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PERTURBATIONS OF PLANAR INTERFACESIN GINZBURG�LANDAU MODELSH. Arod¹, R. Peªka and �. St�pie«Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Cra
ow, Poland(Re
eived February 26, 2001)Certain dissipative Ginzburg�Landau models predi
t existen
e of pla-nar interfa
es moving with 
onstant velo
ity. In most 
ases the interfa
esolutions are hard to obtain be
ause pertinent evolution equations are non-linear. We present a systemati
 perturbative expansion whi
h allows usto 
ompute e�e
ts of small terms added to the free energy fun
tional ofa soluble model. As an example, we take the exa
tly soluble model withsingle order parameter ' and the potential V0(') = A'2 +B'3 + '4, andwe perturb it by adding V1(�) = 12"1'2�i'�i'+ 15"2'5+ 16"3'6:We dis
ussthe 
orresponding 
hanges of the velo
ity of the planar interfa
e.PACS numbers: 05.70.Np, 64.70.Md1. Introdu
tionProperties and evolution of interfa
es is a very interesting topi
 in soft
ondensed matter physi
s, see, e.g., [1℄ for a re
ent review. There are twomain lines of theoreti
al resear
h in that dire
tion. The �rst one, 
omputersimulations, provides a relation to mi
ros
opi
, mole
ular dynami
s level[2, 3℄. In the se
ond approa
h one is satis�ed with a 
oarse-grained des
rip-tion by e�e
tive Ginzburg�Landau models.In the framework of Ginzburg�Landau models the interfa
es are de-s
ribed by parti
ular solutions of pertinent nonlinear evolution equations.The nonlinearity is 
ru
ial for existen
e of these solutions, but it is also aserious obsta
le in obtaining them in an expli
it form. In most 
ases onlynumeri
al solutions are available. A well-known ex
eption is a model whi
happears in the 
ontext of rea
tion-di�usion 
hemi
al pro
esses [4℄, and also isrelated to Landau�deGennes e�e
tive model for nemati
 liquid 
rystals [5℄.It involves a single, non-
onserved, real-valued order parameter '(xk; t), and(1173)



1174 H. Arod¹, R. Peªka, �. St�pie«the free energy fun
tional has the formF0 = Z d3x�12r'r'+ V0(')� ; (1)V0(') = A'2 +B'3 + '4; (2)where r = � ��xk �, � = 1; 2; 3, xk are Cartesian 
oordinates in the spa
e.For simpli
ity we have res
aled xk; ' and F0 so that they are dimensionlessand the 
oe�
ient in front of the quarti
 term in V0(') is equal to 1. The
onstants A;B are positive, and A is restri
ted to the interval 0 < A < 9B232 .Then V (') has two minima and a maximum between them. In this modelexa
t formulas for pro�le and velo
ity of a planar interfa
e are known, see,e.g., [4℄.Exa
tly soluble models provide natural starting points for perturbativeexpansions. If the expression (1) for the free energy is 
hanged a little bit,one may hope that the 
orresponding 
hange of the planar interfa
e 
anbe 
al
ulated with the help of a perturbative expansion around the knownsolution. In this way we would obtain analyti
al results for velo
ity andpro�le of planar interfa
es in a 
lass of Ginzburg�Landau models. Moreover,this would open the way for investigations of evolution of 
urved interfa
esin that 
lass of models be
ause one 
ould use the expansion in 
urvatures [6℄for whi
h the knowledge of planar interfa
es is the only prerequisite.In the present paper we explore the idea of the perturbative expansionfor the planar interfa
es. We show that indeed su
h perturbative s
heme 
anbe 
onstru
ted. Corre
tions to the pro�le are obtained in it as solutions ofordinary, linear di�erential equations, while 
orre
tions to the velo
ity followfrom integrability 
onditions whi
h are due to existen
e of zero-modes. Thistype of integrability 
