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ON TWO RESUMMATION SCHEMESOF A HOT SCALAR FIELD MODELThierry GrandouInstitut Non Linéaire de Nie UMR CNRS 66181361, Route des Luioles, 06560 Valbonne, Franee-mail: grandou�inln.nrs.fr(Reeived November 2, 2000)Considering a harged salar massless quantum �eld model with globalgauge symmetry U(1), at �nite temperature T , we analyze the light onesingular struture of the photoni two-point funtion, as derived in twodi�erent resummation shemes of leading thermal e�ets.PACS numbers: 12.38.Cy, 11.10.Wx1. IntrodutionBeause of an inherent non perturbative harater, quantum �eld the-ories at high temperature require that original perturbative expansions bereorganized into e�etive perturbation theories. The so alled ResummationProgram (RP) [1℄ ahieves this task, while enountering serious obstrutionsin the infrared (IR) setors of hot quantum �elds [2℄. Infrared divergingresults have been found begging the question of the reorganization of renor-malized perturbative series. In some reent publiations it has been stressedthat the neessary resummation of leading thermal �utuations ould beonsistently arried out, a perturbative way, with, in the end, very di�erentensuing IR setors [3℄. In this artile, pursuing along this line of thinking,the ollinear singularity problem of hot QCD is addressed [4℄, though, as a�rst step, through a muh simpler harged salar �eld version.At D = 6 � 2" spae-time dimensions, the salar �eld self ubi inter-ation g0'3 is renormalizable and asymptotially free: Having subtratedthe ultraviolet poles at the renormalization mass sale �, and introduingthe new dimensionless oupling onstant g = g0�", the zero temperatureFeynman rules an be given. At �nite non zero temperature T , though, themodel does not display the usual rihness of gauge theories. In partiular,no Hard Thermal Loops (HTL) are known to show up in the proper vertex(1185)



1186 Th. Grandoufuntions [5℄, and thermal e�etive perturbation theory is aordingly deter-mined by e�etive propagators only. In the R=A real time formalism [6℄ thelatter read ?��(P ) = iP 2 ���(p0; p) + i��p0 ; � = R;A : (1.1)The funtion ��(P ) is the HTL self energy to be dealt with later on. Inthe ourse of pratial alulations, this formalism gets ompleted by furtheronventions like, for example, �R = +1, �A = �1. Also, �� = ���. Somehanges allow to raise the previous salar �eld model up to the status ofa gauge theory, endowed with a global U(1) symmetry. These hanges areeasily read from the Lagrangian densityL(x) = ��'���'+ 12�������+ g0�''� + ie'� $��'A� (1:2)that is, the original Hermitian salar �eld gets di�erentiated into a harged�salar quark� �eld '(x), and a neutral �salar gluoni� one �(x), whereas thefree photoni part of L(x) is omitted for short. Eventually, the harged salarquark �eld interats with the photon �eld A�, with oupling strength e. Thebare �quark-gluon� vertex, V (0), and bare eletromagneti �quark� vertex,� (0)� are given byV (0)(P�; P 0� ; P"Æ) = �ig ; � (0)� (P�; Q� ; P 0Æ) = �ie(p� + p0�) ; (1:3)where � is the photon �eld Lorentz index, and P; P 0 the 6-momenta ofexternal quark legs. For both zero and non zero temperature formalisms,bare R=A propagators an be read from (1.1) by omitting the self energyfuntions ��(P ). One may remark that by �minimally oupling�, the puresalar model ould have been promoted to the status of a loal, rather thanglobal, U(1) gauge theory. The additional omplexity, for both bare ande�etive perturbation theories, had brought the model in loser analogywith QCD. These extra strutures, though, turn out to be unneessary toour onern.The artile is organized as follows. The two elements that are neessaryto de�ne the required parts of both resummation shemes are the HTL salarquark self energy and eletromagneti vertex: They are derived in Setion 2.In Setion 3, taking advantage of a powerful HTL-self energy representa-tion, these elements are used to derive the (very) soft real photon propertwo point funtion, within the ustomary Resummation Program (RP), andwithin a so-alled Perturbative Resummation sheme (PR) of leading ther-mal �utuations. Results are ompared, while in order to alleviate the maintext, a tehnial proof of that setion is deferred to the Appendix. A shortdisussion of our results is presented in Setion 4.



