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1. Introduction

Because of an inherent non perturbative character, quantum field the-
ories at high temperature require that original perturbative expansions be
reorganized into effective perturbation theories. The so called Resummation
Program (RP) [1] achieves this task, while encountering serious obstructions
in the infrared (IR) sectors of hot quantum fields [2]. Infrared diverging
results have been found begging the question of the reorganization of renor-
malized perturbative series. In some recent publications it has been stressed
that the necessary resummation of leading thermal fluctuations could be
consistently carried out, a perturbative way, with, in the end, very different
ensuing IR sectors [3]. In this article, pursuing along this line of thinking,
the collinear singularity problem of hot QCD is addressed [4], though, as a
first step, through a much simpler charged scalar field version.

At D = 6 — 2¢ space-time dimensions, the scalar field self cubic inter-
action go? is renormalizable and asymptotically free: Having subtracted
the ultraviolet poles at the renormalization mass scale A\, and introducing
the new dimensionless coupling constant g = goA°®, the zero temperature
Feynman rules can be given. At finite non zero temperature 7', though, the
model does not display the usual richness of gauge theories. In particular,
no Hard Thermal Loops (HTL) are known to show up in the proper vertex
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1186 TH. GRANDOU

functions [5], and thermal effective perturbation theory is accordingly deter-
mined by effective propagators only. In the R/A real time formalism [6] the
latter read

1
P? — X4 (po,p) + i€aPo’

The function X, (P) is the HTL self energy to be dealt with later on. In
the course of practical calculations, this formalism gets completed by further
conventions like, for example, eg = +1, ¢4 = —1. Also, g = —€,. Some
changes allow to raise the previous scalar field model up to the status of
a gauge theory, endowed with a global U(1) symmetry. These changes are
easily read from the Lagrangian density

*Ao(P) = a=R,A. (1.1)

1 =
L(z) = 0up™0"p + §3u¢*3“¢ + goppe™ +iep* O, pAF (1.2)

that is, the original Hermitian scalar field gets differentiated into a charged
“scalar quark” field ¢(z), and a neutral “scalar gluonic” one ¢(z), whereas the
free photonic part of £() is omitted for short. Eventually, the charged scalar
quark field interacts with the photon field A, with coupling strength e. The
bare “quark-gluon” vertex, V(©  and bare electromagnetic “quark” vertex,

1"'!50) are given by
V(O)(Paapéap”(s) = _iga F;EO)(PCHQﬂa-P(;) = _ie(plt +p;L)7 (13)

where p is the photon field Lorentz index, and P, P’ the 6-momenta of
external quark legs. For both zero and non zero temperature formalisms,
bare R/A propagators can be read from (1.1) by omitting the self energy
functions X, (P). One may remark that by “minimally coupling”, the pure
scalar model could have been promoted to the status of a local, rather than
global, U(1) gauge theory. The additional complexity, for both bare and
effective perturbation theories, had brought the model in closer analogy
with QCD. These extra structures, though, turn out to be unnecessary to
our concern.

The article is organized as follows. The two elements that are necessary
to define the required parts of both resummation schemes are the HTL scalar
quark self energy and electromagnetic vertex: They are derived in Section 2.
In Section 3, taking advantage of a powerful HTL-self energy representa-
tion, these elements are used to derive the (very) soft real photon proper
two point function, within the customary Resummation Program (RP), and
within a so-called Perturbative Resummation scheme (PR) of leading ther-
mal fluctuations. Results are compared, while in order to alleviate the main
text, a technical proof of that section is deferred to the Appendix. A short
discussion of our results is presented in Section 4.
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2. Elements of HTL-resummation schemes

