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1. Introduction

Deformations of different groups and algebras [1,2| has attracted great
attention during the last few years. These mathematical objects called quan-
tum groups or quantum algebras originate in quantum inverse method [3]
and have found many interesting important physical applications. The R-
matrix formulation of the quantum group theory [4], based on the funda-
mental relation of QISM (the FRT relation) has given an additional impulse
for the investigation of these deformed algebras.

As it is well known, quantum groups can be seen as non commutative
generalization of the topological space which have a group structure. Such
a structure induces an abelian Hopf algebra structure [5] on the algebra of
smooth functions on the group. Quantum groups are defined then as a non
abelian Hopf algebras [6]. A way to generate them consists of deforming
the abelian product of the Hopf algebra of functions into a non abelian
one (*-product), using the so called quantization by deformation or star-
quantization |7-9].

The existence of a star product has been studied by Vey [10], Neroslavsky
and Vlassov [11], who proved the existence of a star product on a symplec-
tic manifold with a vanishing third De Rham cohomology group and by De
Wilde and Lecopmte [12] in the case of an arbitrary symplectic manifold.
From a geometrical point of view, Omori and al [13] and Fedesov [14] also
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constructed star products for arbitrary symplectic manifold. The relation
between the De Wilde and Lecompte approach and the Fedesov one is estab-
lished by Deligne [15]. Recently Kontsevich [16], by using different methods
has also construct and classify differential star products on an arbitrary
Poisson manifold.

This quantization technique gives a deformed product once it is assigned
a Poisson bracket on the algebra of smooth functions. In order to obtain
that the deformed algebra is a Hopf algebra, namely a quantum group, the
starting group G has to be endowed with a Poisson—Lie structure. Finally,
using the duality procedure, this quantization leads to the structure of the
quantum algebra on the quantized enveloping algebra of the Lie algebra
corresponding to the above Lie group G .

Quantization deformation of Poisson—Lie group has been studied by

Drinfeld [17] and Moreno and Valero [18] who proved that every exact
Poisson—Lie group can be quantized. And by Etingof and Kazhdan [19,20]
who shows that any Poisson-Lie group admits a local quantization and also
by Bonneau and al [21] and Pincezon and Bidegain [22] who proved re-
spectively that a reductive(general) Poisson—Lie group admits a local formal
quantization such that the comultiplication is the same as in the classical
case. But the problem to find a concrete star product (twist) on a Poisson—
Lie group is not yet solved in general. The only case when it has been
performed [23] concerns the g-deformed Heisenberg algebra, and in [24] a
quantization of Lie-Poisson SL(2) is given up the second order in the defor-
mation parameter. The star-product approach is used also to give a quantum
Lie algebra in [25], to realise both SU,(n) and virasoro algebra in [25], to
study quasi-quantum group structure in [26] and deformed yangians in [27].
The purpose of the present paper is to show explicitly how the star product
on a compact exact Poisson—Lie group leads to the structure of well-behaved
topological quantum algebra on the quantized enveloping algebra of the Lie
algebra of the Lie group, a quantum matrix group structure on the quan-
tized algebra of smooth functions over the Lie group and that equivalent
star-products generate isomorphic topological quantum algebras.
This paper is organized as follows, the second Section is devoted to a re-
view of basic definitions of quantum topological algebras, the third Section
shows explicitly the main result which states that a star product on a com-
pact connected Poisson—Lie group leads to the structure of a well behaved
topological quantum algebra on the quantized enveloping algebra of the Lie
bialgebra corresponding to the above Poisson—Lie group, in Section 4 we
review the relation between stars products and quantum groups (quantum
matrix groups) and the last Section shows that two equivalent star products
generate two isomorphic well behaved topological quantum algebras.
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2. Quantum topological algebras

Given a topological locally convex Hausdorff vector spaces Vi and Vs,
we denote V;®Vs the complete topological vector space projective tensor
product of Vi and V5.

