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The Time Dependent Resonating Hartree-Fock (TD Res HF) theory
is expected to work better than the usual TDHF one if we describe large-
amplitude collective motions in soft nuclei with large quantum fluctuations.
To make an essential feature of the TD Res HF theory clear, we apply it
to the exactly solvable Lipkin model. We adopt an adiabatic perturba-
tive approach to a solution of the TD Res HF equation and derive inertia
parameter of kinetic energy and potential energy of the collective motion.

PACS numbers: 11.30.Rd, 12.39.Ki, 14.40.Aq

1. Introduction and basic assumptions

In a series of papers Fukutome and one of the present author (S.N.) have
proposed theories called the time dependent resonating Hartree—Fock [1]
(TD Res HF) (referred to as I) and the time dependent resonating Hartree—
Bogoliubov [2] (TD Res HB) theory to describe collective excitations in
normal fermion systems and/or superconducting fermion systems with large
quantum fluctuations, respectively. In the TD Res HF and the TD Res HB
theories as well as the Res HF [3] and the Res HB [4] theories, each ground-
state wave function is approximated by superposition of non-orthogonal
Slater determinants (S-dets) or HB wave functions with different correlation
structures. Resonance of S-dets or HB wave functions takes place if a mean-
field energy functional has multiple local minima with near energies. The
theories lead us to approximations called the resonating HF random phase
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approximation [1] (Res HF RPA) and the resonating HB random phase ap-
proximation [2] (Res HB RPA) if a time dependent small fluctuation is taken
into account around the stationary Res HF /HB ground-state solution.

To clarify an essential feature of the Res HF approximation and to show
its advantage over the usual HF theory, we have applied that approximation
to the exactly solvable Lipkin model [5,6] ( [6] is referred to as IT) by making
use of a new orbital optimization algorithm [7]. We have assumed that a Res
HF wave function is superposed by only two S-dets which give corresponding
two local energy minima of monopole deformation. The self-consistent Res
HF calculation in IT produces an excellent ground-state correlation energy
[6,8]. The first application of the Res HB theory had been performed to
a problem of describing resonance of prolate and oblate shapes coexisting
in nuclei by using a schematic model with pairing correlations [9]. We also
have given a relativistic Res HF theoretical description of exotic phenomena
in nuclei standing on the relativistic mean-field spirit [10]. Recently, the
Res HF theory has been successfully applied [11,12] for description of mass
spectra and associated properties of the 7 and ¢ mesons. The Res HF RPA
was applied to the Lipkin model using the stationary solution in IT [13].

The TD Res HF theory is expected to work better than the usual TDHF
theories if we apply them to describe large-amplitude collective motions in
soft nuclei with large quantum fluctuations. The TD Res HF wave function is
given by superposition of non-orthogonal S-dets. The Res HF wave function,
the overlap integral S and the interstate density matrix W between two S-
dets together with the normalization condition are expressed as

W) = Ju)e= lug)eg, (¥ =d" (o] = ciluyl,
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(P|@) = d*Sc= cjSpgcy=1. (1)
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To make the essential features of the TD Res HF theory clear we apply it
to the exactly solvable Lipkin model with two N-fold degenerate levels [5].
For simplicity, we consider the case of two resonating HF energy levels.
We adopt an adiabatic perturbative approach, i.e., the ATDHF approxima-
tion [14], to seek for a solution of the TD Res HF equation. First under
the ATDHF approximation, we consider the first-order part of the coupled
TD Res HF equations of motion for TDHF density matrices, though the
significant lowest order of the approximation arises from the second-order.
Because the ATD Res HF equations can be separated into two types of equa-
tion consisting of only the time-even part and the time-odd one [14]. The
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mixing coefficients are determined by the normaliztion condition. We solve
approximately the first-order TD Res HF equations. Then we can derive
a kinetic energy of second order and obtain a mass term of collective mo-
tion. Thus the ATD Res HF theory leads us to new expressions for inertia
parameter and potential energy of the collective motion.

2. Inertia parameter and potential energy of collective motion
In this talk, starting from the two TD isometric matrices u; and us,

COS ‘91(2) e i3 (¢1(2)+<ﬂ1(2))1
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we have applied the ATD Res HF theory to the exactly solvable Lipkin
model and derived new expressions for the collective mass parameter M (6)
and the collective potential energy V(6).

Defining the collective mass parameter through K = $M(0 )02, we get

—2
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where
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which reduces to the well-known result for the collective mass parameter in
the limit of the single S-det case [15]. The potential energy of the collective
motion is given as

V = —1eN(cosf + $xsin?0) {1+ L (cosHN}m (5)

In the above € and V are kinetic energy and interaction strength of the
Lipkin-model Hamiltonian, respectively.



1092 S. Nisuryama, J. baA PrRovIDENCIA, C. DA PROVIDENCIA

The quantity related to the inverse of the collective mass parameter
WN(H) is plotted against the deformation parameter 6 for N = 10. As nu-
merical calculation shows, in the ATD HF case this quantity has the unusual
feature of not being positive definite for values of x < 1. On the contrary,
the ATD Res HF case causes no difficulty in the physical interpretation the
collective mass parameter. However, in this case, there happens another
difficulty connected with a singularity in the very near regions of 8 = 0 and
0 = +7. This singularity occurs due to the existence of the term

o)

cos2 6

as is seen from Eq. (3). Furthermore, the double minima appears though
in the ATD HF case it does not. As for the deficiency of such singular
behaviours, we may expect to remove it and to have no serious problem if
we drop the restrictions 65 = 61 = 6 and consequently ¢; = ¢ = c.

The collective potential energy is also plotted against the deformation
parameter 6 for N = 10. For x < 1 the collective potential energies for both
the cases take almost same values. But for y > 1 the collective potential
energy in the ATD Res HF case is higher than that in the ATDHF case. It
should be noticed that the behaviour of the former becomes shallower than
that of the latter.

It is a very important and interesting problem to solve an eigenvalue
equation

10 1 0
{ 280M(0)80+V(0)}W—EW, (6)
and to compare the low-lying eigenvalues with the exact ones. We will attack
the problem for a more complicated case 0y # 6 keeping 19 — 19 = m and
solve the Schrodinger equation for the corresponding collective Hamiltonian.
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