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In this contribution we first recall briefly the basic formulae related to
the Dirac mean-field used in conjunction with the Bogolyubov formalism
and particle-number projection. We present some results obtained for cal-
culations of the moments of inertia for Super Deformed (SD) bands in the
A ~ 150 mass-region, and compare them to the experimental ones. It is
shown that this formalism is able to get rid of one of the drawbacks ob-
served in standard Woods—Saxon or Hartree—Fock mean-field calculations,
namely the systematic overestimation of the calculated moments of inertia.

PACS numbers: 21.60.-n, 21.10.Pc, 21.30.-—x

1. Introduction

The question of (near) non-existence of pairing in the superdeformed
bands of the rare-earth nuclei has been often posed and very often it has been
assumed that the pairing is negligible. Some authors present the arguments
that instead a non-negligible influence of pairing in these nuclei should still
be present. The results presented in this article shed some light on this
problem in nuclear structure physics of superdeformed nuclei.

* Presented at the XXXV Zakopane School of Physics “Trends in Nuclear Physics”,
Zakopane, Poland, September 5-13, 2000.
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2. Theoretical method

In this section we briefly outline the theoretical method used for the
calculation of the SD bands investigated. First, the linearized version of
the Dirac mean-field equation is solved in order to obtain the fermionic
single-particle eigenstates. Then the residual monopole-pairing interaction
is introduced and the Bogolyubov Cranking (HFBC) equations solved by
taking into account explicit particle-number projection'.

It can be shown that under realistic conditions valid for the nuclear cases
investigated here, the standard Dirac equation for a nucleon

{eG- 5+ V(@) +8 [moc? + 5]} whn = Bt M

reduces to the following energy-linearized equation for the grand component
& of the Dirac field

{(a&-m (5 -7) + 8(7) +V<f>}fn — entn @

1
2 (7)
which is solved by diagonalization in a Cartesian harmonic oscillator basis.
In the latter equation m* stands for the reduced mass and is defined as

m*(7) = moc? [ (7) — V(7 )], where § and V represent the scalar and

vector potentials respectwely, as described e.g. in Ref. [1]. In the linearized
Dirac equation ( ) the eigenvalues are counted with respect to moc?, i.e.
E, = e, + moc?. The solutions to Eq. (2) serve as input to pairing calcu-
lations. For a review of the standard cranking Bogolyubov type formalism
the reader is referred to e.g. Ref. [2]. In the calculations, particle-number
projection is introduced explicitly by making use of the procedure described
in Ref. [3]. We recall that the particle-number projection operator can be
defined as

R 1 [27 I
Qv =go | dpe? . (3)

The standard monopole-pairing Hamiltonian is defined as

Zezcc - Zc&cc (4)

i>5>

! Strictly speaking, we do not solve the full Hartree-Fock-Bogolyubov problem, yet we
use the symbol HFBC (Hartree—Fock—Bogolyubov) similarly to many other authors,
i.e. we solve selfconsistently the pairing channel in the Hamiltonian.
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where the indices i represent the eigenstates of the one-body part of the
Hamiltonian, and ¢ their time-reversed conjugates. If |HFB) represents the
HFB solution, the corresponding number-projected state can be obtained as

IN) = Qny |HFB), (5)

1
VN
and one can show (see Ref. [3]) that the expectation value of the monopole
pairing Hamiltonian in this state is given by the expression

Ny,
(N|H|N) —225ZU Zuzvzu]vj N Z a Vi | (6)
i>

i>7>

In the last expression the coefficients u; and v; are those describing the
standard BCS-type wave-function. The various coefficients N; and NN;; are
given in Ref. [3]. We use a slightly generalized version of this formalism so
that the cranking term can be treated as well.

3. Results and conclusions

In this section we would like to illustrate the method by studying the
case of the SD ground-state band of the nucleus '*?Dy. In Figs. 1 and 2 are
plotted the calculated dynamical and kinematical moments of inertia in the
case of no pairing and compared to the cases when the pairing correlations
are taken into account. Fig. 1 corresponds to the results obtained with
the Woods—Saxon mean-field with the universal parameters, whereas Fig. 2
displays the results corresponding to the Dirac mean-field. In the figures,
the different values of GF stand for different pairing strength factors that
are common for neutrons and protons, and that multiply the neutron (G,,)
and proton (G)) strength parameters defined in Ref. [4] as:

G = [18.95 — 0.078(N — Z)]/A :
{ G, = [17.90 + 0.176(N — Z)]/A. (7)

This is done in order to study the influence of the pairing correlations on
the calculated moments.

As we can see from the figures, the results obtained with the Dirac mean-
field seem to reproduce markedly better the observed moments, both dynam-
ical and kinemetical. In both mean-field calculations one notices that the
effect of pairing on the kinematical moments is to decrease the correspond-
ing values as compared with the no-pairing case, and this effect seems to
be in accordance with the generally observed behavior. On the contrary,
one can see that the effect of pairing on the dynamical moments of inertia
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Fig. 1. Calculated dynamical (left) and kinematical (right) moments of inertia ob-
tained with the Woods—Saxon mean-field with the so-called “universal parameters”,
for the superdeformed ground state band in the nucleus '°2Dy. The dots correspond

to the experimental values.
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Fig.2. The same as in Fig. 1, but for the Dirac mean-field.

is just the opposite: an increase of the calculated values is observed when
the pairing is used. It is quite obvious from the figures that the results
obtained with the Dirac mean-field are much more in accordance with the
experimental ones. The too large moments of inertia calculated with the
standard Woods—Saxon mean-field also appear if Hartree-Fock calculations
with Skyrme interactions are performed, as it is shown in detail in a recent
article by Aouad et al. (cf. Ref. [5]). In this article it is suggested that one
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can compensate somehow for this effect by introducing a scaling factor to
adjust the calculated results in order to get a better agreement with the
experimental data. However, this prescription seems to be rather artificial
and therefore not very satisfactory. If the Dirac mean-field is used instead,
such a scaling procedure does not seem to be necessary.

The observation that the slopes of the dynamical moments are not well
reproduced in either case may originate from the fact that as the crank-
ing frequency increases the deformation of the mean-field is kept constant.
The details are under investigation and the corresponding results will be
published elsewhere.
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