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EVOLUTION OF NUCLEAR SHAPES AND EXOTICDECAYS NEAR 56Ni�D. Rudolph, C. Andreoiu, J. Ekman, C. FahlanderDepartment of Physis, Lund University, S-22100 Lund, SwedenA. GadeaLaboratori Nazionali di Legnaro, I-35020 Legnaro, Italyand D.G. SarantitesChemistry Department, Washington University, St. Louis, MO 63130, USA(Reeived November 2, 2000)An overview of reent high-spin nulear struture studies in proton-rihnulides near the doubly-magi isotope 56Ni is presented.PACS numbers: 21.10.�k, 23.20.�g, 23.50.+z, 27.40.+z1. IntrodutionThe reent advent of e�ient 4� Germanium detetor arrays suh asEuroball [1℄ and Gammasphere [2℄ is providing a wealth of exiting andunexpeted results in nulear struture physis [3℄. At many oasions theGermanium arrays are oupled to modern anillary detetor systems. Theseaim, for example, at the detetion of the light partiles, whih are emitted inthe ourse of fusion-evaporation reations, and/or employ reoil separatorsto detet the prompt -radiation in oinidene with one of the reoilingnulei.Suh powerful ombinations signi�antly boosted the studies of light tomedium massN � Z nulei [4℄ � previously, suh investigations were mainlyhampared by:(i) the large number of di�erent residual nulei produed in the reations(up to � 30),� Presented at the XXXV Zakopane Shool of Physis �Trends in Nulear Physis�,Zakopane, Poland, September 5�13, 2000.(703)



704 D. Rudolph et al.(ii) relatively large -ray energies (where detetion e�ienies were low),and(iii) onsiderable Doppler broadening aused by the large angle spread ofreoils indued by harged-partile emission (see also, e.g., Ref. [5℄).Here, reent advanes in high-spin nulear struture studies in the viin-ity of 56Ni shall be presented. 56Ni is generally aepted to represent adoubly-magi spherial nuleus due to the shell gap at partile number 28,whih separates the 1f7=2 shell from the so-alled upper fp shell onsisting ofthe 2p3=2, 1f5=2, and 2p1=2 orbits. The magiity reveals itself by a relativelylarge exitation energy of the �rst 2+ state, and the rather irregular exi-tation sheme, whih is shown on the left hand side of Fig. 1 [6℄. It shouldbe stressed that doubly-magi nulei are important benh marks within thenulidi hart, a point raised in several ontributions to this shool (see,e.g., Ref. [7℄), in partiular related to the disussion of the regime of su-perheavy nulei (see, e.g., Ref. [?, 8℄). The main issue is that these nuleiand their loseby neighbours serve as soures and at as onstraints for theshell-model parameter sets, namely single-partile energies and two-bodymatrix-elements. A brief summary of the physis of the spherial minimumin A � 60 nulei is given is Se. 3.Next to the spherial states the level sheme of 56Ni ontains also tworegular sequenes of -ray transitions, whih begin at about 5 and 9 MeVexitation energy, respetively. They are interpreted as well-deformed rota-tional bands in the seond minimum of the nulear potential [6℄. Suh bandswill be disussed more extensively in Se. 4. The important point here is thattheir observation allows for a omparison of preditions of mirosopi (large-sale) shell-model alulations and mirosopi (e.g., ranked Hartree-Fok)or maro-mirosopi (e.g., ranked Nilsson-Strutinsky) mean-�eld models,i.e., it is possible to investigate the origin of nulear deformation on a fun-damental level.One of the unexpeted results mentioned in the beginning is the so-alled prompt disrete partile emission, whih onnets high-spin states inthe deformed seond well with spherial states in the daughter nuleus. Upto now, this new exoti deay mode has only been found in nulei near theN = Z = 28 doubly-magi isotope 56Ni. Following the �rst ase observed in58Cu [9℄ it was established in the exited rotational band in 56Ni as well. Itis illustrated on the right hand side of Fig. 1. Later-on, a 3.9(3)% �-deaybranh was identi�ed in the deay-out of a band in 58Ni, while in Se. 6two new proton deays from bands in 59Cu and new experimental results ofombined -ray and partile spetrosopy in 58Cu will be presented.