Definition 1 A topological Hopf algebra is a Frechet or dual Frechet and
nuclear topological vector space A with the following continuous and linears
maps:

Product: m: ARA — A

Coproduct: A : A — A®A

e Antipode: S:A— A
e Unity: 1:k— A
e Counity: e: A— k

Satisfying the following relations:

(AQid)A = (id®A)A,
m(S®id)A = m(id®S)A=1o¢,
m(id®1) = m(1®id) = id,
(id®e)A = (e®id)A =id. (1)

Definition 2 A pair (A, R) consisting of a topological Hopf algebra A and
an invertible element R € A®A will be called a quasi-triangular topological
Hopf algebra if

A? = RAR ', (2)
(A®id)R = R“R*®, (3)
(id®A)R = RYVRY. (4)

Here AP = Po A, P is the permutation operator.

A quasitriangular topological Hopf algebra is called triangular if Roy =
R

Coboundary topological Hopf algebras are defined in the same way, but
with (3) and (4) changed by

Ri5.(A®id)R = Ry3.(id® A)R (5)

together with the relation Roy = R1_21 and (e®e)R = 1.
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The symbols R'3, R'2, R?3, R?! have the following meaning: if R = > ai®b
then

R13

|

Zai®1®bia R® = Z 1®a;®b;
- .

2
R'? = Zai@@bi@l, R?' = Zbi@)ai.
i i
For a quasitriangular topological Hopf algebra, we deduce from (2), (3)
that R satisfies the quantum Yang Baxter equation

R12R13R23 — R23R13R12 . (6)

3. Star product and quantum topological algebras

Let G be a compact connected Lie group, and F(G) be the topological al-
gebra of smooth functions on G. Moreover, setting the following continuous
applications:

A(f)(.’L‘,y) :f(xy)a f€ F(G)"'L‘ay €aG,

S(f)(z) = (=),
de(f)(z) = fle),

where J, is the Dirac distribution we get a well-behaved topological Hopf
algebra structure on F' [29].

Now let D'(G) = (F(G))* be the space of compactly supported distri-
butions on G, with strong dual topology; following [29], the transposition
defines a well-behaved topological Hopf algebra structure on D'(G) where
the product is the convolution one, the unit is the Dirac distribution d,
and the counit is the evaluation on 1. In order to check the coproduct, we
introduce the map: § : G — D'(G); defined by

<5$7f>:f($)7 fEF(G)7$EG

it is easily seen that ¢ actually defines a topological inclusion of G as a subset
of D (G), so in the sequel we identify G and §(G). This being done, on has
G+ =0, so vect(G) = D'(G) and the coproduct:

Ay: D'(G) — D' (G)®D'(G) = D' (G x Q)

is given on G by
Ao(z) = 12®z, TE€G. (7)
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The choice of spaces F(G) and D'(G) is not any: one can notice that
some classics sub-spaces of F'(G) are not topological Hopf algebras. For
example, the smooth function with compact support space is not a sub-Hopf
algebra of F'(G) because the coproduct of a function indefinitely differential
with compact support is not necessarily with compact support (it is possible
to translate this in D'(G) by the existence of distribution couples of which
the product of convolution is not defined). Let gy be the algebra of G,
g its complexification, and U(g) the corresponding enveloping algebra. We
identify, as usual, U(g) and the algebra of left invariant differential operators
of finite order on G; if we define a linear map:

i:U(g) — D'(Q)

i(A)(f) = 0(A(f)), A€Ulg),f e F(G). (8)
It is easy to check that 4 is a morphism, so we identify U and i(U) and
consider in the sequel that U(g) ¢ D'(G); and the topological Hopf algebra
structure of D'(G) is exactly the extension of the usual topological Hopf
algebra structure of U(g).
The left and right regular representations of G on F(G) are representa-
tions of D'(G); defined by the formula:

(L(T)f,J) = (f,JT) VfeF(G),TJeDG). (9)
Given, X € U(G) ¢ D'(G), X!(X") is exactly the left(right) invariant dif-
ferential operator corresponding to X, then:
(X'(f).Y) = (f,Y.X),
(X7(f),Y) = (f,S(X).Y) (10)

with Sy is the classical antipode of U(g). We dote the compact connected
Lie group G with Poisson structure, such that for the usual coproduct on
the Hopf Topological algebara F/(G), the Poisson bracket {, } satisfies:

A{f, g} ={A(f), Alg)}, /.8 € F(G). (11)
Equivalently we can consider the Lie algebra g; its dual g* has a bracket :
¢ g Ng" =g (12)

such that its dual ¢ is a 1-cocycle for the adjoint action. If ¢ is the cobound-
ary of some r € g A g (solution of the classical Yang-Baxter equation)

[r,r] =0, (13)
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where the Schouten bracket is defined as follows

[r,r] = [ri2, ri3] + [r12, r23] + [r13, 23],

then the poisson Lie structure is said triangular. In this case the Poisson—Lie
structure on G is given explicitly by:

{o9} =Y r9(X] (D)X} () — X} () X(4)) (14)
ivj

where X] = (R,).X; and X! = (Lg).X; are the right and left vectors fields
on the group G, (X;) is a basis of g , (Rg)«, (Lg)« are the derivatives mapping
corresponding to the right and left translation .

Now we give the following definition |29, 30, 32|

Definition 3 We denote F(G)[[Rh]] the space of formal power series in the
parameter h with coefficients in F(G). A star product on the Poisson—Lie
group is defined as a bilinear map

F(G) x F(G) — F(G)[[h]]
(6,9) — pxp =D hIC;(¢,9) (15)
J

such that

(i) when the above map is extended to F(G)[[h]], it is formally associative
(pxep) xx = *(¥*x); (16)

(i)  Colg, ) = ¢p4p =1p.¢;
(iti)  Ci(, ) ={¢, ¥}
(iv) the two cochains Ck(p,1p) are bidifferential operators on F(G) .

(i) and condition (7i) express that we have an associative algebra (i) and
condition (7i) express that we have an associative algebra deformation in
the sense of Gerstenhaber [31], while condition (7ii) ensures that the corre-
sponding commutator

[f.gle =5(fxg—g*[)

is a deformation in the sense of Gerstenhaber of the Lie algebra (F(G),{, }).
Equivalence of two Gerstenhaber deformations is the associative case (two
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star products * and *') is defined by the existence of formal series of (differ-
entials) operators T'= ) h"T, with Ty = id such that

Tf«xTg=T(f *xg).
By equivalence one may consider only star-products vanishing on constants
Cr(f,c) =Crlc, f) =0, r>1,c€R,f e F(G) and assume that C; = {, }.
In this definition the Hopf algebra F'(G)[[h]], with a new product * and
unchanged coproduct, is considered to be a topological Hopf algebra. we
recall that deformations with unchanged coproduct are called preferred de-

formations [29]. This condition is imposed to quantization because of the
invariance property of the Poisson—Lie group bracket

A({¢,9}) = {A(), AW)} -

It is therefore natural to impose the same compatibility condition of the
star-product with respect to the coproduct of F(G), i.e.:

A(px9) = (A() * A(9)) (17)
is satisfied. The star-product on the right side is canonically defined on
F(G)®F(G) by

(p&Y) * (¢ &Y ) = (¢ * ¢ ) B+ 1)) (18)

Remark: If all C} are a left (right)-invariant bidifferential operators then
the corresponding star product is called a left (right)-invariant one.

Now, using the fact that the enveloping algebra U(g) is isomorphic to
the algebra of left (right) invariant differential operators on G, we deduce
that if C; is a left-invariant two -cochain then there is an element F; €
U(g)®U(g) ¢ D' (G)®D'(G) such that:

Cl(p, ) = F}(¢®1)) (19)

and similarly for the right invariant two cochain there exist an element H; €
U(g)®U(g) C D (G)®D (G) such that:

Cj(¢,9) = Hj (¢&). (20)
If we introduce the two elements of U(g)®U (g)[[h]] ¢ D' (G)&D'(G)[[h]]
F=1+Y Fh,
i>1
H=1+> Hll.
i>1

Then, we obtain the following:
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Proposition 1 The associativity of the left-invariant star-product implies

(Ao®id)F.(F®1) = (id®Ag) F.(1&F) (21)

and the associativity of the right-invariant star-product leads to the following
equality

(S5 (H)®1).(Ae®id) S5 (H) = (1&ST>(H)).(idd Ao)Sy>(H) . (22)