In this section, we deal with the only quark self energy and electromag-
netic vertex, evaluated at leading HTL order. The scalar quark field self
energy is given by

dSK
(2m)°

where €(z) is the distribution “sign of z”, the factor of 2, a factor of symmetry,
and n(ko), the Bose Einstein statistical distribution defined without absolute
value prescription [6], which makes the combination e(kq)[1+2n(kg)] an even
function of kg. At P? = 0 thermal part of (2.1) is identically zero and in the
kinematical regime P? < p? < T? one has [7]

2 22
ZiTH(P) = mQP—2 < _ Do <1n o +p‘ — z'ﬂ'e(ea)@(—PQ))) , m?= gT
P 2p po—p 487

(2.2)

it therefore entails a HTL piece of leading order ¢?T? which makes it nec-
essary to use (1.1) as the scalar quark effective propagator, whenever p,, is
soft, that is, of order ¢7". Now, the modifications adopted above for scalar
fields bring no change for the three point function which remains free of HTL
counterpart. For the quark electromagnetic vertex the situation is different.
At zeroth order in g the latter satisfies an obvious tree level Ward identity

Zo(P) = —2ig? / e(ko)d(K?)[1 + 2n(ko)]An(K + P), (2.1)

¢TI\ (Pa. Qp. P§) =€ (A(O)(P’))_1 —e (A(O)(P)>_1 = ie2Q-P, (2.3)

where, on the right hand side, R/A indices are irrelevant. Identity (2.3) keeps
being satisfied at renormalized pure one-loop order, thermal contributions
included, and one must have

"I (Pa, Qp, = Py) = e (Z5(=P') = Za(P)) = ie (I5(P') = Za(P)) .
(2.4)
where properties specific to massless fields have been used [6]. Focusing on
thermal contributions (2.2) only, one gets, considering orders of magnitudes
of (2.4), estimated over soft momenta P, P’

O(qu) x O(I'V) = O(P"? — P*) x O(1) = O(q,) x O(p,) x O(1). (2.5)

This indicates the possibility for Flsl) of being of the same order of magnitude

as py, that is, of F,SO) itself. Of course, Power Counting is not sufficient to
conclude that the electromagnetic quark vertex entails such a HTL piece,
and one has to recourse to actual calculations: Within the R/A formalism
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standard notations one may write the one-loop vertex correction as the sum
of three terms,

T (Pay Qp, =) = (A + By + ) (Pay Qp, — F§) (2.6)

with

Aﬂ=%@7”%5%]wa+nw®&K%vuw+KMﬂK+F)

+A45(Q (—iwl)()A—(K — P)+ Az(K — Q)As(K — P')}, (2.7)
By = 2ieq’lp + ) [ s ethn) (5 + ntho) ) (K7

x{Aa(P + K)As(K + P')} | (2.8)
G = 2ieq’la) [ setho) (5 +nth) ) o04)

{A5(Q + K)AalK — P) — As(K — QUA5(K ~ P}, (29)

Whereas it is easy to check that Ward identity (2.4) is satisfied by the last
four equations, rather specific features come about when the HTL approx-
imation is taken. Indeed, it is tempting to believe that the form of most
HTL vertices is universal and dictated by tree like War/c\l identities. In QCD
the effective quark-photon vertex reads, with K= (1,k) and K2 = 0,

4K Fy K (2.10)

r'Y(P,,Qs, Pl = iem?2 /— _ - .
w (e Q. 1) VP ) Am (B - P tiea) (K - P +icy)

Considering that in our present situation the role of Dirac matrices v, is
played by the dimensionful vectorial coupling 2k, + p, + p;“ one would get

for F (Pa, Qp, —Pj5) an expression like

1 (2K !
iem /de — ( A+p:\+p)\)
K-P+iea)(K - P! —H’eg)

P+ P
= jem /dK ~ K-(P+P)
K - P—i—zea)(K P’ +ie5)

(2.11)

which over soft values of P, P’ is effectively of the same order of magnitude

as 1"';50), the bare electromagnetic vertex, but on the other hand, is hardly
seen to obey (2.4). Indeed, in an actual calculation of (2.6), it is convenient
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to decompose the R/A propagators into the so called “Landau damping” and
“Particle production” terms [8], writing