On Two Resummation Shemes of a Hot Salar Field Model 11872. Elements of HTL-resummation shemesIn this setion, we deal with the only quark self energy and eletromag-neti vertex, evaluated at leading HTL order. The salar quark �eld selfenergy is given by��(P ) = �2ig2 Z d6K(2�)5 �(k0)Æ(K2)[1 + 2n(k0)℄��(K + P ) ; (2.1)where �(x) is the distribution �sign of x�, the fator of 2, a fator of symmetry,and n(k0), the Bose Einstein statistial distribution de�ned without absolutevalue presription [6℄, whih makes the ombination �(k0)[1+2n(k0)℄ an evenfuntion of k0. At P 2 = 0 thermal part of (2.1) is identially zero and in thekinematial regime P 2 � p2 � T 2 one has [7℄�HTL� (P ) = m2P 2p2 �1� p02p �ln ����p0 + pp0 � p ����� i��(��)�(�P 2)�� ; m2 = g2T 248�(2.2)it therefore entails a HTL piee of leading order g2T 2 whih makes it ne-essary to use (1.1) as the salar quark e�etive propagator, whenever p� issoft, that is, of order gT . Now, the modi�ations adopted above for salar�elds bring no hange for the three point funtion whih remains free of HTLounterpart. For the quark eletromagneti vertex the situation is di�erent.At zeroth order in g the latter satis�es an obvious tree level Ward identityq�� (0)� (P�; Q� ; P 0Æ) = e��(0)(P 0)��1� e��(0)(P )��1 = �ie 2Q �P ; (2.3)where, on the right hand side, R=A indies are irrelevant. Identity (2.3) keepsbeing satis�ed at renormalized pure one-loop order, thermal ontributionsinluded, and one must haveq�� (1)� (P�; Q� ;�P 0Æ) = ie ��Æ(�P 0)���(P )� = ie ��Æ(P 0)���(P )� ;(2.4)where properties spei� to massless �elds have been used [6℄. Fousing onthermal ontributions (2.2) only, one gets, onsidering orders of magnitudesof (2.4), estimated over soft momenta P; P 0O(q�)�O(� (1)� ) = O(P 02 � P 2)�O(1) = O(q�)�O(p�)�O(1) : (2.5)This indiates the possibility for � (1)� of being of the same order of magnitudeas p�, that is, of � (0)� itself. Of ourse, Power Counting is not su�ient toonlude that the eletromagneti quark vertex entails suh a HTL piee,and one has to reourse to atual alulations: Within the R=A formalism