onditions is well-known in statisti
al physi
s [7℄. Asan example we 
onsider perturbations of the formÆF = Z d3xV1 ;where V1 = 12"1'2r'r'+ 15"2'5 + 16"3'6: (3)Values of the perturbation parameters "1; "2; "3 are su
h that F0 + ÆF isbounded from below. The "1 
orre
tion to the gradient term introdu
esdependen
e on ' of the elasti
 
onstant K = 1+ "1'2. The "2 and "3 termsare 
orre
tions to the potential V0('). The perturbations (3) are vanishingin the disordered phase (' = 0), while in the ordered phase (' 6= 0) theymay give �nite 
ontributions.Our paper is organised as follows. In Se
tion 2 we 
onstru
t the pertur-bative expansion. In Se
tion 3 we apply it to the model (1), (2) with the
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ular perturbation ÆF given by formula (3). Summary and remarks arepresented in Se
tion 4. In the Appendix we show that the perturbatively
al
ulated velo
ity of the planar interfa
e 
oin
ides with the one 
al
ulatedfrom an exa
t formula, provided that the perturbation is not too strong andthat the perturbative series is 
onvergent.2. General stru
ture of the perturbative expansionWe will 
onsider Ginzburg�Landau models in whi
h time evolution ofthe order parameter ' is governed by equation of dissipative type, namely�'�t = �'� V 0(';r') ; (4)where V = V0 + "V1, t denotes a res
aled dimensionless time, � = �xk�xk isthe three-dimensional Lapla
ian, andV 0 = �V�' �r� �V�(r')� :We have assumed that the perturbation V1 does not depend on se
ond andhigher derivatives of '. The r.h.s. of Eq. (4) is equal to the variationalderivative ÆF=Æ' multiplied by �1.The interfa
e is identi�ed with a solution of the evolution equation whi
hinterpolates between minima '+; '� of the potential V . Potential V0 givenby formula (2) has two minima, and the perturbation V1 is by assumptionweak enough, so that also V has just two minima whi
h smoothly mergewith the minima of V0 when V1 is swit
hed o�. In the present paper we
on
entrate on planar interfa
es. Due to translational invarian
e of Eq. (4),it is su�
ient to 
onsider the planar interfa
es parallel to the plane (x1; x2)� then ' is a fun
tion of x3 and t. We require that in the limits x3 ! �1,'(x3; t)! '� ; �x3'! 0 : (5)Let us multiply Eq. (4), in whi
h now r' ! �x3'(x3; t), by �x3' andintegrate it over x3 in the interval (�1;+1). With the help of integrationby parts, and using a formula for the full derivative of V with respe
t to x3,namely dVdx3 = �V�' �x3'+ �V�(�x3')�2x3' ;we obtain the following relation+1Z�1 dx3�t'�x3' = V ('�)� V ('+) : (6)



1176 H. Arod¹, R. Peªka, �. St�pie«It implies that ' has to be time-dependent if the minima '� are nondegen-erate. The simplest way to ensure that the l.h.s. of formula (6) is 
onstantin time and nonvanishing 
onsists in assuming that ' depends only on the
ombination x3 � �t, ' = '(x3 � �t); (7)where � is a 
onstant equal to the velo
ity of the interfa
e. This form ofdependen
e on time is also 
onsistent with boundary 
onditions (5). Forsu
h ', relation (6) 
an be written in the form� = V ('+)� V ('�)R +1�1 dz(�z')2 ; (8)where z = x3 � �t. Equation (4) is redu
ed to�2z'+ ��z'� V 0('; �z') = 0 ; (9)where ' is a fun
tion of z only, and'(z)! '� (10)when z ! �1, respe
tively. The asymptoti
 values '� are determined fromthe equations V 0('�) = 0 : (11)From a mathemati
al viewpoint (8) and (9) should be regarded as a set ofequations for � and '(z), with (10) as the boundary 
onditions for '(z).The perturbative Ansatz for '(z) has the form'(z) = '0(z) + "'1(z) + "2'2(z) + � � � : (12)Here '0(z) is the initial, unperturbed interfa
