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PERTURBATIONS OF PLANAR INTERFACESIN GINZBURG�LANDAU MODELSH. Arod¹, R. Peªka and �. St�pie«Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Craow, Poland(Reeived February 26, 2001)Certain dissipative Ginzburg�Landau models predit existene of pla-nar interfaes moving with onstant veloity. In most ases the interfaesolutions are hard to obtain beause pertinent evolution equations are non-linear. We present a systemati perturbative expansion whih allows usto ompute e�ets of small terms added to the free energy funtional ofa soluble model. As an example, we take the exatly soluble model withsingle order parameter ' and the potential V0(') = A'2 +B'3 + '4, andwe perturb it by adding V1(�) = 12"1'2�i'�i'+ 15"2'5+ 16"3'6:We disussthe orresponding hanges of the veloity of the planar interfae.PACS numbers: 05.70.Np, 64.70.Md1. IntrodutionProperties and evolution of interfaes is a very interesting topi in softondensed matter physis, see, e.g., [1℄ for a reent review. There are twomain lines of theoretial researh in that diretion. The �rst one, omputersimulations, provides a relation to mirosopi, moleular dynamis level[2, 3℄. In the seond approah one is satis�ed with a oarse-grained desrip-tion by e�etive Ginzburg�Landau models.In the framework of Ginzburg�Landau models the interfaes are de-sribed by partiular solutions of pertinent nonlinear evolution equations.The nonlinearity is ruial for existene of these solutions, but it is also aserious obstale in obtaining them in an expliit form. In most ases onlynumerial solutions are available. A well-known exeption is a model whihappears in the ontext of reation-di�usion hemial proesses [4℄, and also isrelated to Landau�deGennes e�etive model for nemati liquid rystals [5℄.It involves a single, non-onserved, real-valued order parameter '(xk; t), and(1173)



1174 H. Arod¹, R. Peªka, �. St�pie«the free energy funtional has the formF0 = Z d3x�12r'r'+ V0(')� ; (1)V0(') = A'2 +B'3 + '4; (2)where r = � ��xk �, � = 1; 2; 3, xk are Cartesian oordinates in the spae.For simpliity we have resaled xk; ' and F0 so that they are dimensionlessand the oe�ient in front of the quarti term in V0(') is equal to 1. Theonstants A;B are positive, and A is restrited to the interval 0 < A < 9B232 .Then V (') has two minima and a maximum between them. In this modelexat formulas for pro�le and veloity of a planar interfae are known, see,e.g., [4℄.Exatly soluble models provide natural starting points for perturbativeexpansions. If the expression (1) for the free energy is hanged a little bit,one may hope that the orresponding hange of the planar interfae anbe alulated with the help of a perturbative expansion around the knownsolution. In this way we would obtain analytial results for veloity andpro�le of planar interfaes in a lass of Ginzburg�Landau models. Moreover,this would open the way for investigations of evolution of urved interfaesin that lass of models beause one ould use the expansion in urvatures [6℄for whih the knowledge of planar interfaes is the only prerequisite.In the present paper we explore the idea of the perturbative expansionfor the planar interfaes. We show that indeed suh perturbative sheme anbe onstruted. Corretions to the pro�le are obtained in it as solutions ofordinary, linear di�erential equations, while orretions to the veloity followfrom integrability onditions whih are due to existene of zero-modes. Thistype of integrability onditions is well-known in statistial physis [7℄. Asan example we onsider perturbations of the formÆF = Z d3xV1 ;where V1 = 12"1'2r'r'+ 15"2'5 + 16"3'6: (3)Values of the perturbation parameters "1; "2; "3 are suh that F0 + ÆF isbounded from below. The "1 orretion to the gradient term introduesdependene on ' of the elasti onstant K = 1+ "1'2. The "2 and "3 termsare orretions to the potential V0('). The perturbations (3) are vanishingin the disordered phase (' = 0), while in the ordered phase (' 6= 0) theymay give �nite ontributions.Our paper is organised as follows. In Setion 2 we onstrut the pertur-bative expansion. In Setion 3 we apply it to the model (1), (2) with the



