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THE EFFECTIVE CHIRAL MEAN-FIELD THEORY
FOR SUPERHEAVY NUCLETI* **
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The effective chiral mean-field model of Furnstahl, Serot and Tang
(FST) is proposed to examine stability of superheavy nuclei. The FST
model is an example of a nuclear effective field theory where the hadronic
Lagrangian is constructed according to the symmetries of quantum chro-
modynamics and the “naturalness” condition.
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1. Introduction

The search for SuperHeavy Elements (SHE’s) for more than 30 years has
been an area of active experimental and theoretical investigation. The latest
experimental successes in the synthesis of SHE’s (for review see, e.g. [1])
cause this part of nuclear physics alluring.

Most of the theoretical calculations on ground-state and decay properties
of SHE’s have been performed with Microscopic-Macroscopic (MM) models,
where a global tendency of the nuclear energy is obtained from the differ-
ent macroscopic models and the local (quantum) fluctuations by use of a
Strutinsky’s method [2].

From the MM models it is expected that a spherical doubly-magic nu-
cleus next to 28 Pb should exist for Z = 114 and N = 184. The enhancement
in nuclear stability is also expected near the deformed shells at Z = 108 and
N =162, what is consistent with recent experimental results.

Masses of SHE’s have been also calculated in the Fermion Dynamical
Symmetry Model (FDSM) [3], where SU(2) and SU(3) dynamical symme-
tries connected with pairing and quadrupole interactions, relatively are taken
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into account. In the FDSM model the spherical double-magic nucleus is
shifted downward in neutron number in comparison with the MM predic-
tion and found at Z = 114 and N = 164.

At the more fundamental level, the ground-state properties of SHE’s
have been investigated in self-consistent models starting with an underlying
nucleon—nucleon interaction. In [4] the nonrelativistic Skyrme-Hartree-Fock
(SHF) model [5] with different types of effective interactions has been used
and compared with the MM results. The Hartree-Fock—-Bogoliubov (HFB)
approach with the Gogny force has been used to study the ground-state
properties of about one hundred nuclei with 104 < Z < 128 in [6].

The Relativistic Hartree-Bogoliubov (RHB) model in the spherical limit
[7] and the axially deformed Relativistic Mean-Field (RMF) model [8] have
been employed for SHE’s in [9]. The RMF model has been also preformed
for SHE’s in [10-12| and more recently in [13,14], where the shell structure
of SHE’s within the SHF and RMF models has been compared for differ-
ent parametrization. Authors have concluded that all used Skyrme models
predict the strongest shell effect at Z = 124, 126 and N = 184. On the
other hand, in RMF approaches the strongest shell stabilization appears for
Z =124 and N = 172.

The uncertainty in predictions of the stability for SHE’s encourages to
employ new more fundamental theoretical nuclear models. Quantum chro-
modynamics (QCD) is nowadays the established theory of the strong inter-
actions. On the other hand, at low-energy where non-perturbative effects of
QCD dominate, the relevant degrees of freedom are not quarks and gluons
but hadrons. These two facts one has to take into account in constructing
the modern nuclear theory.

It is generally believed that an important clue toward understanding
nuclear phenomena in the context of QCD is the chiral symmetry and the
concept of the effective field theory (EFT) see, e.g. [15]. Almost perfect
chiral SU(2)r, x SU(2)r symmetry of QCD is associated with the fact that
the up and down quarks are very light. This symmetry is spontaneously
broken to its vectorial subgroup SU(2)y with the appearance of Goldstone
bosons, which are the pseudoscalar mesons (pions).

The EFT technique is based on a famous “theorem” by Weinberg [16]:
When we calculate a physical amplitude from Feynman diagrams using the
most general Lagrangian that involves the relevant degrees of freedom and
satisfies the assumed symmetries of the underlying high-energy theory, we are
simply constructing the most general amplitude that is consistent with general
principles of relativity, quantum mechanics, and the assumed symmetries.
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2. Effective chiral Lagrangian for nuclei

One of the latest attempts at formulating EFT for finite nuclei and
nuclear mater is the generalization of Walecka quantum hadrodynamics
(QHD) [17, 18] by Furnstahl, Serot and Tang (FST) [19-21]. The effec-
tive chiral Lagrangian of FST is expanded in powers of fields and their
derivatives, with terms organized by applying Georgi’s “naive dimensional
analysis” [22-24| and “naturalness” condition.