e. It obeys the following equa-tion �2z'0 + �0�z'0 � V 00('0) = 0 ; (13)with the boundary 
onditions at z ! �1'0(z)! a� ;where a� are the minima of V0. The velo
ity �0 of the unperturbed interfa
eis given by the formula analogous to (8), namely�0 = V0(a+)� V0(a�)R +1�1 dz(�z'0)2 : (14)
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es in Ginzburg�Landau Models 1177Formula (8) suggests that the velo
ity of the interfa
e has the followingperturbative expansion � = �0 + "�1 + "2�2 + � � � : (15)Let us stress that in equations (8), (9) and in expansion (12) the in-dependent variable is just z, and not x3 and t. Therefore, when solvingEqs. (8), (9), the variable z is not treated as x3 � �t, and, therefore, we donot expand z in ", 
ontrary to what formula (15) might suggest. Only after'(z) and � are determined we may substitute z = x3 � �t in order to relatethe solution of the set of equations (8), (9) with the interfa
e solution of theoriginal evolution equation (4).Inserting the expansions (12), (15) in Eq. (9) and equating to zero thel.h.s. of (9) order by order in ", we obtain the in�nite 
hain of equations forthe 
orre
tions 'k; k � 1. These equations have the formL̂'k = fk ; (16)where L̂ = �2z + �0 �z � V 000 ('0) ; (17)and fk in general depend on �1; : : : ; �k and '1; : : : ; 'k�1. Simple 
al
ulationsgive f1 = ��1 �z'0 + V 01('0; �z'0) ; (18)and for k � 2 fk = ��k�z'0 � k�1Xj=1 �j �z'k�j + hk(z) ; (19)where hk(z) denotes the sum of all terms of the k-th order in " obtainedby inserting formula (12) in V 00(') + "V 01('; �z') with ex
eption of the termV 000 ('0)'k whi
h has been in
luded into the l.h.s. of Eq. (16).It is a well-known fa
t that inhomogeneous linear equations not alwayshave solutions � 
ertain integrability 
onditions have to be satis�ed. In the
ase of Eq. (16) su
h 
onditions appear be
ause for the operator L̂ thereexists so 
alled left zero-mode, that is a normalizable fun
tion  l(z) su
hthat the following identity holds+1Z�1 dz l(z)L̂'k = 0 : (20)



1178 H. Arod¹, R. Peªka, �. St�pie«If 'k obeys Eq. (16) then +1Z�1 dz l(z)fk = 0 : (21)In our perturbative s
heme the integrability 
onditions (21) serve as equa-tions whi
h determine the perturbative 
ontributions �k to the velo
ity ofthe interfa
e. Using formulas (18), (19) and 
onditions (21) we �nd that�1 = N�1 +1Z�1 dzV 01('0; �z'0) l(z) ; (22)and for k � 2�k = N�1 +1Z�1 dz0�hk(z)� k�1Xj=1 �j �z'k�j1A l(z) ; (23)where N = +1Z�1 dz r(z) l(z) :The fun
tions  l;  r will be given shortly. In the Appendix we 
he
k thatthese re
ursive formulas and the expansion (15) give the velo
ity � whi
h
oin
ides with the one obtained by expanding in " the r.h.s. of formula (8),provided that " is not too large.The left zero-mode  l 
an be found in the following way. Di�erentiationof the both sides of Eq. (13) with respe
t to z gives the identityL̂ r = 0 ; (24)where  r = �z'0(z) : (25)The fun
tion  r is 
alled the right zero-mode.  l has the form l(z) = exp(�0z) r(z) : (26)Be
ause derivation of identity (20) involves integration by parts, we have todis
uss behaviour of  l and  r for z ! �1. Noti
e that Eq. (24) impliesthat for z ! �1 r(z) �= exp���02 z� exp �r�024 + V 000 (a�) z! ;
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es in Ginzburg�Landau Models 1179respe
tively. Therefore,  l(z) exponentially vanishes for z ! �1, providedthat V 000 (a�) > 0 :For V0 given by formula (2) this 
ondition is satis�ed if 0 < A < 9B232 , as ithas been assumed. When 
he
king identity (20), boundary terms like, e.g.,(�z l)'kj+1�1, vanish be
ause'k ! 