1188 Th. Grandoustandard notations one may write the one-loop vertex orretion as the sumof three terms,� (1)� (P�; Q� ;�P 0Æ) = (A� +B� + C�) (P�; Q�;�P 0Æ) (2.6)withA� = 2ieg2Z d6K(2�)5 [2k�℄�(k0)�12 + n(k0)� Æ(K2) f��(P +K)�Æ(K + P 0)+��(Q+K)��(K � P ) +��(K �Q)�Æ(K � P 0)g ; (2.7)B� = 2ieg2[p� + p0�℄Z d6K(2�)5 �(k0)�12 + n(k0)� Æ(K2)�f��(P +K)�Æ(K + P 0)g ; (2.8)C� = 2ieg2[q�℄Z d6K(2�)5 �(k0)�12 + n(k0)� Æ(K2)�f��(Q+K)��(K � P )���(K �Q)�Æ(K � P 0)g : (2.9)Whereas it is easy to hek that Ward identity (2.4) is satis�ed by the lastfour equations, rather spei� features ome about when the HTL approx-imation is taken. Indeed, it is tempting to believe that the form of mostHTL verties is universal and ditated by tree like Ward identities. In QCDthe e�etive quark�photon vertex reads, with bK = (1;bk) and bK2 = 0,� (1)� (P�; Q�; P 0Æ) = iem2QCD Z d bK4� bk� /bK( bK � P + i��)( bK � P + i�Æ) : (2.10)Considering that in our present situation the role of Dira matries � isplayed by the dimensionful vetorial oupling 2k� + p� + p0�, one would getfor � (1)� (P�; Q� ;�P 0Æ) an expression likeiem2 Z d bKbk� bk�(2k� + p� + p0�)( bK � P + i��)( bK � P 0 + i�Æ)= iem2 Z d bK bk� bK � (P + P 0)( bK � P + i��)( bK � P 0 + i�Æ) (2.11)whih over soft values of P; P 0 is e�etively of the same order of magnitudeas � (0)� , the bare eletromagneti vertex, but on the other hand, is hardlyseen to obey (2.4). Indeed, in an atual alulation of (2.6), it is onvenient



On Two Resummation Shemes of a Hot Salar Field Model 1189to deompose the R=A propagators into the so alled �Landau damping� and�Partile prodution� terms [8℄, writing��(K + P ) = 12j~k + ~pj� ik + p0 � j~k + ~pj+ i�� � ik + p0 + j~k + ~pj+ i��!HTL= 12k � ibK � P + i�� � i2k + i��� ; (2.12)where the seond equality holds in the HTL sense only. A simple PowerCounting argument then shows that, ontrary to the ases of QED and QCDfor whih only the �rst type of terms matters, a mixing of both �Landaudamping� and �Partile prodution� terms is here required to yield a properHTL behavior, to wit,��(P +K)�Æ(K + P 0) 7! � 12k�2� ibK � P + i�� �i2k + i�Æ + �i2k + i�� ibK � P 0 + i�Æ!= � 12k�3 bK � (P + P 0)( bK � P + i��)( bK � P 0 + i�Æ)! : (2.13)Calulations are hereafter straightforward and yield a full anellation oftype (2.11), (2.13)-terms :AHTL� (P�; Q�;�P 0Æ) = 0 : (2.14)The only HTL piees are those of B� and C�, respetively, given byBHTL� (P�; Q�;�P 0Æ) = �ie[p� + p0�℄ m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) ;(2.15)CHTL� (P�; Q�;�P 0Æ) = +ie[q�℄ m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) (2.16)and the e�etive eletromagneti vertex to be treated on the same footingas (1.3) reads, therefore,� (1)� (P�; Q� ;�P 0Æ) = �ie [p�+p0��q�℄m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) :(2.17)



