
Vol. 32 (2001) ACTA PHYSICA POLONICA B No 3
AT THE EXTREMES OF NUCLEAR CHARGEAND SPIN�W.D. Myers and W.J. �wi¡tekiNulear Siene Division, Lawrene Berkeley LaboratoryBerkeley, California 94720, USA(Reeived Otober 31, 2000)Using saling rules valid in the liquid drop model of nulei, as well asuniversal rules assoiated with exhanges of stability in families of equilib-rium on�gurations, we onstruted losed formulae in terms of the atomiand mass numbers Z and A and the angular momentum L, whih repre-sent the properties of nulei rotating synhronously (with `rigid' momentsof inertia), as alulated numerially using the Thomas�Fermi model ofW.D. Myers, W.J. Swiateki, Ata Phys. Pol. B27, 99 (1996); Nul.Phys. A612, 249 (1997); Nul. Phys. A601, 141 (1996). The formulaeare aurate in the range of mass numbers where the transition to rapidlyelongating triaxial `Jaobi' shapes takes plae. An improved set of for-mulae is also provided, whih takes aount of the dereased moments ofinertia at low angular momenta. The formulae should be useful in guidingexperimental searhes for the Jaobi transition. In the seond part of thepaper we disuss qualitatively some aspets of the dynamis of nuleus�nuleus fusion, and outline a possible way of estimating ross-setions forthe synthesis of superheavy nulei.PACS numbers: 21.10.Dr, 21.60.Ev, 24.10.Nz1. IntrodutionIn 1834 C.G.J. Jaobi made a startling disovery whih led to the reali-sation that, at a ertain ritial angular momentum, the stable equilibriumshape of a gravitating mass rotating synhronously (i.e., with all mass ele-ments sharing a ommon angular veloity) hanges abruptly from a slightlyoblate spheroid to a triaxial ellipsoid rotating about its shortest axis [1℄.In 1961 the suggestion was made in [2℄ that a similar phenomenon might� Presented by W.J. �wi¡teki at the XXXV Zakopane Shool of Physis �Trends inNulear Physis�, Zakopane, Poland, September 5�13, 2000.(1033)



1034 W.D. Myers, W.J. �wi¡tekibe expeted in the ase of atomi nulei idealized as harged inompress-ible liquid drops endowed with a surfae tension. This was on�rmed andquanti�ed in 1974 [3℄ and 1986 [4℄. In 1996 the oblate-to-triaxial transitionwas demonstrated also in the more realisti self-onsistent, semi-lassialnulear Thomas�Fermi model under the same assumption of synhronousrotation [5℄. The Thomas�Fermi model [6℄ provides a good desription ofshell-averaged stati nulear properties, but the assumption of synhronousrotation is known to be strongly violated at low angular momenta, wheremeasured moments of inertia are onsiderably smaller than the `rigid-body'values implied by synhronous rotation [7℄. In the �rst part of the presentpaper we provide: (a) losed formulae that represent aurately the ener-gies and �ssion barriers of synhronously rotating Thomas�Fermi nulei inthe range of mass numbers where the Jaobi transition takes plae, and (b)modi�ed formulae that take into aount the dereased moments of inertiaat low angular momenta.In the seond part (Setion 5) we present a disussion of some aspetsof the dynamis of nuleus-nuleus fusion, and we sketh a possible way ofestimating fusion ross-setions for the synthesis of heavy and superheavynulei. 2. Thomas�Fermi formulaeFor eah of the following six nulei: 74Se, 94Mo, 108Cd, 126Xe, 140Nd,168Yb, we generated self-onsistent stable as well as saddle-point solutionsof rotating on�gurations using the Thomas�Fermi model of [5,6℄. As a rule,the angular momenta ranged between L = 0, through L = L1, where theJaobi transition takes plae, to L = L2, where the barrier against �ssion ofthe Jaobi shapes vanishes. Using as a guide saling rules valid in the liquiddrop model (whih is a lowest-order approximation to the Thomas�Fermimodel [8℄), as well as universal rules assoiated with bifurations and limitingpoints in families of equilibrium shapes [9℄, we onstruted formulae in termsof the atomi and mass numbers Z and A and the angular momentum L,whih represent aurately the numerially alulated properties of the abovesix nulei. These formulae, listed below, an then be used for neighbouringnulei, thus avoiding the need for a separate Thomas�Fermi alulation foreah additional nuleus of interest. In the following formulae all energies arein MeV, and angular momenta are in units of ~.The ritial angular momentum at whih the Jaobi transition takesplae: L1 = 0:06029A7=6p40:83 � � ; (1)