onst. for z ! �1 ; (27)in a

ordan
e with the boundary 
ondition (10).Equations (16) 
an be solved in a standard way [8℄. Adopting formulasgiven in [8℄ to the 
ase at hand we �nd that'k =  2(z) zZ�1 d�e�0� r(�)fk(�)�  r(z) zZ0 d�e�0� 2(�)fk(�) ; (28)where  2(z) =  r(z) zZ0 d�e��0� �2r (�) : (29)The fun
tions  r;  2 form a pair of linearly independent solutions of thehomogeneous equation L̂' = 0. Noti
e that the integral R z�1 present in the�rst term on the r.h.s. of formula (28) vanishes for z ! +1 due to theintegrability 
onditions (21). It turns out that in the limits z ! �1 bothterms on the r.h.s. of formula (28) approa
h 
onstants, and 'k obey the
onditions (27).General solution of Eqs. (16) is obtained by adding to the r.h.s. of for-mula (28) the general solution of the 
orresponding homogeneous equation,that is the fun
tion 
k r(z) + dk 2(z). However, be
ause  2(z) exponen-tially grows for large jzj we have to put dk = 0. In order to determine the
onstants 
k we have to impose a 
ondition on the interfa
e solution '(z) inaddition to the boundary 
onditions (10). A
tually, Eq. (9) and the bound-ary 
onditions (10) do not determine '(z) uniquely � due to invarian
ewith respe
t to translations in z we 
an take '(z � z0) with arbitrary z0.We will require that '(0) = '0(0) ; (30)where '0(z) is a 
on
rete, expli
itly given fun
tion des
ribing the unper-turbed interfa
e with �xed lo
ation on the z axis. The 
ondition (30) breaksthe translational invarian
e. It implies that'k(0) = 0 : (31)



1180 H. Arod¹, R. Peªka, �. St�pie«The solutions 'k(z) given by formula (28) obey this 
ondition, therefore, alsothe 
onstants 
k are vanishing. Thus, the perturbative s
heme supplementedwith the 
ondition (30) yields unique interfa
e solution '(z). In this solutionwe 
an, of 
ourse, shift the variable z, that is to substitute z ! z � z0simultaneously in all 
ontributions '0; 'k, in order to obtain the othersolutions implied by the translational invarian
e.3. E�e
ts of the perturbations of the formV1 = 12"1'2r'r'+ 15"2'5 + 16"3'6Let us start from a des
ription of the unperturbed interfa
e '0(z). Theevolution equation has the form (4) with V repla
ed by V0 given by formula(2). The interfa
e solution is well-known, see, e.g., [4℄. Let us quote therelevant formulas from [4℄ and [6℄. We use the following abbreviationss = z4l0 ; a+ = � 12p2l0 ;where l0�1 = 12p2 �3B +p9B2 � 32A� : (32)Then '0(z) = a+2 (1 + tanh s) ; (33)and  r(z) = a+8l0 1
osh2 s ; 2(z) = 2l02a+ 1
osh2 s sZ0 d� exp[�2(2� + 1)�℄ [1 + exp(2�)℄4 :The integral over � 
an be easily 
al
ulated, but the resulting formula for 2 is quite long. In the absen
e of perturbations, z = x3 � �0t, where�0 = 34p2 �B �p9B2 � 32A� : (34)The interfa
e '0 exists and it is stable when 0 < A < 9B232 . Usually, the
oe�
ient B is regarded as independent of temperature, while A = a(T�T�),where a > 0. The inequality given above �xes the temperature range (T�; T
)in whi
h the interfa
e exists. Noti
e that at the temperature T0 su
h that
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es in Ginzburg�Landau Models 1181A = B24 the velo
ity �0 vanishes. It is 
lear that T� < T0 < T
. The leftzero-mode has the form l(z) = a+8l0 exp [2(2� � 1)s℄ 1
osh2 s ; (35)where � = �0l0 + 12 :The value of the parameter � monotoni
ally in
reases from 0 to 1 when Avaries from 0 to 9B232 .The �rst order 
orre
tion �1 to the velo
ity is 
al
ulated from formula(22). In the present 
aseV 01('0) = �"1'0 r2 � "1'02�z r + "2'04 + "3'05 : (36)The integrations over z ( or equivalently over s ) 
an be related to the EulerB fun
tion [9℄ , B(x; y) = 1Z0 dt tx�1(1 + t)x+y ;by the substitution y = exp s. The resulting expressions 
an be simpli�edwith the help of the well-known formulasB(x; y) = � (x)� (y)� (x+ y) ; � (x+ 1) = x� (x) :After straightforward 
al
ulations we obtain�1 = (�+ 1)(2� + 1)160l03 ���� 12� "1 � l0p2 2�+ 31� � "2 + (2� + 3)(� + 2)12(1� �) "3� :(37)Formula (37) shows that the "2; "3 
orre
tions be
ome more and morepronoun
ed as � in
reases towards 1, that is as the temperature in
reasestowards T
. The singularity at � = 1 is due to the fa
t that for � = 1 theleft zero-mode  l and V 01('0) do not vanish when s ! +1, and thereforethe integral in formula (22) is divergent.The "1 term in formula (37) vanishes for � = 12 . The reason is that the
orresponding term in the perturbation potential V1 does not 
ontribute tothe values of the full potential V at the two minima '�. Therefore, it 
anin�uen
e the velo
ity only by 
hanging the denominator in formula (8). For� = 12 the numerator in (8) vanishes if "2 = "3 = 0 and the "1 term 
an not
ontribute to the velo
ity.The fa
ts that "2 term in (37) is negative, and that the "3 term is posi-tive, 
an be explained by the observation that the "2 term in the potentialdiminishes the potential energy di�eren
e a
ross the interfa
e, while the "3term in the potential works in the opposite dire
tion.