1

Ag(K+P) = ———
“ 2|k + 7l

3 7
X = - =
<k+p0—|k+;51+iea k+po+|k+ﬁ1+iea>

oL 1 i 7
= — (= - — ), 2.12
2k <K-P—i—z’ea 2k+zea) (2.12)

where the second equality holds in the HTL sense only. A simple Power
Counting argument then shows that, contrary to the cases of QED and QCD
for which only the first type of terms matters, a mixing of both “Landau
damping” and “Particle production” terms is here required to yield a proper
HTL behavior, to wit,

2
Au(P+K)A(K +P') s <%)

i —i —i i
X | = —+ — =
(K-P+7jea2k+1€5 2k+zeaK.p/+Z'€5>

(1Y K- (P+P)
a <2k) ((I?-P+iea)(1?-P'+ie5)>' (2.13)

Calculations are hereafter straightforward and yield a full cancellation of
type (2.11), (2.13)-terms :

AETL(PQ)Q/B7_P(§) =0. (2.14)
The only HTL pieces are those of B, and C,,, respectively, given by
dK 1

BHTLP,Q,—PI :—Zep +p/ mQ/_ — — 9

1 (Pa B 5) [u u] SWQ(K.p+¢6a)(K-P’+ieg)
(2.15)

dK 1

CHTLP,Q,—PI :+l€q m?/_ — — 2].6

u ( a)Wp 5) [#] 872 (KP—i—’LGa)(KPI‘f‘ZGg) ( )

and the effective electromagnetic vertex to be treated on the same footing
as (1.3) reads, therefore,

dK 1
872 (K - P+ ieg)(K - P' +ie5)
(2.17)

L) (Pa Qg —PL) = —ic [put gl —gy] m? /
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This rather peculiar result is, of course, inherent to the model under consider-
ation, with its dimensionful vectorial “quark-photon” coupling [9]. Likewise,
one may observe that, contrary to QED and QCD, the phase space factor of
872 is not, and cannot be (in view of (2.2), (2.4) and (2.17)), the total solid
angle of the model, which is only one third of it. As the diagrams, we will
be interested in shortly, do not involve higher points HTL vertices, they will
not be considered in the sequel. Now, in an emission rate calculation, where
both HTL self energies and effective vertices are involved, it is crucial that
Ward identity (2.4) be satisfied. One has, however,

dK 1
872 (K - P + i€y ) (K - P! + ie5)
(2.18)
that is (2.4) and (2.18) do not coincide. This is not surprising since we are
dealing with HTL approximated forms which, in particular, satisfy (2.14).
A remnant of the original symmetry is recovered, though, in the limit of a
calculation involving only very soft photons satisfying the condition ¢, /p, <
1. For example, by taking g, of order ¢*T, one would mimic the coupling
mediated by the QCD effective vertices, of the very soft scale fluctuations of

the order of ¢g?T), to the soft ones, of the order of g7 [10]. Over these very
soft photon field configurations, one has, at least in a formal sense

sy = s (140 (1)),

dK 1 SHTL(p
m?/—2 _ _ = o 2( )<1+O<9>>,(2.19)
8T (K - P +iey) (K - P' +ieg) P P

where for the second equality, anticipating the next section, both P and P’
internal lines bear the same R/A index, €,, thanks to the massless character
of the involved scalar quark fields. Up to corrections of relative order ¢/p
that form of (2.4), which is relevant to the next calculations, is eventually
preserved.