1190 Th. GrandouThis rather peuliar result is, of ourse, inherent to the model under onsider-ation, with its dimensionful vetorial �quark-photon� oupling [9℄. Likewise,one may observe that, ontrary to QED and QCD, the phase spae fator of8�2 is not, and annot be (in view of (2.2), (2.4) and (2.17)), the total solidangle of the model, whih is only one third of it. As the diagrams, we willbe interested in shortly, do not involve higher points HTL verties, they willnot be onsidered in the sequel. Now, in an emission rate alulation, whereboth HTL self energies and e�etive verties are involved, it is ruial thatWard identity (2.4) be satis�ed. One has, however,q�� (1)� (P�; Q�; P 0Æ) = �iem2[P 02 � P 2℄Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) ;(2.18)that is (2.4) and (2.18) do not oinide. This is not surprising sine we aredealing with HTL approximated forms whih, in partiular, satisfy (2.14).A remnant of the original symmetry is reovered, though, in the limit of aalulation involving only very soft photons satisfying the ondition q�=p� �1. For example, by taking q� of order g2T , one would mimi the ouplingmediated by the QCD e�etive verties, of the very soft sale �utuations ofthe order of g2T , to the soft ones, of the order of gT [10℄. Over these verysoft photon �eld on�gurations, one has, at least in a formal sense�HTL� (P 0) = �HTL� (P )�1 +O�qp�� ;m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i��) = ��HTL� (P )P 2 �1 +O�qp��; (2.19)where for the seond equality, antiipating the next setion, both P and P 0internal lines bear the same R=A index, ��, thanks to the massless haraterof the involved salar quark �elds. Up to orretions of relative order q=pthat form of (2.4), whih is relevant to the next alulations, is eventuallypreserved. 3. A omparison of PR and RP alulationsWe are now in a position to alulate the (very) soft real photon emissionrate from the plasma, relying on e�etive propagators (1.1) and e�etiveverties� e�� (P�; Q�;�P 0Æ) = � (0)� (P�; Q� ;�P 0Æ) + � (1)� (P�; Q� ;�P 0Æ) : (3.1)For the sake of later purpose it is instrutive to reall the basi steps enter-ing the soft photon emission rate alulation of thermal QCD. In the R=A



On Two Resummation Shemes of a Hot Salar Field Model 1191formalism being used, this result enjoys a simple and systemati derivation,whih we follow here [8℄. In view of (3.1) one gets three types of terms:A term with two bare verties � (0)� , two terms with one bare vertex � (0)�and the other � (1)� , and a term with two verties � (1)� . In QCD the �rstthree terms pose no problem: Terms of seond type entail a ollinear sin-gularity that anels out with a similar singularity oming from the lastterm. A residual ollinear singularity remains, though indued by the lat-ter, and we will, therefore, fous on that partiular ontribution inludingtwo verties � (1)� . One gets within standard notations (Feynman gauge)�R(Q) = iZ d4P(2�)4 (1� 2nF (p0)) g�� disTr�?SR(P )� (1)�(PR; QR;�P 0A)�?SR(P 0)� (1)�(PR; QR;�P 0A)� : (3.2)Substituting the relevant QCD expressions, one an write, with the onven-tion �R = +�,�R(Q) = �ie2m4QCD Z d4P(2�)4 (1� 2nF (p0))Z d bK4� Z d bK 04��dis bK � bK 0Tr�?SR(P )/bK?SR(P 0)/bK 0�( bK � P + i�)( bK � P 0 + i�)( bK 0 � P + i�)( bK 0 � P 0 + i�) : (3.3)Beause of the fator bK � bK 0 appearing in the numerator there is no doublepole but a simple ollinear one at bK = bQ whose residue just involves theWard identity equivalent to (2.4), that ism2QCD Z d bK 04� [ bQ � bK 0℄ /bK 0( bK 0 � P + i�)( bK 0 � P 0 + i�) = 1q [�R(P )��R(P 0)℄ (3.4)and yields for �R(Q) the expression�ie2q Z d4P(2�)4 (1 �2nF (p0)) dism2QCD Z d bK4� 1( bK � P + i�)( bK � P 0 + i�)�Tr�?SR(P )/bQ?SR(P 0)[�R(P )��R(P 0)℄� : (3.5)The disontinuity in p0 an be taken by forming the di�erene of R andA-indied P -dependent quantities. Then, an appropriate hoie of the inte-gration ontour in the p0-omplex plane allows to write