Proof: Writing the left-invariant star product by the following expres-
sion

(¢ ' ¥) = p(F'(p&9)), (23)

where y is the usual multiplication on the algebra of smooth functions over
the group and F = 1 + %7‘ + > ;o Fih', then for any element X in the
enveloping algebra, we have a

((id& o) F' Fia (p&9p&x))) ,
= ((id® Ag) Ag(X), (id® Ag) F' . Fis ($&9®X)) ,

= ((id® Ao)(F)(1&F) (id® Ag) Ao (X)), (d&9h&x)) - (24)
Similarly we found that

(X, (¢ ' )« x) = ((Ao®id)(F)(FR1)(Ao®id) Ag(X), (p@9h&x)) , (25)

so, comparing (24)and (25) we obtain the result (21); the same proof is valid
for the right-invariant one.

Proposition 2 Assume that F' is a left-invariant star product on the group
G, then S?Q(F) 1s a right-invariant star product on the group G.

Proof: by applying the operator (Sy®Sy®5Sy) to the equation (21) and using
the fact that (So®Sp) 0 Ag = AP 05y we found obviously the equation (22).
We define in the following The star product on the compact Poisson—Lie
group by the expression

¢ x 9 = p((S§2) N (F Y .Fl(p&9)) . (26)
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In fact, the product defined in this way is associative; VX € U(g), we have:

(¢ ¥) % x, X)
= (u(SEH) T (F~1) . F (u((F~) F (¢8¢)) @), X)
= (u(pid)((A0®1)((S52) ™ (F~1)").(A0@1) FL((S$H) ™ (F~1)"&1)
(F'&1)(9&yéx)), X)

&id)((Ao@id)((S%)H(F1)").((S$3) 1 (F 1)) &1).(A&id) F!

F'ol

= (u(p

(F'®1) (989 @X)), X) ,
A

= ((Ao®id) (ST~ (F~1)").((S$2) " (F~1))"@1).(Ao&id) F!
(F'&1)(9&péx)), (Aoé)id)Ao( ),

= ((6&0Ex), (F~)E1)(Aoid)(F~"))(Ao®id) Ao(X) (Ao Gid) F.(FEL)))
= ((¢&¥&x), (1&(F 1) (id&A0) ((F 1)) (id& Ag) Ao (X)) (id& Ag) F.(1OF))) ,
= ((id®A0) ((S$H) ™ (F~1)")(16(S§%) " (F~1)") (id% Ag) F

(1&F ))(¢®¢®X) (id©Ag) Ao (X)) ,

= (¢ * (¥ *x), X). (27)

The star-product define a deformation of a quotient algebra F.(G) de-
fined as the set of element of F(G) in a neighbour containing the identity
of G modulo the following relation of equivalence

p~y if (X,p—1p)=0 forany X € U(g) c D'(G),

where (,) is the pairing between F.(G) and U(g) C D'(Q).
The dual F(G) of F.(G) is nothing but the set of distributions on G with
support at the unit element of G. So, if using the L. Schwartz theorem
which states That the set of distributions on G with support at the identity
element of GG is the enveloping algebra of the Lie algebra of the Lie group, we
deduce that a star product provide a deformation of the enveloping algebra.
The quantized enveloping algebra U(g)[[]] is endowed with a structure
of Hopf algebra where the multiplication algebra is the ordinary convolution
on F;(G) and the coproduct A is given by

(Ap(X), 9@¢) = (X, ¢ * ) (28)
for all ,9p € F(G), and X € U(g) in fact:
for X € U(g), ¢,v € F(G) Explicitly:
(X,dx9) = (X,u((S57%) 7 (F7) F(909))
= (Ag(X), (85) H(F 1) Fl(¢&4))
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using the fact that:
X{(4) = X)e(9) = X(9)(e) ,
we obtain:
(X, 6 ) = p((Ao(X)) ((S52)(F ) (&) (e.e).
Then we must calculate first the quantity:

I=((AX)/(S§2)~UFY Fl¢&9))(g.8) -

!