¢ T (Pa, Q, P}) = —iem?[P" — P?] /

3. A comparison of PR and RP calculations

We are now in a position to calculate the (very) soft real photon emission
rate from the plasma, relying on effective propagators (1.1) and effective
vertices

(P, Qp,—Pj) = IV (Pa. Qs, —P§) + I'\V(Pa,Qa, —PF3) . (3.1)

For the sake of later purpose it is instructive to recall the basic steps enter-
ing the soft photon emission rate calculation of thermal QCD. In the R/A
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formalism being used, this result enjoys a simple and systematic derivation,
which we follow here [8]. In view of (3.1) one gets three types of terms:

(0)

A term with two bare vertices 1-,”0 , two terms with one bare vertex I,

and the other Flsl), and a term with two vertices Flsl). In QCD the first
three terms pose no problem: Terms of second type entail a collinear sin-
gularity that cancels out with a similar singularity coming from the last
term. A residual collinear singularity remains, though induced by the lat-
ter, and we will, therefore, focus on that particular contribution including

(1)

two vertices I, ’. One gets within standard notations (Feynman gauge)

[ d'P vy X 1) /
1@@)=z/@5ﬂramwmm“mmﬂ{smmr;M%Qm—m>
x*SRUﬂﬂﬂ”mfa,QR,—fu>}. (32)

Substituting the relevant QCD expressions, one can write, with the conven-
tion ep = +e,

IRr(Q) = —i€2méCD/ (f) 7 (Po) / /dK,

K-R'Tr (*SR(P)K*SR(P’)K’>
xdisc — — — = . (3.3)
(K- P+ie)(K- P +ie)(K'- P+ie)(K'- P+ ie)

Because of the factor K - K’ appearing in the numerator there is no double
pole but a simple collinear one at K = () whose residue just involves the
Ward identity equivalent to (2.4), that is

) df?’ [@ . K/] K/ B 1 ) I
mQCD/ 4 (I?I‘P+i€)(f?’-P’+ie) = q[ER(P) Yr(PH]  (3.4)

and yields for ITr(Q) the expression

d - dK 1
E/W(l _QHF(pO))dlscméCD/E(ff-P+¢e)(I?-P'+ie)
T (*Sr(P)Q*Sr(P)[Er(P) - Ta(P)]).  (35)

The discontinuity in py can be taken by forming the difference of R and
A-indiced P-dependent quantities. Then, an appropriate choice of the inte-
gration contour in the pp-complex plane allows to write
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2

e’mg d'p dK §(K - P)
_ QCD _ aKk o(k - P)
IR(Q) = -2 . /(2w)3(1 2nF(po))/ T R.O+ie

xTr (*S4(PY*Sr(P') [Z4(P) - Tr(P)]) (3.6)

where a factor of 2 accounts for the two possibilities K= @ and K' = @,
and where the relation P’ = P + @ has been used. The angular integration
develops a collinear singularity at K= Q, and is responsible for that singular
part of ITg(Q) which can be expressed as

e*me dK 1 d*P R
QCD
_QT (/ EQ . I?%—ie) / (2m)3 §(P-@Q) (1 =2nr(po))

Tr (*Sa(PY2"Sr(P') [Za(P) — Zr(P)]). (3.7)

The two terms involving one bare vertex 1"';50) and a one-loop HTL correction

F;Sl), entail a similar singularity which, when combined with (3.7), leave
uncanceled the ITr(Q) singular contribution

e2m2 dA 1 d*P —~
) QCD K -
QZT (/ EQA. K +i6> / (2m)3 §(P-Q) (1 —2nr(po))

X [Tr (*SA(P)@) Ty (*SR(P’)@)] . (3.8)

Getting back to our scalar model, we analyze things starting from ordi-
nary Perturbation Theory and keep in mind that the two RP and PR-HTL-
resummation schemes just correspond to the two possible sequences along
which one performs in loop integrals, the sum over N, the number of HTL
self energy insertions, and the integral on pg, the looping energy [3]. One
has at leading order in ¢/p

MR(Q) ~ —ie? dp Z /dpo + 2n(po))

NN’
1
xdisem® /87r2 P +ie)(K - P! +ie)
x AR (P Ay ’(P)<22R<P>), (3.9)
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(N)

and where AL’ is the partial effective propagator obtained by inserting
N HTL-self energy functions Y'p(P) along the internal P-line

