INVESTIGATIONS OF NEUTRON DEFICIENT NUCLEI CLOSE TO $^{100}\mathrm{Sn}$ WITH EUROBALL*

M. PALACZ^a, C. FAHLANDER^b, D. SOHLER^c, D. RUDOLPH^b J. BLOMQVIST^d, J. KOWNACKI^a, K. LAGERGREN^d, L.O. NORLIN^d J. Nyberg^e, A. Algora^f, C. Andreoiu^b, G. de Angelis^f, A. Ataq^e D. BAZZACCO^g, L. BERGLUND^b, T. BÄCK^d, J. CEDERKÄLL^d B. CEDERWALL^d, Zs. DOMBRADI^c, B. FANT^h, E. FARNEAⁱ, A. GADEA^{f,j} M. GÓRSKA^k, H. GRAWE^k, N. HASHIMOTO-SAITOH^l, A. JOHNSON^d A. $KEREK^d$, W. $KLAMRA^d$, S. M. $LENZI^f$, A. $LIKAR^m$ M. Lipoglavšek^m, M. Moszyńskiⁿ, D. Napoli^f, C. Rossi-Alvarez^g H. ROTH^o, T. SAITOH^l, D. SEWERYNIAK^p, Ö. SKEPPSTEDT^o M. Weiszflog^e and M. Wolińska^a ^aHeavy Ion Laboratory, University of Warsaw, Warsaw, Poland ^bDepartment of Physics, Lund University, Lund, Sweden ^cInstitute for Nuclear Research, Debrecen, Hungary ^dRoyal Institute of Technology, Stockholm, Sweden ^eDepartment of Neutron Research, Uppsala University, Sweden ^fLaboratori Nazionali di Legnaro, Padova, Italy ^gDipartimento di Fisica and INFN, Sezione di Padova, Padova, Italy ^hDepartment of Physics, Helsinki University, Helsinki, Finland ⁱUniversity of Valencia, Valencia, Spain ^jInstituto de Fisica Corpuscular, Valencia, Spain ^kGSI, Darmstadt, Germany ¹Niels Bohr Intitute, University of Copenhagen, Denmark ^mJ. Stefan Institute, Ljubljana, Slovenia ⁿSoltan Institute for Nuclear Studies, Świerk, Poland ^oChalmers University of Technology, Gothenburg, Sweden ^pArgonne National Laboratory, Chicago, USA

(Received December 1, 2000)

Excited states of nuclei in the vicinity of ¹⁰⁰Sn have been studied using the EUROBALL detector array. Gamma-ray lines from ¹⁰³Sn have been identified for the first time, and a level scheme of low-lying excited states of ¹⁰³Sn has been established. New constraints on energies of single particle orbitals with respect to the ¹⁰⁰Sn core are obtained.

PACS numbers: 21.60.Cs, 23.20.Lv, 27.60.+j

^{*} Presented at the XXXV Zakopane School of Physics "Trends in Nuclear Physics", Zakopane, Poland, September 5–13, 2000.

1. Introduction

The ¹⁰⁰Sn nucleus, the heaviest doubly magic nucleus with equal number of protons and neutrons, provides a unique testing ground for the nuclear shell model. This extremely neutron deficient nucleus, and its closest neighbours in the chart of nuclides, are however not accessible today for in-beam studies. Information about the Single Particle Energies (SPE) and Two-Body Matrix Elements (TBME) with respect to ¹⁰⁰Sn has thus to be deduced indirectly, by studying excited states in more distant neighbours of ¹⁰⁰Sn. An experimental challenge at present is to study excited states of nuclei with a few valence particles outside the doubly-magic core, approaching ¹⁰⁰Sn as close as possible.

2. Experiment

Excited states in close neighbours of ¹⁰⁰Sn have been studied in an experiment performed at Laboratori Nazionali di Legnaro in Italy using the EUROBALL [1] detector array in a configuration consisting of 15 Clover [2] and 26 Cluster [3] composite Compton suppressed Ge detectors, 40 silicon $\Delta E/E$ telescopes [4] for the detection and identification of light charged particles, and a Neutron Wall [5] of 50 liquid scintillator detectors situated in the forward 1π section of the setup. Fusion-evaporation reactions were induced by a ⁵⁸Ni beam with an energy of 240 MeV and an average intensity of 2 pnA, bombarding a 1.4 mg/cm² thick ⁵⁴Fe target on a gold backing. Events were registered if (a) at least one Compton unsuppressed γ -ray was detected in the Ge detectors, or (b) at least 7 Compton unsuppressed γ rays were detected in the Ge detectors. About 2 × 10⁹ events collected during the 76 hours of the effective beam time made possible identification of gamma ray-lines from 24 different neighbours of ¹⁰⁰Sn [6].

