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1. Introduction

Nuclear moments provide stringent tests of nuclear models. There exist
many data on charge distributions of nuclei close to the j stability line [1,2]
and rather limited information on neutron distributions (cf. Ref. [3] for a
review). In this work, we investigated properties of heavy and superheavy
nuclei with 92< Z <128 and 132< N <188. We have first determined self-
consistent single-particle density distributions using the Hartree-Fock-+BCS
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model with the Skyrme interaction SLy4 and the same zero range pairing
force as in a previous study of superheavy nuclei [4,5]. These density dis-
tributions then have been analyzed using the Helm model [6] in order to
extract physical parameters, such as the density radius and surface diffuse-
ness. The mean-field calculations have been performed for spherical and
axially deformed nuclear shapes.

2. Deformed Helm model

The deformed Helm model has been used to analyze the single-nucleon
density distributions. The density radius and the diffuseness parameter are
determined from the form factor of the density distribution,

Flg) = / p(r) 4T B (1)

For axially symmetric density distributions p(r), the corresponding form
factor F(q) is also axially symmetric.

There are various ways to characterize nucleonic densities. In this work,
we have used the Helm model in which the density is approximated by the
convolution of a sharp-surface density with radius R(f) with a Gaussian
profile function fg(r)

() = / & fo(r — ) poO(R(O) — [r']), 2)
where
falr) = — e 37, 3)
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R(0) = c(B) Ro|1+ Y BiYio(6)
I
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The radius Ry in Eq. (4) is the diffraction (box equivalent) radius, and
{1} denotes the set of axial deformation parameters. The folding width o
determines the surface thickness. The quantity ¢(8) in Eq. (4) guarantees
that the volume conservation condition is met. Since the Helm density
p™ (r) must be normalized to the number of particles N, the parameter pg
is given by

3N

= 5
477R% (5)
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The advantage of the Helm model comes from the fact that folding be-
comes a simple product in the momentum space. Using the well-known
identity

00 l
=4r Y > iligr) Y (@) Yim(?), (6)

=0 m=-1
one can rewrite Eq. (1) for the Helm density as follows

\/_ZGI ) Yio(@), (7)

where ,
Gi(g) = e 3 it4n / 41(gr)Yio(#)p08 (R(0) — [r]) dPr (8)

are the coefficients of the expansion of the axially symmetric form factor in
terms of spherical harmonics. In the spherical case, the coefficient G;(q) is
different from 0 only for [ = 0. The first zero of G(q) is uniquely determined
by the radius Ry and the deformation parameters ;. In the spherical case,
the first zero of Go(g) depends only on Ry [7]. (For more discussion of
the deformed Helm model, see Ref. [8].) In this work, we have applied
the following procedure to determine the nuclear radius and the surface
thickness.

First we search for the first zero q(()R) of the monopole part of the form
factor, Go(q). We then take a constant density surface R(®) () corresponding
to p. = 3p(0) and determine its parameters according to the formulae

Jor R (6)Yy0 sin 0d6
R = 9
OC(/B) fow YOO sin 0do 3 ( )
_ Jy RU(0)Yo sin0df (10)
B Roc(B)
Substituting the parameters Ry, 5; into Eq. (3) we determine the first zero

q(()H) of Go(q) and compare it to q(()R). If they are not equal, the quantity p,

is varied until the condition
g5 = i (11)

is achieved. The surface thickness parameter o can be computed by com-
paring the values of the microscopic and Helm monopole form factors at the
first maximum g, [7]:
9 W
o2 = “p2o (gm)
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3. Results

The values of Ry and ¢ obtained for nuclei ranging from U to Z = 128
are plotted as a function of N in Figs. 1 (proton densities) and 2 (neutron
densities). We have considered deformed (portions (a) and (c) of the figures)
and spherical (parts (b) and (d)) configurations. Due to self-consistency, r¢
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Fig.1. Proton Helm parameters Ry and ¢ parameters obtained for spherical and
axially deformed shapes.

parameters (rg = Rg/AY?) calculated under the constraint of a spherical
shape are systematically greater. However, as will be discussed in the forth-
coming publication, this conclusion does not hold for the r.m.s. radii. In
Fig. 2(c) one observes three minima in o at N = 152, 162, and 184. Fol-
lowing the reasoning given in Ref. [7], one can conclude that these minima
are related to the large energy gaps obtained for these neutron numbers [4].



Single-Nucleon Densities in Superheavy Nuclei 1117

ro/fm

136 144 152 160 168 176 184
N

1.00- C)| 1o
] | SLy4 2
sph.

1201h
18827
» [/
.. I/
oo,o&"'.. 14 128
[ 4
R
P oR1SY
136 144 152 160 168 176 184 136 144 152 160 168 176 184
N N

Fig.2. Neutron Helm parameters Ry and o parameters obtained for spherical and
axially deformed shapes.

For the protons (Fig. 1(c)), the energy gap occurs for Z = 108 [4] but the
o parameters are very close for Z = 104, 106, 108. The surface thickness
increases for Z = 110, 112, 114, 4.e., when nucleons occupy orbits lying
above the energy gap Z = 108.
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