N
e
(P2? 4 iepy)N+H1

(3.10)

Permuting in (3.9) the sum (N, N') and integral (po) operations one recovers
the sequence corresponding to the emission rate RP calculation. In order to
take advantage of important simplifications and make the essential difference
of RP and PR structures more transparent it is convenient to rely on the
same order of approximation as used so far, (2.19), and write

AN Py AN (pry = b ANy (g ) . 11
D PIAYP) = AN (140 (4 (3.11)

It is worth stressing that relying on (3.11) is in no way compulsory to make
the point we are interested in, but amounts to simplifying calculations that,
otherwise, would become extremely cumbersome, as can be read off the
Appendix of [11]. One gets then, [3],

Ir(Q) = —ie’ Z /d5 /dp°(1+2n(po))disc{_zf;(f)

N+N'=
1

N+N'
i AP 25 3.12)

where (2.19) has been used. Equation (3.12) can be written as

+
dp &
IIR(Q) ~ —27j62/ (271—1))5 2;0 1+ 2n(pg))
N=0 "
xdisc <— 21;(213) iA%N+1)(P)) : (3.13)

where (2.19), whose discontinuity we have just seen to be crucial in obtaining
the factored out singular integral of (3.8) along the QCD-RP sequence, is
singled out. Thus, in a PR scheme, ITR(Q) involves the series with general

term
“+o0

/ 900 (1 1 9 (o)) dise <— Efj(f ) ;a0 (p) ) L (314

2T

—00
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Because of mass singularities, though, (3.14) is not defined. A particular
representation for the HTL self energy function (2.2) can be introduced [3]

P2 m?p? 1 —p\®
S=m? - POy o <1— <M> ) (3.15)
Po +p

Thanks to the (py F p)** factors this representation is able to provide
mass/collinear singularities with the same regularization as a dimensional
one would operate at D = 6 + 2¢ dimensions and is endowed with most in-
teresting properties, [3,12]: The limit ¢ = 0 commutes with the sum over N,
the integral on pg, and, as will be illustrated shortly, with the prescription
of discontinuity in the variable py. In a PR scheme calculation of ITg(Q)
one, therefore, calculates the sum

+o00
— . dpo . Yr(Pe) . (N+1)
> lim / o, (1+2n(po)) dise <—T1AR (P, ¢)
N=0 o
00 +ood
— : apo .o A(N+2)
= Nz_:o lli% / o (14 2n(pg)) dlSC( 1Ay (P, s)) , (3.16)
- —00

where AS,%N) (P, ) is obtained by substituting in (3.10) the representation
(3.15) for the HTL self energy (2.2); and likewise for the effective propagator
of (1.1) giving then the expression *Ag(P, ). Each term of (3.16) involves
mass singular contributions all of them obeying finite series of arithmetical
cancellation patterns

k J
{@}xZan(—l)mmeO, 1<k<j-1 (3.17)
m=0

so that ITR(Q) is eventually singularity free. Since the proof of (3.17) is a
bit lengthy, we defer it to the Appendix.

The RP sequence ends up with a different scenario since inverting the
sum and integral operations one has to calculate

25 i)

=0

“+o0

/(;1:;)(1+2n(p0))disc(

—00

+o00o

[ dpo . r( Pe - (V+1)
- / o — (14 2n(pop)) disc (lli% <— ) i Z En&AR P,e)

—00
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+00
— [ o+ 2mipn)
x disc <£i£3 <—%) i lim [*AR(P, £) — Ag)(P)D . (3.18)

With the remaining integration over p, one gets for ITr(Q) the expression

—4¢e2/ “p /ip0(1+2n(po))

(27T)5700
x disc QE% <—%) i lim [*AR(P, £) — AS,?(P)]) . (3.19)

