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ROTATING DIRAC MEAN-FIELDAND PARTICLE-NUMBER PROJECTIONCALCULATIONS FOR SUPERDEFORMED NUCLEI�H. MoliqueInstitut Universitaire de Formation des Maîtres d'Alsa
eand Institut de Re
her
hes Subatomiques67037 Strasbourg Cedex 2, Fran
eand J. DudekUniversité Louis Pasteur and Institut de Re
her
hes Subatomiques67037 Strasbourg Cedex 2, Fran
e(Re
eived O
tober 30, 2000)In this 
ontribution we �rst re
all brie�y the basi
 formulae related tothe Dira
 mean-�eld used in 
onjun
tion with the Bogolyubov formalismand parti
le-number proje
tion. We present some results obtained for 
al-
ulations of the moments of inertia for Super Deformed (SD) bands in theA � 150 mass-region, and 
ompare them to the experimental ones. It isshown that this formalism is able to get rid of one of the drawba
ks ob-served in standard Woods�Saxon or Hartree�Fo
k mean-�eld 
al
ulations,namely the systemati
 overestimation of the 
al
ulated moments of inertia.PACS numbers: 21.60.�n, 21.10.P
, 21.30.�x1. Introdu
tionThe question of (near) non-existen
e of pairing in the superdeformedbands of the rare-earth nu
lei has been often posed and very often it has beenassumed that the pairing is negligible. Some authors present the argumentsthat instead a non-negligible in�uen
e of pairing in these nu
lei should stillbe present. The results presented in this arti
le shed some light on thisproblem in nu
lear stru
ture physi
s of superdeformed nu
lei.� Presented at the XXXV Zakopane S
hool of Physi
s �Trends in Nu
lear Physi
s�,Zakopane, Poland, September 5�13, 2000.(1107)
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al methodIn this se
tion we brie�y outline the theoreti
al method used for the
al
ulation of the SD bands investigated. First, the linearized version ofthe Dira
 mean-�eld equation is solved in order to obtain the fermioni
single-parti
le eigenstates. Then the residual monopole-pairing intera
tionis introdu
ed and the Bogolyubov Cranking (HFBC) equations solved bytaking into a

ount expli
it parti
le-number proje
tion1.It 
an be shown that under realisti
 
onditions valid for the nu
lear 
asesinvestigated here, the standard Dira
 equation for a nu
leonn
~� � ~p+ V̂ (~r) + � hm0
2 + Ŝ(~r)io  n = En n (1)redu
es to the following energy-linearized equation for the grand 
omponent� of the Dira
 �eld�(
~� � ~p) 12m?(~r)(
~� � ~p) + Ŝ(~r) + V̂ (~r)� �n = �n�n ; (2)whi
h is solved by diagonalization in a Cartesian harmoni
 os
illator basis.In the latter equation m? stands for the redu
ed mass and is de�ned asm?(~r) = m0
2 + 12 hŜ(~r)� V̂ (~r)i, where Ŝ and V̂ represent the s
alar andve
tor potentials respe
tively, as des
ribed e.g. in Ref. [1℄. In the linearizedDira
 equation (2) the eigenvalues are 
ounted with respe
t to m0
2, i.e.En = �n +m0
2. The solutions to Eq. (2) serve as input to pairing 
al
u-lations. For a review of the standard 
ranking Bogolyubov type formalismthe reader is referred to e.g. Ref. [2℄. In the 
al
ulations, parti
le-numberproje
tion is introdu
ed expli
itly by making use of the pro
edure des
ribedin Ref. [3℄. We re
all that the parti
le-number proje
tion operator 
an bede�ned as Q̂N = 12� Z 2�0 d� ei�(N�N̂) : (3)The standard monopole-pairing Hamiltonian is de�ned asĤ =Xi "i
yi 
i �G Xi>j> 
yi 
y~i 
~j
j ; (4)1 Stri
tly speaking, we do not solve the full Hartree�Fo
k�Bogolyubov problem, yet weuse the symbol HFBC (Hartree�Fo
k�Bogolyubov) similarly to many other authors,i.e. we solve self
onsistently the pairing 
hannel in the Hamiltonian.
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es i represent the eigenstates of the one-body part of theHamiltonian, and ~i their time-reversed 
onjugates. If jHFBi represents theHFB solution, the 
orresponding number-proje
ted state 
an be obtained asjNi = 1pN0 Q̂N jHFBi ; (5)and one 
an show (see Ref. [3℄) that the expe
tation value of the monopolepairing Hamiltonian in this state is given by the expressionhN jĤ jNi = 2Xi> "iv2i NiN0 �G0�Xi>j>uiviujvjNijN0 �Xi> v4i NiiN01A : (6)In the last expression the 
oe�
ients ui and vi are those des
ribing thestandard BCS-type wave-fun
tion. The various 
oe�
ients Ni and Nij aregiven in Ref. [3℄. We use a slightly generalized version of this formalism sothat the 
ranking term 
an be treated as well.3. Results and 
on
lusionsIn this se
tion we would like to illustrate the method by studying the
ase of the SD ground-state band of the nu
leus 152Dy. In Figs. 1 and 2 areplotted the 
al
ulated dynami
al and kinemati
al moments of inertia in the
ase of no pairing and 
ompared to the 
ases when the pairing 
orrelationsare taken into a