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Fig. 1. Partial level sheme of 56Ni.2. ExperimentsThe nulei in the mass A � 60 region were investigated in a series ofexperiments at Gammasphere and Euroball. Table I summarizes themost reent ones, inluding the institutions involved. In all experiments 4�harged-partile detetor arrays (Miroball [10℄ at Gammasphere andIsis [11℄ at Euroball) were oupled to the -detetor arrays. Typial par-tile detetion e�ienies amount to "p � 80% and "� � 65% in the aseof Miroball, following restritive disrimination proedures (see, e.g.,Refs. [10, 12℄). The respetive numbers for Isis turned out to be lower forthe present Euroball experiment. For most of the experiments neutrondetetors ("n � 5�10%) or dediated neutron arrays ("n � 30%) (Neutron-Shell [13℄ at Gammasphere and NeutronWall [14℄ at Euroball) wereused to identify evaporated neutrons, and thereby disriminating isotopes



706 D. Rudolph et al. TABLE IParameters of our reent experiments in the mass A � 60 region.No. Reation Beam Label Date Target Anillaryenergy detetorsa1 32S+28Si 130 MeV GSFMA73 9/99 thin MB+NS(WashU, Lund, LBNL, ANL)2 36Ar+28Si 148 MeV GSFMA42 12/98 thin MB+SS+n(Lund, WashU, Cologne, UPenn, ORNL, ANL)3 24Mg+40Ca 96 MeV EB98.02 9/98 baked ISIS+NW(Lund, LNL, Cologne, TSL, Surrey, Warsaw, Bogota)4 28Si+40Ca 122 MeV GSFMA66 7/99 thin MB+BGO(LBNL, Lund, WashU, MMaster, Cologne, ANL)aMB: Miroball [10℄; NS: NeutronShell [13℄; SS: Four �E�E Si-strip telesopes; n: 20neutron detetors; Isis [11℄; NW: NeutronWall [14℄; BGO: full BGO information taken.at or beyond the N = Z line. The relatively low -ray multipliities of thepresent experiments allow for a removal of the Heavimet absorbers in frontof the BGO shields at Gammasphere [15℄. This enables event-by-event-ray multipliity and sum-energy measurements, whih provides additionalreation hannel seletivity [16℄. Experiment 2 aimed at high-resolution par-tile spetrosopy. Therefore, the three most-forward rings of Miroball(28 CsI-detetor elements) were replaed by four �E�E Si-strip telesopeswith a total of 4� 16� 16 = 1024 pixels (see Se. 6.3).3. Spherial minimumFigure 2 illustrates the shell struture for spherial and deformed nulearshapes in the viinity of 56Ni. Di�erent from 1f7=2 mid-shell nulei (seeRef. [17℄ and referenes therein) unrestrited full fp shell-model alulationsare not possible at present. For example, the shell-model study of 56Ni [6℄,performed by Poves and o-workers, was 'limited' to six-partile six-hole(6p� 6h) exitations aross the shell gap at partile number 28.Looking at the left hand side of Fig. 2 it is tempting to think that the fullfp model spae should be su�ient to desribe the high-spin states in the56Ni region � there are several orbits available above the gap, and the high-j orbit 1g9=2 seems too far away. In fat, it is possible to desribe the mainfeatures of the experimental deay shemes by simple shell-model alula-tions restrited to 2p-2h exitations [18℄. Nevertheless, there are sequenesin, e.g., 54Fe or 57Ni, whih are learly outside the fp model spae [18℄. In57Ni suh a sequene is loated on top of a level at 3.7 MeV exitation energy,whih was unambigously identi�ed as representing the neutron 1g9=2 single-



Evolution of Nulear Shapes and Exoti. . . 707partile state by means of two linear polarization measurements [19℄. Thisimplies that a proper desription of spherial shell-model states near 56Nineeds to inlude both 1f7=2 holes and 1g9=2 partiles. Suh a model spaeis learly beyond the sope of ontemporary large-sale shell-model alu-lations with a full diagonalization of the Hamiltonian, but with quantumMonte-Carlo tehniques the problem has already been takled [20℄.