Perturbations of Planar Interfaes in Ginzburg�Landau Models 1175partiular perturbation ÆF given by formula (3). Summary and remarks arepresented in Setion 4. In the Appendix we show that the perturbativelyalulated veloity of the planar interfae oinides with the one alulatedfrom an exat formula, provided that the perturbation is not too strong andthat the perturbative series is onvergent.2. General struture of the perturbative expansionWe will onsider Ginzburg�Landau models in whih time evolution ofthe order parameter ' is governed by equation of dissipative type, namely�'�t = �'� V 0(';r') ; (4)where V = V0 + "V1, t denotes a resaled dimensionless time, � = �xk�xk isthe three-dimensional Laplaian, andV 0 = �V�' �r� �V�(r')� :We have assumed that the perturbation V1 does not depend on seond andhigher derivatives of '. The r.h.s. of Eq. (4) is equal to the variationalderivative ÆF=Æ' multiplied by �1.The interfae is identi�ed with a solution of the evolution equation whihinterpolates between minima '+; '� of the potential V . Potential V0 givenby formula (2) has two minima, and the perturbation V1 is by assumptionweak enough, so that also V has just two minima whih smoothly mergewith the minima of V0 when V1 is swithed o�. In the present paper weonentrate on planar interfaes. Due to translational invariane of Eq. (4),it is su�ient to onsider the planar interfaes parallel to the plane (x1; x2)� then ' is a funtion of x3 and t. We require that in the limits x3 ! �1,'(x3; t)! '� ; �x3'! 0 : (5)Let us multiply Eq. (4), in whih now r' ! �x3'(x3; t), by �x3' andintegrate it over x3 in the interval (�1;+1). With the help of integrationby parts, and using a formula for the full derivative of V with respet to x3,namely dVdx3 = �V�' �x3'+ �V�(�x3')�2x3' ;we obtain the following relation+1Z�1 dx3�t'�x3' = V ('�)� V ('+) : (6)



1176 H. Arod¹, R. Peªka, �. St�pie«It implies that ' has to be time-dependent if the minima '� are nondegen-erate. The simplest way to ensure that the l.h.s. of formula (6) is onstantin time and nonvanishing onsists in assuming that ' depends only on theombination x3 � �t, ' = '(x3 � �t); (7)where � is a onstant equal to the veloity of the interfae. This form ofdependene on time is also onsistent with boundary onditions (5). Forsuh ', relation (6) an be written in the form� = V ('+)� V ('�)R +1�1 dz(�z')2 ; (8)where z = x3 � �t. Equation (4) is redued to�2z'+ ��z'� V 0('; �z') = 0 ; (9)where ' is a funtion of z only, and'(z)! '� (10)when z ! �1, respetively. The asymptoti values '� are determined fromthe equations V 0('�) = 0 : (11)From a mathematial viewpoint (8) and (9) should be regarded as a set ofequations for � and '(z), with (10) as the boundary onditions for '(z).The perturbative Ansatz for '(z) has the form'(z) = '0(z) + "'1(z) + "2'2(z) + � � � : (12)Here '0(z) is the initial, unperturbed interfae. It obeys the following equa-tion �2z'0 + �0�z'0 � V 00('0) = 0 ; (13)with the boundary onditions at z ! �1'0(z)! a� ;where a� are the minima of V0. The veloity �0 of the unperturbed interfaeis given by the formula analogous to (8), namely�0 = V0(a+)� V0(a�)R +1�1 dz(�z'0)2 : (14)