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ussion1. The purpose of this work is to provide a pra
ti
al tool for analyti
,approximate 
omputations of 
hara
teristi
s of the perturbed planarinterfa
es within the framework of Ginzburg�Landau models. We haveshown how one 
an systemati
ally 
al
ulate 
orre
tions to the pro�leand the velo
ity of the interfa
e. In parti
ular, the s
heme 
an beapplied to perturbations of domain walls, whi
h 
an be regarded asspe
ial, stati
 interfa
es appearing when the two minima of V0 aredegenerate. In the example dis
ussed in Se
tion 3 this is the 
asewhen � = 1=2. The s
heme is relatively simple. The �nal formulas(22), (23), (28), (29) 
ontain one dimensional integrals whi
h always
an be ta
kled numeri
ally, and in many 
ases 
al
ulated analyti
ally.2. We have not delved into the problem of 
onvergen
e of the perturbativeseries. Su
h a mathemati
al investigation does not belong to the s
opeof our work. It is 
lear that if the perturbations shift the two minimaof V0 only slightly, the 
orresponding 
hanges of the pro�le and of thevelo
ity of the interfa
e are also small, hen
e they 
an be 
al
ulatedas small 
orre
tions. This does not ne
essarily mean that the series is
onvergent � it 
an belong to a wider 
lass of asymptoti
 series, butit is a

eptable from physi
al viewpoint.3. Using the results of the present paper in 
ombination with the 
urva-ture expansion mentioned in the Introdu
tion, one 
an 
al
ulate evo-lution of 
urved interfa
es in the perturbed Ginzburg�Landau models.Comparisons of su
h theoreti
al predi
tions with experimental obser-vations of evolution of the interfa
es 
ould help to determine the bestformula for the free energy of the system. Let us remind that theformulas for the free energy in the Ginzburg�Landau models rarely
an be derived from underlying mi
ros
opi
 theories. In most 
asesthey are postulated on basis of qualitative phenomenologi
al 
onsid-erations. General dis
ussion of various formulas for the free energy inthe 
ontext of theory of liquid 
rystals 
an be found in [10℄.AppendixResummation of the perturbative 
ontributions to the velo
ityThe perturbative 
orre
tions �k to the velo
ity of the interfa
e are givenby formulas (22), (23). They have been obtained in somewhat indire
t way,namely from the integrability 
onditions. On the other hand, the velo
ity isgiven by the exa
t formula (8). We would like to 
he
k that the sum (15) ofthe perturbative 
ontributions �k, below denoted by ~�,
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es in Ginzburg�Landau Models 1183~� =df�0 + "�1 + 1Xk=2 "k�k ; (38)does 
oin
ide with the velo
ity � given by formula (8). A
tually, be
auseformula (8) follows dire
tly from Eq. (9), it is su�
ient to 
he
k that ~�
oin
ides with the � present in that equation.In the �rst step, we substitute for �0; �1 and �k ( k � 2 ) in (38) formulas(14), (22) and (23), respe
tively. Next, we noti
e that the de�nition of hkgiven below formula (19) is equivalent to the following formula1Xk=2 "khk = V 00(')+ "V 01('; �z')�V 00('0)� "V 01('0; �z'0)�V 000 ('0)('�'0) ;where V 00(') + "V 01('; �z') = �z2'+ ��z' ;V 00('0) = �z r + �0 r ;and V 000 ('0)'0 = �z r + �0 r � L̂'0 ;a

ording to Eqs. (9), (13) and de�nition (17). We also use the formula1Xk=2 "k k�1Xj=1 �j�z'k�j =  1Xi=1 "i�i!0� 1Xj=1 "j�z'j1A = (~� � �0)�z('� '0) :After a simple 
al
ulation we obtain from formula (38) that(� � ~�) +1Z�1 dz l�z' = 0 : (39)Thus, indeed � = ~� ;provided that +1Z�1 dz l�z' 6= 0 :Be
ause �z' =  r + "�z'1 + � � � ;that last 
ondition is satis�ed if " is small enough, that is, if the perturbationis not too strong.
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