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We investigate the collisional damping of giant dipole resonance at fi-
nite temperature in the basis of a non-Markovian transport approach. We
perform our calculations in Thomas—Fermi approximation by employing
the microscopic in-medium cross-sections of Li and Machleidt and the phe-
nomenological Gogny force. The results account for about 30% of the
observed widths in '29Sn and 2°®Pb at finite temperatures.

PACS numbers: 21.30.Fe, 24.30.Cz

One of the possible processes contributing to the spreading width of gi-
ant dipole resonance (GDR) at finite temperatures is the damping due to
coupling of the collective state with incoherent 2p—2h states which is usually
referred to as the collisional damping [1-4]|. We investigate the incoherent
two-body collisions in the basis of a non-Markovian transport approach. In
order to assess how much of the total width of GDR is exhausted by de-
cay into incoherent 2p—2h states, we need realistic in-medium cross-sections
which interpolate correctly between the free space and the medium. We em-
ploy the microscopic in-medium cross-sections of the Li and Machleidt [5]
and perform our calculations in Thomas—Fermi approximation. For com-
parison, we also consider the phenomenological Gogny force and the Skyrme
force [6,7].
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We study the collective vibrations in the small amplitude limit of the
extended TDHF theory in which damping due to incoherent 2p—2h decay is
included in the form of a non-Markovian collision term [2]. In the Hartree—
Fock representation, the Fourier transform of the self-energy is given by,

[nk'nlm'ﬁj — nmj'ﬁkm] , (1)
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where n; denotes the finite temperature Fermi—Dirac occupation numbers of
the Hartree-Fock states, n; = 1—n;, Ae = ¢;+¢€j—¢e,—¢y, Q; is the collective
operator associated with RPA mode A, and v is the effective interaction that
couples the ph-space to the 2p—2h configurations. The real and imaginary
parts of self-energy, X)(w) = Aj(w) — £\ (w) determine the energy shift
and the damping width of the collective excitation, respectively [8].

We consider the self energy in Thomas—Fermi approximation, which cor-
responds to a semi-classical transport description of the collective vibrations.
In this approximation, 2p—2h self-energy can be deduced from the above
quantal expression by replacing the occupation numbers with the equilib-
rium phase-space density given by the Fermi-Dirac function n; — f(e,T) =
1/[exp(e — p)/T + 1] with p the chemical potential, and summations over
the 2p—2h states with integrals over the phase-space X' — [ drdp;dp,dpsdp,
[2,9]. Furthermore, spin-isospin effects in the collective vibration can be in-
corporated into the treatment by considering proton and neutron degrees
of freedom separately. Carrying out this semiclassical RPA treatment, we
obtain for the collisional widths of isovector modes I'y = [ drI\(r) [2],

1 = 2
nr) = F)\/dpldpgdpzzdm[(pr"‘W”") <%)

+2Wpyn <%> 1Z f1f2f3 4, (2)

where Ny = [drdp(x,)?*[—(0/0¢)f] is a normalization, Ay, = xa(1) +
XA (2) —xa(3) —xa(4), Axa = xa(1) = xa(2) = xa(3) +xa(4), Z = [0(hwy —
Ae) — §(hwy + Ae)]/hwy, wy is the mean-frequency of the RPA mode, and
xx(t) denotes the distortion factor of the phase-space density in the corre-
sponding mode. In this expression, transition rates Wp,, Wy, Wp, associ-
ated with proton-proton, neutron-neutron and proton—neutron collisions are
given in terms of the corresponding scattering cross-sections as

1 4h do
W(12;34) = WW@‘;(’” + Py —P3 —Dy)- (3)
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We use the formula (2) to calculate the collisional width of the GDR ex-
citation by parametrizing the distortion factor of momentum distribution as
XD = pPi(cos ). Because of momentum conservation, terms involving W,
and Wy, drop out, and the damping is determined by the proton—neutron
collision term. The spin averaged proton—neutron cross-section associated
with an effective residual interaction can be expressed as

dO' T mQ]_ , )
(E)pn = Gy a8 5 H D@ STl S Tl (4

where q and ¢’ are the relative momenta before and after a binary collision,
and (gq; S, T|v|q'; S, T) o represents the fully anti-symmetric matrix element
of the residual interaction between two particle states with total spin and
isospin S and T'.

We calculate proton—neutron cross-section associated with the Gogny
force and the Skyrme force with SkM* parameters [10], and compare them
with the microscopic in-medium cross-section of Li and Machleidt. In Fig. 1
the cross-sections are plotted as a function of density at the bombarding
energy FEj,, = 100 MeV which is equal to twice the energy available in the
centre of mass. For decreasing density, the microscopic calculation approach
the free proton—neutron cross-section and compare well with the experimen-
tal data, whereas the phenomenological cross-sections strongly increase and
reach large values in free space, therefore we can state that the microscopic
calculations of Li and Machleidt provide a more reliable description of the
in-medium cross-sections than those given by the Gogny and the Skyrme
type forces.
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Fig. 1. The proton—neutron in-medium cross-sections as a function of density p at
Elab = 100 MeV.
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We evaluate the integrals in the expression (2) for the damping width of
GDR exactly by neglecting the angular anisotropy of the cross-sections and
making the replacement (do/df2)p, — opp/4m [10]. In numerical calcula-
tions, we determine the nuclear density p(r) in Thomas—Fermi approxima-
tion using a Wood—Saxon potential with a depth Vj = —44 MeV, thickness
a = 0.67 fm and sharp radius Ry = 1.27A'/3 fm, calculate the position de-
pendent chemical potential (e, 7T) in the Fermi-Dirac function f(e,T') at
each temperature, and use the formula fiw = 80A~Y3 for GDR energies.
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Fig.2. The collisional damping width of GDR in '2°Sn and 2°8Pb as a function of
temperature.
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Fig. 2 shows the collisional damping width of GDR in '?°Sn and 28Pb as
a function of the experimental temperature and comparison with data [11].
The calculations with cross-sections of Li and Machleidt exhibit a weaker
temperature dependence than data and account for about 30% of the ex-
perimental damping widths. Since phenomenological cross-sections do not
interpolate correctly between the free space and the medium, their magni-
tude at low densities and in the vicinity of Fermi energy, where the dominant
contributions to damping arise, become much larger than the cross-sections
of Li and Machleidt. As a result, the phenomenological forces predict larger
damping, although the magnitude of the damping is reduced by the effective
mass.

Therefore, to the extend that we accept the validity of the in-medium
cross-sections of Li and Machleidt, we can conclude that the collisional
damping of GDR excitations is not very strong and accounts for about 1/3
of the spreading width in tin and lead nuclei at zero and finite temperatures.
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