Perturbations of Planar Interfaes in Ginzburg�Landau Models 1177Formula (8) suggests that the veloity of the interfae has the followingperturbative expansion � = �0 + "�1 + "2�2 + � � � : (15)Let us stress that in equations (8), (9) and in expansion (12) the in-dependent variable is just z, and not x3 and t. Therefore, when solvingEqs. (8), (9), the variable z is not treated as x3 � �t, and, therefore, we donot expand z in ", ontrary to what formula (15) might suggest. Only after'(z) and � are determined we may substitute z = x3 � �t in order to relatethe solution of the set of equations (8), (9) with the interfae solution of theoriginal evolution equation (4).Inserting the expansions (12), (15) in Eq. (9) and equating to zero thel.h.s. of (9) order by order in ", we obtain the in�nite hain of equations forthe orretions 'k; k � 1. These equations have the formL̂'k = fk ; (16)where L̂ = �2z + �0 �z � V 000 ('0) ; (17)and fk in general depend on �1; : : : ; �k and '1; : : : ; 'k�1. Simple alulationsgive f1 = ��1 �z'0 + V 01('0; �z'0) ; (18)and for k � 2 fk = ��k�z'0 � k�1Xj=1 �j �z'k�j + hk(z) ; (19)where hk(z) denotes the sum of all terms of the k-th order in " obtainedby inserting formula (12) in V 00(') + "V 01('; �z') with exeption of the termV 000 ('0)'k whih has been inluded into the l.h.s. of Eq. (16).It is a well-known fat that inhomogeneous linear equations not alwayshave solutions � ertain integrability onditions have to be satis�ed. In thease of Eq. (16) suh onditions appear beause for the operator L̂ thereexists so alled left zero-mode, that is a normalizable funtion  l(z) suhthat the following identity holds+1Z�1 dz l(z)L̂'k = 0 : (20)



1178 H. Arod¹, R. Peªka, �. St�pie«If 'k obeys Eq. (16) then +1Z�1 dz l(z)fk = 0 : (21)In our perturbative sheme the integrability onditions (21) serve as equa-tions whih determine the perturbative ontributions �k to the veloity ofthe interfae. Using formulas (18), (19) and onditions (21) we �nd that�1 = N�1 +1Z�1 dzV 01('0; �z'0) l(z) ; (22)and for k � 2�k = N�1 +1Z�1 dz0�hk(z)� k�1Xj=1 �j �z'k�j1A l(z) ; (23)where N = +1Z�1 dz r(z) l(z) :The funtions  l;  r will be given shortly. In the Appendix we hek thatthese reursive formulas and the expansion (15) give the veloity � whihoinides with the one obtained by expanding in " the r.h.s. of formula (8),provided that " is not too large.The left zero-mode  l an be found in the following way. Di�erentiationof the both sides of Eq. (13) with respet to z gives the identityL̂ r = 0 ; (24)where  r = �z'0(z) : (25)The funtion  r is alled the right zero-mode.  l has the form l(z) = exp(�0z) r(z) : (26)Beause derivation of identity (20) involves integration by parts, we have todisuss behaviour of  l and  r for z ! �1. Notie that Eq. (24) impliesthat for z ! �1 r(z) �= exp���02 z� exp �r�024 + V 000 (a�) z! ;



Perturbations of Planar Interfaes in Ginzburg�Landau Models 1179respetively. Therefore,  l(z) exponentially vanishes for z ! �1, providedthat V 000 (a�) > 0 :For V0 given by formula (2) this ondition is satis�ed if 0 < A < 9B232 , as ithas been assumed. When heking identity (20), boundary terms like, e.g.,(�z l)'kj+1�1, vanish beause'k ! onst. for z ! �1 ; (27)in aordane with the boundary ondition (10).Equations (16) an be solved in a standard way [8℄. Adopting formulasgiven in [8℄ to the ase at hand we �nd that'k =  2(z) zZ�1 d�e�0� r(�)fk(�)�  r(z) zZ0 d�e�0� 2(�)fk(�) ; (28)where  2(z) =  r(z) zZ0 d�e��0� �2r (�) : (29)The funtions  r;  2 form a pair of linearly independent solutions of thehomogeneous equation L̂' = 0. Notie that the integral R z�1 present in the�rst term on the r.h.s. of formula (28) vanishes for z ! +1 due to theintegrability onditions (21). It turns out that in the limits z ! �1 bothterms on the r.h.s. of formula (28) approah onstants, and 'k obey theonditions (27).General solution of Eqs. (16) is obtained by adding to the r.h.s. of for-mula (28) the general solution of the orresponding homogeneous equation,that is the funtion k r(z) + dk 2(z). However, beause  2(z) exponen-tially grows for large jzj we have to put dk = 0. In order to determine theonstants k we have to impose a ondition on the interfae solution '(z) inaddition to the boundary onditions (10). Atually, Eq. (9) and the bound-ary onditions (10) do not determine '(z) uniquely � due to invarianewith respet to translations in z we an take '(z � z0) with arbitrary z0.We will require that '(0) = '0(0) ; (30)where '0(z) is a onrete, expliitly given funtion desribing the unper-turbed interfae with �xed loation on the z axis. The ondition (30) breaksthe translational invariane. It implies that'k(0) = 0 : (31)