For this, we use the fact that for X € U(g) C D (G) we have
Xg(®) = X'(9)(g) = (05 #c X, 9)
X)g(9) = X7(9)(g) = (So(X) *c g, 4) ,

where #, is the convolution product on U(g) = D'(e) ¢ D'(G) and Jg is
the Dirac distribution at g € G so:

bl

T = ((0;805) e Ao(X), (S$2) H(F 1) Fl(p&9))
= ((5g®5g) *e Ao(X), (Fil *e (5g®5g)a ((5g®5g) *c F, ¢®¢)>) .

Next we use the following notation; for X € D'(@), its dual (denoted X)
€ F(G), then:

I = (F s (3,80). {(35@0) 2 F6@9))-(0(X))(5:8).
= (F1).(699)-(F)-( A (X)) g )

and if we use the following property of the convolution product:

(Y xe X) = (X).(Y),

we have:

(F71)-(609).(A0(X) *c F))(g:8),
((5g®) *c (Ao(X) #c F), F~1).(¢&9)) ,
((F71) #e (65005) ¢ (A0(X) #c F), ($&9))) -

1

Then we have:
(X, d ) = n((AoX) (S5 L (F V) Fl(9&9)) (e e),
F~1) xe (85865) % (Ao(X) %0 F), (¢&9))
Fﬁl) *e AO(X) *e F7 (¢®¢)> )
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which implies that:
Ap(X) =F 1, Ag(X) % F.

Thus
Ap(X) = F LAy X).F. (29)

We can easily show that the twisted coproduct Ap is coassociative, in fact,
by using the main equation (21) and the coassociativity of the classical
coproduct we obtain

(Ap&id)Ap(X) = (id®Ap) Ap(X) .

For the antipode of the quantized enveloping algebra, we recall first that the
antipode Sy of U(g) satisfies the following equation

m(So®id) Ag(X) = m(id®Sp) Ao(X) = e(X)1, (30)

where m is the usual multiplication on the enveloping algebra U(g). F and
F~! can be respectively split as

F = Zak@bk’ F1 = ch®dk
k k

and set u = m(id®Sy)(F~") is an invertible element of U(g)[h] C D'(G)[A],
then we can easily show that the antipode of the quantized enveloping alge-
bra U(g)[h] is given by:

Sp(X) = U.SO(X).U_l , (31)

where 1 = m(Sy®id)F.
Similarly, we can prove that

m(id®@SF)Ap(X) = e(X)1. (32)

In other words, by using (9), (10) we obtain that the antipode of the de-
formed algebra of functions on the group is given by

Su(f) = S((So(u 1)’ f).
Now if we introduce the following element defined by Drinfeld [17]

Rp = Fy'.F, (33)
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then we can easily show that Rp define a quasitriangular structure on the
quantized enveloping algebra U(g)[h]. In fact if using polynomial notation
[18,29], we obtain

(Ap®id)Rr = (F~'&1)(A®id)Rp(F&1),
= Rp(z,z)Rp(y,2). (34)
So,
(Ap®id)Rp = (Rp)13-(RF)23 , (35)

where we have used the definition(33) in the first, sixth and seventh equalities
and the relation (21) writing in polynomial notation for the remaining ones.
Similarly, we obtain

(1dR®AF)Rp = (RFp)13-(RF)12 - (36)
From the fact that ¢ x 1 =1x ¢ = ¢ for all ¢ € F.(G) we deduce that
(id®e)F = (e®id)F = 1 (37)
consequently, X X
(e®id)(RFp) = (id®e)(RFp) =1 (38)
and from the definition(33)we deduce that
(Rp)a1.Rrp=1. (39)

Now using again the expression (33)we obtain

(Ap)” = P(AF),
= P(F7").A¢.P(F) = P(F~").F.Ap.F~'".P(F) (40)

then
(AF)OP = RFAF(RF)il . (41)
From (34) and (41) we show that Rp satisfies the quantum Yang—Baxter
equation
(Rr)12.(Rr)13-(Rr)2s = (Rr)2s.(Rr)is-(RF)12 - (42)
Now using the equations (35), (36) and (42) it is easily seen that the
R-matrix Rp satisfy

(RF)Qg(id®AF)RF = (RF)12.(A®id)RF,

which together with (38)and (41) implies that (U(g)[h], Ar, RFr, SF) is also
a coboundary Hopf algebra, which is an obvious result since a triangular
Hopf algebra is a coboundary one.