At the Extremes of Nulear Charge and Spin 1035where the �ssility � is de�ned by� = Z2A h1� 1:7826 �A�2ZA �2i : (2)The angular momentum at whih the �ssion barrier vanishes:L2 = 0:09108A7=6p36:34 � � : (3)The energy of the oblate (Malaurin-like) equilibrium shapes (with respetto the non-rotating ground state):EM(L) = 1L1 �0:3�2 � 0:025�4� ; (4)where 1 = 6:2811r44:60 � �A ; (5)and � = LL1 : (6)The energy of the Jaobi shapes (for L1 � L � L2):EJ(L) = 0:2751L1 + 121 (L2 � L1) h�2(1�X)+12 (1� �2 � �) �1�X2�+ 23� �1�X3=2� i ; (7)where �2 = 0:6118�1� � �38:91�2�2�1� � �33:49�2� ; (8)X = L2 � LL2 � L1 ; (9)� = 0:3078 : (10)The energy of saddle-point shapes for L � L2:ES(L) = 0:2751L1 + 121 (L2 � L1) h�2(1�X)+12 (1� �2 � �) �1�X2�+ 23� �1 +X3=2� i : (11)



1036 W.D. Myers, W.J. �wi¡tekiThe �ssion barrier for Jaobi shapes (with L1 � L � L2):BJ(L) = B1X3=2 ; (12)where B1 = 231� (L2 � L1) : (13)The �ssion barrier for Malaurin shapes with L � L1:BM(L) = 121 (L2 � L1) h�2(1�X) + 12 (1� �2 � �) �1�X2�+23� �1 +X3=2� i� 1L1 �0:3�2 � 0:025�4 � 0:275� : (14)Now de�ne energy derivatives by(L) � 2 dE(L)dL ; (15)so that L � (L� 1) (16)is an aurate approximation to a nominal quadrupole transition energyfrom the state L to the state L�2. Then for the Malaurin shapes we have:M(L) = 1 �1:2�� 0:2�3� (17)and for the Jaobi shapes with L1 � L � L2 we �ndJ(L) = 1 h�2 + (1� �2 � �)X + �pXi : (18)For L = L1 we have M(L1)=J(L1)=1. For L=L2 we have J(L2)=1�2.The above equations are aurate representations of the numerialThomas�Fermi solutions for mass numbers A greater than about 70 andless than about 170, or for �ssilities � greater than about 15.8 and less thanabout 30.7. They may also be adequate for A less than 70, but should notbe used for A greater than about 170 (�ssility greater than about 30.7). Theexpression for BM(L) may not be reliable for L muh below L1.Fig. 1 ompares the values of L1 and L2 with the liquid drop modelvalues of [3℄ and with the �nite range liquid drop model values of [4℄. Theurves for L1 up to A � 170 are essentially the same in all three models.The Thomas�Fermi urve for L2 is usually intermediate between those ofthe other two models.Fig. 2 shows the energies EM; EJ; ES and the barrier B for the nuleus108Cd.
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Fig. 1. For angular momenta below the urves labeled L1 the equilibrium shape is an oblateon�guration rotating about its axis of symmetry. The three models in question are identi�ed bythe dashed, solid and irled urves, representing the liquid drop model of [3℄, the �nite rangeliquid drop model of [4℄ and the present Thomas�Fermi model, respetively. Between L1 and L2the equilibrium shapes are triaxial Jaobi on�gurations rotating about the shortest axis. Theurves L1 and L2 ome together at the solid irles, beyond whih mass numbers Jaobi shapesdo not exist. Disintegration takes plae for angular momenta exeeding L1 in the upper rangeof mass numbers, or L2 below the solid irles. The urves refer to nulei on the valley of betastability. The four arrows identify approximately the mass numbers of nulei studied in [10℄.
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Fig. 2. The energies of the Malaurin-like oblate shapes, the Jaobi-like triaxial shapes and the(triaxial) saddle-point shapes are shown in their dependene on angular momentum for 108Cd.The Jaobi shapes �rst appear at L1 and exist up to L2. The �ssion barrier B is the energydi�erene between the saddle energy and either the Jaobi energy for L � L1 or the Malaurinenergy for L � L1. It vanishes at L2.