1180 H. Arod¹, R. Peªka, �. St�pie«The solutions 'k(z) given by formula (28) obey this ondition, therefore, alsothe onstants k are vanishing. Thus, the perturbative sheme supplementedwith the ondition (30) yields unique interfae solution '(z). In this solutionwe an, of ourse, shift the variable z, that is to substitute z ! z � z0simultaneously in all ontributions '0; 'k, in order to obtain the othersolutions implied by the translational invariane.3. E�ets of the perturbations of the formV1 = 12"1'2r'r'+ 15"2'5 + 16"3'6Let us start from a desription of the unperturbed interfae '0(z). Theevolution equation has the form (4) with V replaed by V0 given by formula(2). The interfae solution is well-known, see, e.g., [4℄. Let us quote therelevant formulas from [4℄ and [6℄. We use the following abbreviationss = z4l0 ; a+ = � 12p2l0 ;where l0�1 = 12p2 �3B +p9B2 � 32A� : (32)Then '0(z) = a+2 (1 + tanh s) ; (33)and  r(z) = a+8l0 1osh2 s ; 2(z) = 2l02a+ 1osh2 s sZ0 d� exp[�2(2� + 1)�℄ [1 + exp(2�)℄4 :The integral over � an be easily alulated, but the resulting formula for 2 is quite long. In the absene of perturbations, z = x3 � �0t, where�0 = 34p2 �B �p9B2 � 32A� : (34)The interfae '0 exists and it is stable when 0 < A < 9B232 . Usually, theoe�ient B is regarded as independent of temperature, while A = a(T�T�),where a > 0. The inequality given above �xes the temperature range (T�; T)in whih the interfae exists. Notie that at the temperature T0 suh that



Perturbations of Planar Interfaes in Ginzburg�Landau Models 1181A = B24 the veloity �0 vanishes. It is lear that T� < T0 < T. The leftzero-mode has the form l(z) = a+8l0 exp [2(2� � 1)s℄ 1osh2 s ; (35)where � = �0l0 + 12 :The value of the parameter � monotonially inreases from 0 to 1 when Avaries from 0 to 9B232 .The �rst order orretion �1 to the veloity is alulated from formula(22). In the present aseV 01('0) = �"1'0 r2 � "1'02�z r + "2'04 + "3'05 : (36)The integrations over z ( or equivalently over s ) an be related to the EulerB funtion [9℄ , B(x; y) = 1Z0 dt tx�1(1 + t)x+y ;by the substitution y = exp s. The resulting expressions an be simpli�edwith the help of the well-known formulasB(x; y) = � (x)� (y)� (x+ y) ; � (x+ 1) = x� (x) :After straightforward alulations we obtain�1 = (�+ 1)(2� + 1)160l03 ���� 12� "1 � l0p2 2�+ 31� � "2 + (2� + 3)(� + 2)12(1� �) "3� :(37)Formula (37) shows that the "2; "3 orretions beome more and morepronouned as � inreases towards 1, that is as the temperature inreasestowards T. The singularity at � = 1 is due to the fat that for � = 1 theleft zero-mode  l and V 01('0) do not vanish when s ! +1, and thereforethe integral in formula (22) is divergent.The "1 term in formula (37) vanishes for � = 12 . The reason is that theorresponding term in the perturbation potential V1 does not ontribute tothe values of the full potential V at the two minima '�. Therefore, it anin�uene the veloity only by hanging the denominator in formula (8). For� = 12 the numerator in (8) vanishes if "2 = "3 = 0 and the "1 term an notontribute to the veloity.The fats that "2 term in (37) is negative, and that the "3 term is posi-tive, an be explained by the observation that the "2 term in the potentialdiminishes the potential energy di�erene aross the interfae, while the "3term in the potential works in the opposite diretion.