Then, we take the same calculational step as taken along the RP sequence
of QCD passing from (3.5) to (3.6) and single out the contribution attached
to the discontinuity of (2.19) which reads now

disc <_M) — _i@(_PQ)Sin(ﬂ'tf) m_gm

3.20
P2 e pop ( )

1>
;00—10‘
Po+p

In (3.20) the previously alluded commutativity of the e = 0 limit with the
discontinuity prescription is obvious since the limit at € = 0 just reproduces
the discontinuity of the (retarded) self energy function (2.2) divided by P2,
Letting aside for a while the contribution to (3.18) which is attached to
*Agr(P,e), we focus on that part of ITg(Q) which is due to the Principal

Part component of the bare propagator Ag)(P). It is
in(r i P Zn(Pye)
. o SIn(me . R\ E
—4ie . / / (14 2n(po)) 2 disc <—7>
0

P2
£
p=po
sin(me) [ d°p m2 Po <P+P0)
— 4e? / dpo (1 + 2n(p .(3.21
me ) (2m)° p o (o))", (P = po) (P + po) (321

m\s

where in the second line the Principal Part prescription can be given up in
view of the e-regularization supplied by (3.15): Clearly, a mass singularity
develops at the light cone boundary pyg = p, which eventually plagues the
RP calculation of ITr(Q). That is, following the customary calculational

steps of the Resummation Program, a divergent result is obtained due to
some “residual” mass singularity. Now, the above comparison of the two
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PR and RP calculations shed some interesting new light on both the ori-
gin and spurious character of this singularity. Proceeding along the RP
sequence, the sum over N is performed first resulting in the effective prop-
agator [*Agr(P,¢e) — Agg) (P)] of (3.18). By the same token though, the
arithmetical cancellation patterns (3.17) of mass singularities which along
the PR sequence take place at all partial effective propagator AS,%NH) (P,e)
are definitely broken. As could be intuitively expected then [13] a “residual”
mass singularity pops out of a given contribution to ITg(Q) and this appears,
therefore, as a purely structural artefact resulting from the reorganization

into the form (1.1) of the effective propagator original perturbative series
(3.10).

In a somewhat surprising but remarkable analogy with QCD it is inter-
esting to note that another collinear singularity is induced also by the two
terms corresponding to one insertion of one-loop vertex (2.19), the other
bare (1.3). Within the same approximations as used so far, and along the
RP sequence, these two identical contributions to ITr(Q) effectively add up
to

—21’62/ & /Zp0(1+2n(po))

(2)°
i (N+N')
N% disc <7P2+’L€p0AR (P,e)QZR(P,s))
5 Yr(P
= —4ie? / (;ij)g / C;po(l—i-Qn (po) Zdlsc <%¢A(RN)(P,5)>.
e N=0

(3.22)

Summing over N, and taking as before the discontinuity of the first term
inside the parenthesis of (3.22), yields

5
—41'62/((217:[))5 / C;;[7)3(1—|—2n(po))disc <%) i[*Ar(P,e)]. (3.23)

—0o0

Though, involving a residue different from the one in (3.21), a mass singu-
larity can be shown to develop out of (3.23). However, it is readily seen
that the whole expression cancels against the same term in (3.19). This
compensation is a consequence of identity (2.19), relating, at the order of
approximation we are calculating, the effective vertex to the self energy: As
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mentioned in the introduction of this section and after equation (3.7) the
same mechanism is known to take place in thermal QCD as a consequence
of the Ward identity which, in HTL approximation, relates self energy and
electromagnetic vertex [8].

4. Discussion

On the basis of a simple charged scalar field model and restricting the
photon field to very soft modes, ¢/p < 1, it is possible to propose a few
arguments in favor of a net difference separating in the transposed context of
the collinear singularity problem of thermal QCD the Resummation Program
(RP) from the perturbative resummation scheme (PR) of thermal leading
fluctuations.