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Fig. 2. Shell struture near 56Ni.4. Deformed minimumNext to the spherial shell gap at partile number 28 there is also a gapof similar size for a prolate deformed (�2 � 0:4) 56Ni nuleus (f. Fig. 2),whih is due to a 4p�4h exitation � the [303℄7/2 Nilsson orbit is emptiedand the [321℄1/2 orbit oupied for neutrons and protons. At the same timethe N = 4 high-j low-
 [440℄1/2 intruder orbit reahes the Fermi surfae.It is readily oupied in the yrast deformed and superdeformed bands in58Cu [9℄ and 60Zn [21℄, whih may be alled the 'doubly-magi deformed'(4141) and `doubly-magi superdeformed' (4242) nulei of the mass region,beause large and very stable shell gaps appear for N = Z = 29 at �2 � 0:4and N = Z = 30 at �2 = 0:5 in the rotating frame.Figure 3 provides an overview of rotational bands urrently known in theA � 60 region. Next to a number of straight E2 asades, the �rst of whih
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708 D. Rudolph et al.was disovered by Svensson et al. in 62Zn [22℄, also oupled bands with moreor less intense �I = 1 ross over transitions were identi�ed in the Ni, Cu,and Zn isotopes, whih may arise from single nuleons in (relatively) high-KNilsson orbits of the 1f7=2 shell. The �rst suh rotational band below Ni wasreently found in 57Co [23℄. It should be noted that di�erent from other massregimes almost all of the bands known are linked to the states in the spher-ial minimum, whih �xes their exitation energies and allows for at leasttentative spin and parity assignments. Some of the oupled bands have beenobserved up to terminating spins as well [24℄. Comparisons of preditionsof several mirosopi and maro-mirosopi models to the experimentalobservations have usually a very high level of agreement. Last but not leastthere are a few andidates for magneti rotation in 54Fe, 55Co, and 60Ni.They await, however, on�rmation in terms of lifetime measurements. Suhinvestigations are ongoing.
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Fig. 4. Partial level sheme of 58Ni.The evolution of shapes in the mass region may be followed most beau-tifully in the ase of 58Ni [25℄. Figure 4 provides an extensive (preliminary)exitation sheme of 58Ni studied with three di�erent reations. From ex-periment 4 (f. Table I) an extremely rih level sheme in the spherialminimum was established reahing states up to about 20 MeV exitation en-ergy. 58Ni represented the 2�2p hannel, and was populated with a relativeross setion of about 6%. The results from experiments 2 and 3 (and anearlier Gammasphere experiment) allowed for an extension to 30 MeV ex-itation energy, and the level sheme beomes muh more simple, sine onlyrotational bands appear above 20 MeV. The relative ross setion inreases



Evolution of Nulear Shapes and Exoti. . . 709to some 30% for the 1�2p hannel, whih allows for extensive spetrosopyeven for very weak transitions. Most importantly, an unpreedented disrete� deay from one of the bands ould be established [26℄. Last but not least,experiment 1 populated extremly high-spin states up to 40 MeV exitationenergy in 58Ni via 2p evaporation. The ross setion beomes very small.In essene only the bands on the left hand side of Fig. 4 and their deayare observed. Finally, the topmost transition of 4285 keV in the 4241 bandprobably marks the urrent world reord in terms of rotational frequeny inhigh-spin nulear struture. 5. N = Z issues5.1. T = 0 pairingThe fat that some of the nulei of interest are N = Z nulei immediatelyraises the question whether some in�uene of isosalar or isovetor neutron-proton pairing or neutron-proton pair orrelations are visible in the presum-ably lean on�gurations in the seond minimum. The superdeformed bandin 60Zn reveals a band rossing at a rotational frequeny of ~! �1.0 MeV [21℄,whih an be explained in terms of a band rossing due to the simultane-ous alignment of pairs of g9=2 neutrons and protons. However, the expetedproton alignment in 6130Zn [27℄ and the neutron alignment in 59Cu30 [28℄,are not observed at this frequeny. The expeted alignments in the odd-Aneighbours of 60Zn are either absent, or they our at onsiderably lowerfrequenies, whih may be taken, along with other arguments [29℄, as a signof neutron-proton pairing e�ets. However, the deformations of the threebands are rather di�erent, and the subjet is under disussion (see, e.g.,Ref. [30℄). 