1038 W.D. Myers, W.J. �wi¡tekiFig. 3 shows the nominal quadrupole transition energies L for 94Mo,108Cd, 140Nd and 168Yb, the nulei that would result after emission of fourneutrons from the ompound nulei formed in the bombardments of 50Ti,64Ni, 96Zr and 124Sn by 48Ca. These are the reations reently studiedin [10℄. Fig. 3 implies `giant bakbends' in the gamma ray energies L at theritial values given by L = L1 + 1, where the originally inreasing gammaray energies suddenly begin to derease. This derease is a hallmark of theJaobi regime of shapes, assoiated with their rapidly inreasing momentsof inertia. (Note: Eqs. (15),(16) imply that if (L) has a maximum at L1,then L has a maximum at L1 + 1.)
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Fig. 3. The nominal quadrupole gamma ray energies L are shown in their dependeneon L for four nulei. These urves represent the unmodi�ed Thomas�Fermi model, withsharp giant bakbends at the angular momenta indiated. The Jaobi shapes exist beyondthe bakbend and terminate at the irled points.3. Modi�ed formulaeMeasured rotational spetra orrespond to energies that, for low angularmomenta, inrease onsiderably faster than desribed by Eq. (4) or illus-trated in Fig. 2. The implied low e�etive moments of inertia are assoiatedwith nulear pairing e�ets, and are expeted to disappear at higher valuesof L [7℄. In partiular, in the regime of the very deformed Jaobi shapes ro-tating about the shortest axis, the energy estimated using moments of inertiaassoiated with synhronous rotation (`rigid' moments of inertia) should berelatively aurate. We have aordingly modi�ed the energy plots E(L)



At the Extremes of Nulear Charge and Spin 1039by interpolating between k times EM(L), Eq. (4), for small L (where k is anumber greater than 1, whih implies moments of inertia less than 1), andthe formula for EJ(L), Eq. (7), near L = L2. Expliitly, the interpolationwas done as follows:E< = 1L1 �k �0:3�2 � 0:025�4�� a�n� for L � L1 ; (19)E> = 0:2751L1 + 121 (L2 � L1) h�2(1�X) + 12 (1� �2 � �) �1�X2�+23� �1�X3=2�+ bX2i for L1 � L � L2 ; (20)where, for a given k, the three quantities n; a; b are determined by the re-quirement of ontinuity of value, slope and urvature at L = L1. The de-mand for ontinuity of the urvature is motivated by reognition of the fatthat olletive rotations about axially symmetri (Malaurin-like) shapes donot take plae in nulei. This implies that, also at low angular momenta,olletive nulear rotations must take plae about an axis that is not anaxis of symmetry, for example about a minor axis of a prolate or triaxialshape. In that ase the transition from suh a shape to the rapidly elongatingJaobi-like shape does not involve a spontaneous oblate-to-triaxial symmetrybreaking, and would be smooth rather than abrupt. The assoiated gammaray energies would now be expeted to hange gradually from inreasing todereasing funtions of L, whih implies ontinuity of the seond derivativeof E(L). (We shall ontinue to refer to the regime of dereasing gamma rayenergies as the Jaobi regime.)The abovementioned requirements of ontinuity lead to the followingformulae for n; a; b: n = �B +pB2 + 4AC2A ; (21)a = A4 + 2n� ; (22)b = 12(1� k + 2na) ; (23)where A = (1:1 + �)(k � 1) ; (24)B = �A+ A� � k(1 + 0:6�) + �2 + �2 ; (25)C = 2� �A� �A�B� ; (26)where � = L2L1 � 1 : (27)