Then we have established that a star-product on a compact Poisson—Lie
group (G,r) leads to a well-behaved topological quantum algebra (U(g)[h],
Ap,Rp,Sp), where F =1+ 8r + 3., Fihi and Rp = 1+ hr + ... .
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Theorem 1 Let (U(g)[h], A, R, S) be a well-behaved triangular topological
Hopf algebra then it can be obtained by a star-product on the connected and
simply connected compact Poisson—Lie group (G,r) corresponding to the Lie
algebra g, where R =1+ hr + ... .

4. Star products and quantum groups

The relevance of the previous procedure is that we can get many concrete
solutions of the QYBE by taking different representations of the universal
object R. Thus, if we take a finite dimensional representation p of g in the
algebra of n x n complex matrices M (n, '), we have

S = (p&p)(R) (43)

which satisfies the QYBE
512513523 = 523513512 (44)

and the unitary condition
S8 =1, (45)

where So1 = o(S). We see that this quantization procedure leads in a natural
way to QYBE.

Finally, let us consider again the matrix representation p : g — M(n,C)
consequently the group G is realized as subgroup of GL(n,C). Let T =
(tij)ij—1 be the matrix of coordinate functions on G

tij(8) = 8ij - (46)
Left and right actions of G on matrix coordinates on G given by
(X'tij)(8) = (8X)ij =D 9k Xy
k
(X"ti5)(8) = (X8)ij = D Xingh; - (47)
k

for X €g¢.

On the other hand, let F = (p&p)(F) and defining T, = T&1 and
Ty = 1®T, the x-product between matrix coordinates of G elements can be
expressed in a elegant manner by

Ty sy, Ty = F'TQTF (48)
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applying the flip operator to both sides of this expression we get
Ty, Ty = o(F DT&To(F), (49)
and combining the two above equations we obtain the relation
STy xp, Ty =Ty x, T1S, (50)

which is the well-known formula that gives the commutation relations be-
tween the matrix coordinate functions of G defining the quantum group
Fu(G)

5. Equivalent star product on a Poisson—Lie group

First, we recall [34,35], that two star products #; and %9 on a Poisson-Lie
group are said to be equivalent if there is a series

(0.0
T=id+» WT,,
r=1

where the T, are linear operators on C'°°(G) such that

T(f+18)=Tf*Tg.

Let F and F be the two corresponding 2-cocycles i.e., two invertible element
of the Hopf algebra U(g)[h] C D (G)[h] such that

(A®id)F.Fiy = (id® A)F.Fys
(A®id)F.Fiy = (idQA)F.Fys,

and let A = (U((g)[[W]}. Ar. Bp, Si) and A = (U(g)[[H]), Ag. Ry, S5) be
the resulting well-behaved topological quantum algebras, where

Ap =F.AoF~', Rp=Fy,'F, (51)
Ap=F.A0F', Rp=Fy".F
F=1r.20- ) F=For 44, (52)
then it is easily seen that A can be obtained from A by applying the twist

F=F-'F. In fact R R
AF‘ :F.AF.F_l (53)

Ry = Fy' .Rp.F. (54)
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If the two star products are equivalents i.e. the corresponding elements F
and Fare related by the following expression

F = Ay(EY).F.(EQE) (55)

for some invertible element E of U(g)[[h]] € D'(G)[[h]], then the coproduct
Ap can be rewritten as

Ap(X) = (E'@E YAp(E.X.EY).(EQE). (56)
The two twisted antipodes are related by the following expression
Sz =E"'Sy(E™").Sr.Sy(E).E. (57)
Similarly, the triangular structures are related by
Ry = (E7'®E"Y).Rp.(EQE). (58)

So, the induced isomorphism maps the triangular structures as well.
This say that the processes of quantization-deformation can only give a
genuinely new triangular topological quantum algebra is the two cocycle F
corresponding to the star-product is cohomologically(relatively to the Hopf
algebra cohomology, (see [37] ) non trivial, for example, if the second group
of cohomology for the Hopf topological algebra U(g)[h] vanish then all star-
products on the connected and simply connected compact Poisson—Lie group
corresponding to the Lie bialgebra g are equivalents.
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