5.2. Mirror nuleiAnother topi related to the N = Z line is the study of mirror symme-try. Di�erent from earlier studies of mirror nulei in the 1f7=2 shell (see, e.g.,Ref. [31℄ and referenes therein) suh investigations may nowadays invokemore detailed spetrosopi quantitites suh as branhing ratios, b, multi-pole mixing ratios, Æ, or transition probabilities, B(E2), to obtain limitsfor e�etive operators suh as e�etive harges and e�etive g-fators. Theidea is illustrated in Fig. 5 (see Ref. [32℄ for more details). The solid linesin parts (a) and (b) show the predited ratios of the B(E2; 27=2 ! 23=2�)(a) and B(E2; 17=2 ! 13=2�) (b) values of the two A = 51 mirror nu-lei 5126Fe25 and 5125Mn26, respetively, as a funtion of the e�etive protonharge ep (the sum of e�etive proton and neutron harges is kept onstantat 2.0). For a given shell-model parametrization a preise measurement of
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Evolution of Nulear Shapes and Exoti. . . 711statistis for 59Cu in experiment 4 (f. Table I) as ompared to earlier runs(see, e.g., Ref. [28℄) allowed for the disrimination of �two prompt proton de-ays from two di�erent bands with two di�erent intruder on�gurations withtwo di�erent energies with two di�erent branhing ratios into two di�erentspherial states of 58Ni� [35℄. TABLE IISummary of prompt partile deays in the mass A � 60 region(as of September 2000).Nulide Partile Q-value Branhing Spin Referene(MeV) (%) di�erene56Ni proton 2.57 49(14) (7=2+) [6℄58Ni alpha 7.45 3:9(3) (9�) [26℄58Cu proton 2.34 > 97 (9=2)+ [9℄59Cu proton 1.92 � 4 9=2+ [35℄proton 2.50 � 16 9=2+ [35℄
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Fig. 6. Proton enter-of-mass energy spetra for two prompt proton deays in 59Cu.See Ref. [35℄ for more details.Figure 6 shows proton enter-of-mass energy spetra (f. Se. 6.3) inoinidene with the yrast superdeformed band (4241) [Fig. 6(a)℄ [28℄ andan exited rotational band (4141) in 59Cu [Fig. 6(b)℄ [35℄. The spetra arealso subjet to an overall 2�2p partile gate, sine 59Cu represents the 2�1pevaporation hannel of the experiment, and the seond proton of the gateshall be the deay proton. Only protons deteted in the �rst four rings ofMiroball are used to inrement the spetra in Fig. 6 (f. Ref. [12℄),and the �bakground� of evaporation protons has been subtrated [35℄. Thepeak energies of 2.0(1) and 2.5(1) MeV are in agreement with the Q-valuesbetween the superdeformed 11921 keV 25=2+ state in 59Cu and the spherial8+ yrast state in 58Ni, and the well-deformed 11984 keV 23=2� level in59Cu and the 7� yrast state in 58Ni, respetively. The deay paths are



712 D. Rudolph et al.�xed also due to -ray oinidenes between transitions in the parent anddaughter nuleus, and the branhing ratios were determined to � 4% and� 16%, respetively [35℄. In both ases the deaying proton appears to bethe single 1g9=2 proton in the band on�guration. Table II summarizes themain quantities for the presently (September 2000) known prompt partiledeays. 6.2. The lifetime of the proton-deaying state in 58CuExperiment 3 was aiming mainly at eletromagneti deay properties ofmass A � 60 nulei. Applying the Doppler Shift Attenuation Method tolevels in 58Cu, lifetimes of individual states at the bottom of the rotationalband ould be determined [36℄. The 830 keV line, whih depopulates the9745 keV state and feeds the proton-deaying level at 8915 keV, revealsboth a stopped and a shifted omponent in its lineshape observed in thebakward-angle Cluster setion [f. Fig. 7(a) and (e)℄. Sine the 3701 keV9=2+ daughter state in 57Ni has a lifetime in exess of two pioseonds,energy orrelations between the 830 keV  ray measured in the Clusterdetetors and the 2.3 MeV proton peak [9℄ in the most forward detetorelements of Isis were studied. The result is shown in Fig. 7. The upper rowshows spetra obtained from a hannel-seleted E-Ep;lab matrix, while forthe lower row a seond  ray orresponding to one of the transitions in the58Cu band had to be deteted.
