the single-sphere 
on�guration (representing the 
ompound nu-
leus), in units of that sphere's surfa
e energy. The plots are against the asymmetry ofthe rea
tion. The label x is the standard �ssility parameter, de�ned as the ratio of theele
trostati
 energy of the 
ompound sphere to twi
e its surfa
e energy. For x slightlyin ex
ess of 1.2 the Coulomb barrier (in this s
hemati
 liquid drop model) sinks belowthe energy of the 
ompound nu
leus. (This `unshielding' would o

ur earlier with respe
tto a somewhat higher bombarding energy that would allow for the emission of one neu-tron. This is indi
ated s
hemati
ally by the dashed line.) In either 
ase the unshieldingis 
hara
teristi
 only of extremely heavy (superheavy) systems and, as a rule, would notbe expe
ted to have been present in most heavy nu
leus-nu
leus rea
tions studied so far.(Quantitative aspe
ts of this �gure be
ome modi�ed when a more realisti
 ma
ros
opi
model is used, and when shell e�e
ts are taken into a

ount.)With the above fa
tors depending in di�erent ways on the rea
tion pa-rameters, there is no parti
ular reason to expe
t the plot of the logarithmsof the formation 
ross-se
tions in Fig. 7 to 
ontinue as a linear fun
tion ofthe atomi
 number beyond Z = 112. In this 
onne
tion it is interesting tonote that the empiri
al data in Fig. 7 up to Z = 112, rather than being�tted by a straight line, may equally well be represented by a 
ubi
 that ismade to pass through the point for 86Kr + 208Pb, as shown in Fig. 9.A word about the assumption of a snap at 
onta
t, 
hara
teristi
 of�uids. Nu
lei often do exhibit �uid properties, but ex
eptions o

ur whensu�
iently strong magi
 or doubly magi
 shell e�e
ts may endow a nu
leuswith properties of an elasti
 solid [16℄. In that 
ase the snap may not o

ur
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Fig. 9. The data points are the same as in the upper part of Fig. 7. The 
urve is the
ubi
 given by: log(�=barn) = �6:61 � 0:6681(Z � 102) + 0:001377(Z � 102)3.at 
onta
t, but only after a more intimate interpenetration of the partners,su�
ient to destroy their shell e�e
ts. Su
h a delay in the inje
tion into the�ssion valley may be advantageous, sin
e the resulting mononu
leus will bemore 
ompa
t, and thus 
loser to the saddle-point 
on�guration. (See thedis
ussion in [13,14℄.)We hope to develop the above qualitative 
onsiderations into a semi-empiri
al method of estimating 
ross-se
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