3. Results and discussion

In the present experiment γ -ray lines from the ¹⁰³Sn nucleus have been identified for the first time and a level scheme of low lying excited states has been established. The identification of the ¹⁰³Sn γ -ray lines has been done by a comparative analysis of two γ -ray spectra, gated by the requirement that (a) two α particles and one neutron, and (b) two α particles one neutron and one proton are detected. Lines from nuclei produced via the emission of exactly two α particles and one neutron should be present in spectrum (a) but not in spectrum (b), which contained lines from nuclei associated with the emission of additional protons, like ¹⁰²In ($2\alpha n p$) and ¹⁰¹Cd ($2\alpha n 2p$). The ¹⁰³Sn nucleus was produced with a cross section of $5 \pm 3\mu$ b. Note that only an upper limit for this cross section was given in our previous reports [6,7]. The uncertainties in the determination of the cross section are due to the difficulties in estimating the influence of: (a) the above mentioned trigger condition which strongly enhanced neutron evaporation channels, (b) differences in mean γ -ray multiplicity for various evaporation residua which affects the registration probability. Details of the experimental procedure leading to the identification of ¹⁰³Sn γ -ray lines have been described elsewhere [6,7], as well as the discussion of the observed γ -ray coincidences. The level scheme of ¹⁰³Sn is presented in Fig. 1.

Fig. 1. Level scheme of ¹⁰³Sn established in the present work (exp) and results of the shell model calculations (sm). Widths of the arrows indicate transition intensities as seen in the ⁵⁸Ni (240 MeV) $+^{54}$ Fe \rightarrow^{103} Sn $+2\alpha n$ reaction.

The ¹⁰³Sn nucleus may provide the best possible verification of neutron single-particle energies with respect to ¹⁰⁰Sn as long as studies of excited states of ¹⁰¹Sn are not feasible. Prior to the work described here, there was no experimental information on excited states in the ¹⁰³Sn nucleus. Conclusions regarding single particle-energies with respect to ¹⁰⁰Sn based on excited states in ¹⁰³Sn are, however, affected by assumptions about the residual interactions among the three valence neutrons.

Interaction which can be calculated from the bare nucleon–nucleon potential, including also effects of the nuclear medium, is known in other regions to be burdened by significant errors and this limits the exploitation of the powerful shell model technique. Alternatively, one can try to determine the interactions from experimental data. Such an approach is very successful for other doubly magic nuclei, in particular ²⁰⁸Pb, where the experimental levels in close neighbours of the doubly magic core can be reproduced with the precision of the order of 10 keV. In the region of 100 Sn the main difficulty is that only 3 excited states are known in 102 Sn [8], in contrast to an almost complete set of about 40 excited states in 206 Pb. It is thus necessary to extend the calculations to less neutron deficient tin isotopes. Results of such calculations are shown in Fig. 1. The SPE and TBME derived from the Bonn A potential [9] were varied in the shell model code to obtain a good fit to the experimental data on nuclei from 102,103 Sn up to 113,114 Sn. A truncated single particle basis including the $1g_{7/2}$, $2d_{5/2}$, $2d_{3/2}$, $3s_{1/2}$ and $1h_{11/2}$ neutron orbitals was used.

The calculations lead to the conclusion that the spacing of the two most important neutron orbitals for N > 50, $g_{7/2}$ and $d_{5/2}$, is equal to 110 ± 40 keV. The error bar represents the uncertainty related to variations of the effective interactions. Further discussion of the single particle constraints obtained in this work is presented in Ref. [7].

The $7/2^+$ (168 keV), $11/2^+$ (1486 keV) and $13/2^+$ (1785 keV) states are very well reproduced by the calculations. The state at 1197 keV almost certainly corresponds to the first $9/2^+$ shell model state. The interpretation of the 1775 keV state is less straightforward. We would tend to interpret this state as the second $13/2^+$ state, but the calculations do not predict such two close lying $13/2^+$ states. The same kind of deficiency shows up however in 105 Sn, were two $13/2^+$ states were reported [10] with the relative spacing of 66 keV, but the calculations predict a much larger distance between these states (219 keV). The 105 Sn nucleus is relatively strongly populated in the present experiment — about 5% of the trigger preselected yield [6]. The analysis of the level scheme of 105 Sn is currently in progress, and we can already confirm that the two close lying $13/2^+$ states in 105 Sn do exist. Alternatively the 1775 keV level can possibly be the third excited $9/2^+$ state, in agreement with the calculations. An open question is, of course, why such non yrast state should be strongly populated in a heavy ion reaction.

In summary, based on the observation of excited states in 103 Sn, the most accurate estimate to date for the relative spacing of the $1g_{7/2}$ and $2d_{5/2}$ neutron single particle orbitals was obtained. A wealth of information on other nuclei in the region has also been collected, and analysis of the data is in progress.

REFERENCES

- [1] EUROBALL III, A European γ -ray facility, Eds. J. Gerl and R.M. Lieder, GSI 1992.
- [2] P. M. Jones et al., Nucl. Instrum. Methods Phys. Res. A357, 458 (1995).
- [3] J. Eberth et al., Nucl. Instrum. Methods Phys. Res. A369, 135 (1996).
- [4] E. Farnea et al., Nucl. Instrum. Methods Phys. Res. A400, 87 (1997).
- [5] Ö. Skeppstedt et al., Nucl. Instrum. Methods Phys. Res. A421, 531 (1999).
- [6] M. Palacz et al., Proc. Int. Symposium Shell Model 2000, RIKEN, Japan, March 2000; Nucl. Phys. A, in print.
- [7] C. Fahlander et al., Phys. Rev. C, in print.
- [8] M. Lipoglavšek et al., Phys. Lett. **B440**, 246 (1998).
- [9] M. Hjorth-Jensen et al., Phys. Rep. 261, 125 (1995).
- [10] A. Gadea et al., Phys. Rev. C55, 55 (1997).