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Fig. 7. Proton- energy orrelations. See text for details.Figures 7(a) and (e) present the total projetions of the two matries nearthe 830 keV line. Three regions are indiated, whih orrespond to stopped,slightly shifted, and shifted omponents of that transition. Figures 7(b)�(d) and 7(f)�(h) are the orresponding bakground-subtrated oinidentproton-energy spetra. The solid lines are Monte-Carlo simulations [37℄ of



Evolution of Nulear Shapes and Exoti. . . 713the most forward ring of Isis. The basi result is that the shifted omponentof the -ray is in essene in oinidene with a shifted omponent of theproton line (region 3), while the gate on the stopped omponent of the -ray brings bak the stopped omponent of the proton peak (region 1). Hene,the lifetime of the partile deay out of the 8915 keV state is governed by the deay of the 9745 keV state, i.e., onsiderably shorter than the previousupper limit of 3 ns [9℄. 6.3. Partile spetrosopyA detailed study of the prompt partile deays is hampered by the rela-tively large widths of the peaks in the partile enter-of-mass energy spetra(see Fig. 6). It turns out that the main ontribution to the widths is not theintrinsi energy resolution of the CsI elements ofMiroball, but the size ofthe solid angle. The enter-of-mass energy is determined from the measuredenergy in the laboratory system and the kineti energy of the partile at thetime of emission resulting from the motion of the emitting system (reoil),aording to ECM = Elab +Ekin � 2pElabEkinos� (1)with � being the angle between the reoil diretion and the detetor. Ifone for a moment neglets the angle spread of the reoils after the evap-oration proess and plugs reasonable numbers for Elab = 6:25 MeV andEkin = 1:25 MeV into this equation for a detetor element in ring 2 of Mi-roball (� = 21Æ � 7Æ) one obtains enter-of-mass energies whih spreadbetween ECM = 2:08 MeV (� = 14Æ) and 2.56 MeV (� = 28Æ), i.e., almost500 keV. To overome this handiap we deided to replae the 28 most for-ward elements ofMiroball with an array of four �E-E Si-strip telesopesproviding some 800 ative pixels instead (see, e.g., Ref. [38℄ for details). Thisredues the geometri opening angle to �� � 2:5Æ for a single pixel and theorresponding energy spread down to �ECM � 80 keV. It is not reasonableto further tighten the angle overage, beause a beam spot of only 2 mm al-most doubles the e�etive angle overage of a pixel, i.e., it will be di�ult tomaintain this geometrial ontribution to the energy resolution below some150 keV throughout a presumed seven-day experiment.The seond (and in the ase of experiment 2 largest) ontribution tothe peak width is the target thikness. A reation an take plae at thebeginning or the end of the target, and it is impossible to determine thepreise spot of an individual reation on an event-by-event basis. Therefore,the kinemati energies for reoiling nulei are di�erent depending on theirtravel paths, hene energy loss, in the target foil. The partiles of interestare emitted most likely after having passed through the remaining path ofthe thin target foil. The unertainty in the value of the reoil veloity (the



714 D. Rudolph et al.diretion an be rather well determined from the energies and diretions ofevaporated partiles) does lead to a kinematial ontribution to the energyresolution of 200-250 keV for a target thikness of 0.5 mg/m2.Finally, the ombination of intrinsi resolutions of �E and E strips (�50-60 keV eah at 12 MeV) and the energy spread indued by � 30 mg/m2thik Pb absorber foils, whih are neessary to protet the array from diretheavy-ion hits, yields an intrinsi ontribution of about 130 keV. The sum ofthe three ontributions amounts to an expeted resolution of about 300 keVfor 2.0�2.5 MeV protons, and a preliminary analysis of atual data on 58Cuyields some 350 keV, whih should be ompared to 700-800 keV obtained forthe earlier experiments (f. Se. 6.1). It is hoped that a detailed and fullanalysis of experiment 2 will reveal possible weak deay branhes from statesknown to partile deay, and to simplify the searh for new ases. In addi-tion, more detailed spetrosopi information suh as angular distributionsor orrelations shall be investigated to, e.g., determine the partile angularmomentum diretly. 7. SummaryThe mass A � 60 region reveals many exiting aspets of nulear stru-ture: (i ) shell-model states near a doubly-magi isotope; (ii ) deformed andsuperdeformed rotational bands in the seond minimum; (iii ) issues relatedto the self-onjugate nature of some nulides; (iv ) the unpreedented exotideay of several of the bands through disrete prompt partile emission inompetition to onventional  deay out mehanisms. The new experimentsaiming at ombined in-beam  and partile spetrosopy are learly hal-lenging the present ombinations of the 4� Ge-detetor arrays and anillarydetetor systems.First of all, D.R. would like to thank the Organizing Committee forthe invitation and kind hospitality during the shool. We are gratefulto those having ontributed to the performane and suessful running ofthe experiments mentioned in the text, namely A. Algora, R.A.E. Austin,D. Balamuth, R. Cardona, M.P. Carpenter, C. Chandler, R.J. Charity,R.M. Clark, M. Cromaz, G. de Angelis, M. Devlin, J. Eberth, P. Fallon,E. Farnea, A. Galindo-Uribarri, J. Garés Narro, P. Hausladen, R.V.F.Janssens, T.L. Khoo, F. Kondev, T. Lauritsen, A.O. Mahiavelli, J. Ny-berg, M. Palaz, Zs. Podolyák, W. Reviol, T. Rodinger, D. Seweryniak,L.G. Sobotka, T. Steinhardt, C.E. Svensson, O. Thelen, V. Tomov, andJ.C. Waddington, as well as for the exellent support from the sta� at thehost laboratories in Argonne and Legnaro. This researh was supportedin part by the Swedish Natural Siene Researh Counil, the U.S. Depar-ment of Energy [DE-FG05-88ER40406(WU)℄, and the European CommunityTMR/LSF Contrat No. ERBFMGECT980110.
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