1040 W.D. Myers, W.J. �wi¡tekiFig. 4 illustrates the modi�ed energies and �ssion barriers in the ase of108Cd. The value of k was taken to be 1.5 (see below).
108Cd

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

0 2 0 4 0 6 0 8 0 1 0 0

Angular momentum  L

E
n

er
g

y 
 (

M
ev

)

Maclaurin

Jacobi

L1

L2

Barrier

Saddle

k = 1.5

Lm

Fig. 4. The dashed urves repeat the plot from Fig. 2, and the solid urves show themodi�ation resulting from taking aount of the redution of the moment of inertia atlow L by a fator of 1.5. The Jaobi regime of dereasing gamma ray energies begins nowat the angular momentum Lm. The two irled points refer to �ssion barriers obtainedwith the ranked-Strutinsky method in [11℄.The formulae for the energy derivative funtions are now as follows:<(L) = 1 �k �1:2�� 0:2�3�� 2na�n�1� for L � L1 (28)>(L) = 1 h�2 + (1� �2 � �)X + �pX � 2bXi for L1 � L � L2 :(29)The Jaobi regime of dereasing values of (L) begins now at the giantbak-bend angular momentum Lm (always less than L1) where <(L) hasits maximum. It is given by the solution ofk �0:6 � 0:3�2m�� n(n� 1)a�n�2m = 0 ; (30)where �m = LmL1 . (The maximum in L is then at Lm + 1 � see above.)Varying k results in a one-parameter family of interpolation funtionsfor L, illustrated for 94Mo in Fig. 5. The hoie k=1.5 leads to L plotsshown in Fig. 6. This hoie turned out to give a rough orrespondene withthe preliminary results of the measurements referred to earlier [10℄. Theoriginal, unmodi�ed urves in Fig. 3 bear little resemblane to the data.
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Fig. 5. The nominal quadrupole gamma ray energies for 94Mo, alulated using a modi-�ation of the Thomas�Fermi results, the modi�ation onsisting of assuming the low-Lmoments of inertia to be redued by 1.01, 1.1 and 1.5, respetively. The urve labeled 1.0is the unmodi�ed Thomas�Fermi result.
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Fig. 6. This is like Fig. 3, but after the modi�ation onsisting of reduing the low-Lmoments of inertia by a fator 1.5. The giant bakbends, marking the beginnings of theJaobi regimes, are indiated by the arrows.4. Relation to mirosopi alulationsIn a reent preprint entitled �Very extended nulear shapes near A = 100�Chasman desribes a `ranked-Strutinsky' study of 37 nulei between 100Zrand 122Xe, at angular momenta L = 60 and L = 70 [11℄. Many of these nulei