Within a given approximation level of the order of zero in the small ¢/p-
-parameter expansion, the trace of the very soft photon polarization ten-
sor appears as a mass (or collinear) singularity free quantity in the latter
scheme, whereas it entails a mass singularity when the usual steps of the RP
calculational scheme are taken. Out of this simplified example a possible
mechanism responsible for the collinear singularity of QCD may be fore-
seen: Reorganizing for the propagator the original perturbative series into
the effective form used in the RP results in a breaking of the mass singularity
arithmetical cancellation patterns that are actual at any order of bare Per-
turbation Theory. More precisely, replacing ASQN’N’)(P, P') by *Ag(P, P')
would amount to isolating a mass singularity coming from the discontinu-
ity of the (double) effective vertex insertion, from those induced by partial
effective propagators A(RN’N’)(P, P') themselves. The former is accordingly
singled out with no other singular counterpart to cancel against.

Since we have been dealing with a simple, unphysical model, we do not
think worth addressing the reliability issue of an expansion in term of the
very soft photon parameter ¢/p. In full rigour, our results should accordingly
be taken at the level of a formal, still encouraging indication that things
could come out different in a PR treatment of the QCD situation and, in
particular, not so singular. The physical case of QCD is, of course, more
difficult to deal with but it is interesting to note that the formal indication
provided by the present model gets supported by preliminary QCD results,
obtained without approximations [14].
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Appendix A
The following proof is constructed out of the one given in [3], Section 4.

The general term of the series is

+o0o

: dpo : A (N42)

lli% / ﬁ(l + 2n(po)) disc (—zAR (P, 5)) (A1)
— 00

with the discontinuity of (A.1) being given by

disc (—mgv)(P, g)) - —2%775@0)5(”(132)7@6(ER(P, NN
N
2Pt ((If%(N]if ) (A.2)

Changing the integration variable from pg to z = |P?|/p?, the contribution
of the first part of (A.2) is found to be

AN 1+2n(pyT—2) 1 !
2 <_2) O/dxé(iﬂ) Ji-z N! <%)

p\p
XINRe{l - % (1 - Jﬁ) }N

where the parity of the integrand under the transformation py — —pg has
been used. For the second term of (A.2), one finds

Writing, .
(A.5)

14+ 2n(pv1 —2z)=14+2n(p)+[1+2n(pv1 —2z) — 1 — 2n(p)]
it is easy to see that the singular part of (A.4) is attached to the first term

of (A.5), and reads
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N
1+ in(p) <T;’_22) AN(e)A(N) (6)

- Zcﬂ <——) Z Cr(—1)" sin(rme) fjm(e),  (A.6)

where the range j > m > 1 comes from the discontinuity (or imaginary
part) prescription, and where the f,,(e) are the functions:

me

1 .
1 dr  T—2 1
fm@) = et | | S e~ e ) A7

0

In (A.7), the first term, 1/me, contributes to AV (¢) an amount

1— <1 - %)N (A.8)

which is readily seen to compensate for the singularities of (A.3). Now, the
functions

1 .

B dz V1 —7! 1 Ag

e amE =\ | T me (A.9)
0

define analytic functions of € in the half of the complex plane P; =
{e|Re(e)) — 1} where they enjoy the Taylor expansion |3]

> mnem
gim(e) = > i (A.10)

n!
n=0

The proof of statement (A.10) can be found in the Appendix A of [3]. The
coefficients AN () read therefore

1Y ; o J oo k772k+1 bg,”)
—_ m m
S P DL i I DR oy e
j=1 m=1 p=1 \n+2k+1=p
PP
x Ve
(2¢)7

(A.11)
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and in the limit e = 0, the (N + 1)(N + 2)/2 mass singularities cancel out
according to the set of N(N — 1)/2 arithmetical identities

p j
{(265)1} x Y CP(-1)"mP =0, 1<p<j-1 (A.12)
m=0

which is (3.17).
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