1182 H. Arod¹, R. Peªka, �. St�pie«4. Summary and disussion1. The purpose of this work is to provide a pratial tool for analyti,approximate omputations of harateristis of the perturbed planarinterfaes within the framework of Ginzburg�Landau models. We haveshown how one an systematially alulate orretions to the pro�leand the veloity of the interfae. In partiular, the sheme an beapplied to perturbations of domain walls, whih an be regarded asspeial, stati interfaes appearing when the two minima of V0 aredegenerate. In the example disussed in Setion 3 this is the asewhen � = 1=2. The sheme is relatively simple. The �nal formulas(22), (23), (28), (29) ontain one dimensional integrals whih alwaysan be takled numerially, and in many ases alulated analytially.2. We have not delved into the problem of onvergene of the perturbativeseries. Suh a mathematial investigation does not belong to the sopeof our work. It is lear that if the perturbations shift the two minimaof V0 only slightly, the orresponding hanges of the pro�le and of theveloity of the interfae are also small, hene they an be alulatedas small orretions. This does not neessarily mean that the series isonvergent � it an belong to a wider lass of asymptoti series, butit is aeptable from physial viewpoint.3. Using the results of the present paper in ombination with the urva-ture expansion mentioned in the Introdution, one an alulate evo-lution of urved interfaes in the perturbed Ginzburg�Landau models.Comparisons of suh theoretial preditions with experimental obser-vations of evolution of the interfaes ould help to determine the bestformula for the free energy of the system. Let us remind that theformulas for the free energy in the Ginzburg�Landau models rarelyan be derived from underlying mirosopi theories. In most asesthey are postulated on basis of qualitative phenomenologial onsid-erations. General disussion of various formulas for the free energy inthe ontext of theory of liquid rystals an be found in [10℄.AppendixResummation of the perturbative ontributions to the veloityThe perturbative orretions �k to the veloity of the interfae are givenby formulas (22), (23). They have been obtained in somewhat indiret way,namely from the integrability onditions. On the other hand, the veloity isgiven by the exat formula (8). We would like to hek that the sum (15) ofthe perturbative ontributions �k, below denoted by ~�,



Perturbations of Planar Interfaes in Ginzburg�Landau Models 1183~� =df�0 + "�1 + 1Xk=2 "k�k ; (38)does oinide with the veloity � given by formula (8). Atually, beauseformula (8) follows diretly from Eq. (9), it is su�ient to hek that ~�oinides with the � present in that equation.In the �rst step, we substitute for �0; �1 and �k ( k � 2 ) in (38) formulas(14), (22) and (23), respetively. Next, we notie that the de�nition of hkgiven below formula (19) is equivalent to the following formula1Xk=2 "khk = V 00(')+ "V 01('; �z')�V 00('0)� "V 01('0; �z'0)�V 000 ('0)('�'0) ;where V 00(') + "V 01('; �z') = �z2'+ ��z' ;V 00('0) = �z r + �0 r ;and V 000 ('0)'0 = �z r + �0 r � L̂'0 ;aording to Eqs. (9), (13) and de�nition (17). We also use the formula1Xk=2 "k k�1Xj=1 �j�z'k�j =  1Xi=1 "i�i!0� 1Xj=1 "j�z'j1A = (~� � �0)�z('� '0) :After a simple alulation we obtain from formula (38) that(� � ~�) +1Z�1 dz l�z' = 0 : (39)Thus, indeed � = ~� ;provided that +1Z�1 dz l�z' 6= 0 :Beause �z' =  r + "�z'1 + � � � ;that last ondition is satis�ed if " is small enough, that is, if the perturbationis not too strong.
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