The relevant degrees of freedom are nucleons N(z) = <fl g)) ), pions
m(z) = m(z) 7 (with 7% being Pauli matrices), and the low-lying non-
Goldstone bosons: isovector-vector p meson p,(z) = pu(z) %T, isoscalar—
vector meson w represented by a vector field V,,(z), and an effective isoscalar—
scalar field ¢(z) to simulate two-pion exchange (o meson). Chiral symme-
try SU(2)L, x SU(2)g is realized nonlineary [25,26] and U(z) = £2(z) =
exp (2im(z)/fx) € SU(2) is presumed to describe the pion field, where
fr = 93MeV is the pion-decay constant. We can also define an axial vector
field a, = —%(f@ﬁ — £0,¢h) = aL , a polar vector field v, = —%(f‘kauf +
fauff) = UL , and the covariant tensors vy, = 0,v, — Oyv, + i[vy,v)] =
—ilay,av],  puy = Dyupy—Dypu+iglpu, pv] , where Dypy, = 0upy +i[vy, py]
is the chirally covariant derivative of the rho field.

The effective Lagrangian can be written as

L=Lx+Lyv+ LEM, (2.1)

where each term is truncated by considering the various values of v = d +
5 + b, where d is the number of derivatives, n the number of nucleon fields
and b the number of non-Goldstone boson fields in the interaction term.
Through v = 4, the part of the effective Lagrangian involving nucleons may
be written as

Lx(z) = N(i'y“(au + v, +igppu +igv V) + gay ysa, — M+ 9s¢)N

where o, = [V Y]/2, Vi = 0.V, — 0, V), ga = 1.26 is the axial coupling
constant, M = 939MeV is the nucleon mass, g;, fi, (1 = p,v) are vector and
so-called tensor couplings for p and w mesons, g5 is a Yukawa coupling for
the effective scalar field ¢, and k; = 7 is the coupling for higher-order 7 N
interaction. The mesonic part of the Lagrangian up to order v = 4 is
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Ly(z) = % <1 + a1%) 00" ¢ + f—“ tr (9,U0*UT)
+f“m 2t (U + U -2)
1 14 1 (p 14 2f7% 14
—5111‘ (PWPM ) 4 <1 + as M) Vuuvu —Yprr— o mp (pullvu )

gsgb 2 9s2¢2 2 w 1 2 12
2 <1 + M + EW mVV#V + ECOQV(VMV )

2 49
+ <1 + Up%) mfztr (pup) — m3¢* < + 2 6:0 + %9 ) )

3 M 4! M?
(2.3)

where m, = 782MeV,m, = 770 MeV,mg are w,p and o mesons masses,
9prr is the prm coupling. The electromagnetic interactions are described by

1 — 1
,CEM(.’I}) = —ZF“UFHV—GN’yﬂi(l—i-Tg)NAH

FWN)\U’“’N — N'yu(ﬁs + By13)NO, F*

4M

1
—2ef,?A“tr (vyT3) — iFW [tr (t3p"") + 3 V‘“’], (2.4)
y

M

where A, is the electromagnetic field, F},, is the electromagnetic field tensor,
97_501 and A = LA, (1 + 73) + 3 ,\( ),Wlth)\p—1793and)\n—
—1.913 the anomalous magnetic moments of the proton and the neutron,
respectively.

The effective chiral Lagrangian Eq. (2.1) at a given order contains certain
parameters that are not constrained by the symmetries, the so-called low-
energy constants (LECs). Apart from fs, fy, and f,, which are fixed from
the free-space charge radii of the nucleon, the remaining thirteen LECs g,
9vs 9p> Ms M2, Nps K3, K4, Co, Ms, fy, a1, and ag have to be determined from
experimental data. The LECs are defined applying the “naive dimensional
analysis” so that they are assumed to be of order unity (“natural”).
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