1042 W.D. Myers, W.J. �wi¡tekiare found to have strongly deformed prolate or triaxial shapes, and to have�ssion barriers in the range from about 4 MeV to about 17 MeV. The irlesin Fig. 4 show these barriers in the ase of 108Cd. For a sample of 17 outof the 37 ases studied by Chasman the deviations between the mirosopiranked-Strutinsky and the modi�ed Thomas�Fermi barriers were �0:67 �1:18 MeV at L = 60, and 0:41� 1:53 MeV at L = 70. (The deviation for all34 values at both L = 60 and L = 70 was �0:13�1:45 MeV.) It is interestingto note that, sine the Thomas�Fermi energies are smooth funtions of A,Z and L, one onludes that the mirosopi energies are also smooth towithin about 1.5 MeV on the average (or else that the shell orretionsfor the equilibrium shape and for the saddle-point shape are approximatelythe same). Also, onsidering the very di�erent inputs in the two types ofalulation, it is remarkable that, on the average, the absolute values ofthe �ssion barriers agree to within a fration of an MeV. On the whole,one is led to the onlusion that Chasman's �very extended shapes� and theThomas�Fermi�Jaobi on�guarations are the mirosopi and marosopidesriptions of the same underlying physis that goes bak to 1834, namely:�Su�iently rapidly rotating �uids prefer elongated prolate shapes�.5. Fusion dynamisIt is an elementary everyday observation that if two �uid drops arebrought into ontat, there takes plae a sudden growth of the nek � asnap � haraterized by a time sale muh shorter than those typial ofother olletive degrees of freedom of the system, suh as its overall length.The driving fore for this snap is the great saving of surfae energy ahievedwith only a minor rearrangement of the �uid's mass elements in the viinityof the nek. Thus, insofar as nulei an be regarded as �uids (see below forexeptions) the dinulear on�guration of touhing fragments is expeted tobe transformed rapidly into a mononulear shape with about the originaloverall length (whih we shall refer to as the snap length). With refereneto the potential energy landsape underlying the fusion proess, the system,originally in the fusion valley, is injeted into the viinity of the �ssion valleyat a point along this valley spei�ed approximately by the snap length.One in the �ssion valley, the system may �nd itself either inside oroutside the saddle-point barrier guarding the ompound nuleus against dis-integration by �ssion. For lighter reating systems the former is the aseand, after ontat, fusion takes plae automatially. But with inreasingsizes of the reating nulei the saddle-point length shrinks rapidly, so that,beyond a ertain ritial point, the situation is reversed: after the snap thesystem is outside the saddle. The heavier the fusing partners the fartheraway from the saddle will the system �nd itself, and the greater will be theenergy di�erene � between the saddle-point energy and the system's po-



At the Extremes of Nulear Charge and Spin 1043tential energy after injetion into the �ssion valley. This is the physis of theentrane hannel hindrane to fusion disussed in [12℄. This hindrane maywell be the prinipal reason for the rapid derease of measured ross-setionsfor the formation of very heavy elements.A seond fator, whih ats in the opposite diretion, is present in the aseof reations at bombarding energies designed to leave the ompound nuleuswith a given exitation energy, for example the 13 MeV in the ase of thereations illustrated in Fig. 7. As an be seen from this �gure, the typialCoulomb barrier in the entrane hannel would prevent the relatively lighterprojetiles up to 70Zn from even ahieving ontat between the half-densitynulear surfaes. The implied hindrane, as represented by the size of theCoulomb barrier that protrudes above the level of the bombarding energy,is most pronouned for the lightest projetiles, dereasing with projetilesize, and eventually disappearing altogether for the reation 86Kr + 208Pb.This lowering of the `Coulomb shield' for superheavy reations [13,14℄ is anelementary onsequene of the energetis of nulear deformations. Thus,the energy needed to deform a ompound nuleus into the Coulomb barrieron�guration of two touhing fragments is resisted by the surfae energy andfavoured by the eletrostati energy. Hene, for a su�iently large hargeon the system, the Coulomb barrier will eventually sink below the level ofthe ground-state energy (or this energy augmented by some onstant, likethe 13 MeV in the examples above). This is illustrated in Fig. 8.Coming bak to Fig. 7, the hindrane against ahieving ontat would be100% up to about 70Zn, and zero afterwards, if a lassial, one-dimensionalalulation were used. In a more realisti treatment, the hindrane wouldderease gradually, and a quantitative desription of suh `sub-barrier' fusionprobabilities has been available for some time in terms of the notion of barrierheight distributions [15℄.Working together with K. Siwek-Wilzy«ska and J. Wilzy«ski, we havebeen led by the above onsiderations to the following three-stage piture ofthe fusion proess of heavy nulear systems:Stage 1: Overoming the Coulomb barrier in order to ahieve ontat.Using existing theories of sub-barrier fusion, the relevant probabilities anbe estimated. After ontat, a snap from the fusion valley into the �ssionvalley follows. The assoiated drop in the potential energy is assumed toheat up the system to a temperature T .Stage 2: Overoming the energy barrier � neessary to reah the om-pound nuleus from the �ssion valley after the snap. We assume that thisis ahieved by a thermal �utuation with a probability approximated byexp(��=T ).Stage 3: Surviving the ompetition between �ssion and neutron emission.Standard formulae for the relevant probabilities are again available.
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