ount. Fig. 1 
orresponds to the results obtained withthe Woods�Saxon mean-�eld with the universal parameters, whereas Fig. 2displays the results 
orresponding to the Dira
 mean-�eld. In the �gures,the di�erent values of GF stand for di�erent pairing strength fa
tors thatare 
ommon for neutrons and protons, and that multiply the neutron (Gn)and proton (Gp) strength parameters de�ned in Ref. [4℄ as:� Gn = [18:95 � 0:078(N � Z)℄=AGp = [17:90 + 0:176(N � Z)℄=A : (7)This is done in order to study the in�uen
e of the pairing 
orrelations onthe 
al
ulated moments.As we 
an see from the �gures, the results obtained with the Dira
 mean-�eld seem to reprodu
e markedly better the observed moments, both dynam-i
al and kinemeti
al. In both mean-�eld 
al
ulations one noti
es that thee�e
t of pairing on the kinemati
al moments is to de
rease the 
orrespond-ing values as 
ompared with the no-pairing 
ase, and this e�e
t seems tobe in a

ordan
e with the generally observed behavior. On the 
ontrary,one 
an see that the e�e
t of pairing on the dynami
al moments of inertia
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ulated dynami
al (left) and kinemati
al (right) moments of inertia ob-tained with the Woods�Saxon mean-�eld with the so-
alled �universal parameters�,for the superdeformed ground state band in the nu
leus 152Dy. The dots 
orrespondto the experimental values.
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GF=1.20Fig. 2. The same as in Fig. 1, but for the Dira
 mean-�eld.is just the opposite: an in
rease of the 
al
ulated values is observed whenthe pairing is used. It is quite obvious from the �gures that the resultsobtained with the Dira
 mean-�eld are mu
h more in a

ordan
e with theexperimental ones. The too large moments of inertia 
al
ulated with thestandard Woods�Saxon mean-�eld also appear if Hartree�Fo
k 
al
ulationswith Skyrme intera
tions are performed, as it is shown in detail in a re
entarti
le by Aouad et al. (
f. Ref. [5℄). In this arti
le it is suggested that one



Rotating Dira
 Mean-Field and : : : 1111
an 
ompensate somehow for this e�e
t by introdu
ing a s
aling fa
tor toadjust the 
al
ulated results in order to get a better agreement with theexperimental data. However, this pres
ription seems to be rather arti�
ialand therefore not very satisfa
tory. If the Dira
 mean-�eld is used instead,su
h a s
aling pro
edure does not seem to be ne
essary.The observation that the slopes of the dynami
al moments are not wellreprodu
ed in either 
ase may originate from the fa
t that as the 
rank-ing frequen
y in
reases the deformation of the mean-�eld is kept 
onstant.The details are under investigation and the 
orresponding results will bepublished elsewhere. REFERENCES[1℄ P. Ring, Prog. Part. Nu
l. Phys. 37, 193 (1996).[2℄ M.J.A. de Voigt, J. Dudek, Z. Szyma«ski, Rev. Mod. Phys. 55, 949 (1983).[3℄ S. Frauendorf, Nu
l. Phys. A263, 150 (1976).[4℄ J. Dudek, A. Majhofer, J. Skalski, J. Phys. G 6, 447 (1980).[5℄ N. El Aouad, J. Doba
zewski, J. Dudek, X. Li, W.D. Luo, H. Molique,A. Bouguettou
ha, Th. Byrski, F.A. Be
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hêne, Ch. Fin
k,B. Kharraja, Nu
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