1192 Th. Grandou
�R(Q) = �2e2m2QCDq Z d4P(2�)3 (1� 2nF (p0))Z d bK4� Æ( bK � P )bK �Q+ i��Tr�?SA(P )/bQ?SR(P 0) [�A(P )��R(P 0)℄� ; (3.6)where a fator of 2 aounts for the two possibilities bK = bQ and bK 0 = bQ,and where the relation P 0 = P +Q has been used. The angular integrationdevelops a ollinear singularity at bK = bQ, and is responsible for that singularpart of �R(Q) whih an be expressed as�2e2m2QCDq  Z d bK4� 1Q � bK + i�!Z d4P(2�)3 Æ(P � bQ) (1� 2nF (p0))�Tr�?SA(P )/bQ?SR(P 0) [�A(P )��R(P 0)℄� : (3.7)The two terms involving one bare vertex � (0)� and a one-loop HTL orretion� (1)� , entail a similar singularity whih, when ombined with (3.7), leaveunaneled the �R(Q) singular ontribution�2ie2m2QCDq2  Z d bK4� 1bQ � bK + i�!Z d4P(2�)3 Æ(P � bQ) (1� 2nF (p0))� hTr�?SA(P )=bQ�� Tr�?SR(P 0)=bQ�i : (3.8)Getting bak to our salar model, we analyze things starting from ordi-nary Perturbation Theory and keep in mind that the two RP and PR-HTL-resummation shemes just orrespond to the two possible sequenes alongwhih one performs in loop integrals, the sum over N , the number of HTLself energy insertions, and the integral on p0, the looping energy [3℄. Onehas at leading order in q=p�R(Q) ' �ie2 Z d5p(2�)5 1XN;N 0=0 +1Z�1 dp02� (1 + 2n(p0))�dism2 Z d bK8�2 1( bK � P + i�)( bK � P 0 + i�)��(N)R (P )�(N 0)R (P 0) (2�R(P )) ; (3.9)



On Two Resummation Shemes of a Hot Salar Field Model 1193and where �(N)R is the partial e�etive propagator obtained by insertingN HTL-self energy funtions �R(P ) along the internal P -line�(N)R (P ) = i ��HTLR (P )�N(P 2 + i�p0)N+1 : (3.10)Permuting in (3.9) the sum (N;N 0) and integral (p0) operations one reoversthe sequene orresponding to the emission rate RP alulation. In order totake advantage of important simpli�ations and make the essential di�ereneof RP and PR strutures more transparent it is onvenient to rely on thesame order of approximation as used so far, (2.19), and write�(N)R (P )�(N 0)R (P 0) = iP 2 + i�p0�(N+N 0)R (P )�1 +O�qp�� : (3.11)It is worth stressing that relying on (3.11) is in no way ompulsory to makethe point we are interested in, but amounts to simplifying alulations that,otherwise, would beome extremely umbersome, as an be read o� theAppendix of [11℄. One gets then, [3℄,�R(Q) ' �ie2 1XN+N 0=0Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0)) dis���R(P )P 2� iP 2 + i�p0�(N+N 0)R (P ) 2�R(P )� ; (3.12)where (2.19) has been used. Equation (3.12) an be written as�R(Q) ' �2ie2 Z d5p(2�)5 1XN=0 +1Z�1 dp02� (1 + 2n(p0))�dis���R(P )P 2 i�(N+1)R (P )� ; (3.13)where (2.19), whose disontinuity we have just seen to be ruial in obtainingthe fatored out singular integral of (3.8) along the QCD-RP sequene, issingled out. Thus, in a PR sheme, �R(Q) involves the series with generalterm +1Z�1 dp02� (1 + 2n(p0))dis���R(P )P 2 i�(N+1)R (P ) � : (3.14)



1194 Th. GrandouBeause of mass singularities, though, (3.14) is not de�ned. A partiularrepresentation for the HTL self energy funtion (2.2) an be introdued [3℄� = m2P 2p2 � m22 P 2p2 p0p lim"=0 1" �1��p0 � pp0 + p�"� : (3.15)Thanks to the (p0 � p)�" fators this representation is able to providemass/ollinear singularities with the same regularization as a dimensionalone would operate at D = 6 + 2" dimensions and is endowed with most in-teresting properties, [3,12℄: The limit " = 0 ommutes with the sum over N ,the integral on p0, and, as will be illustrated shortly, with the presriptionof disontinuity in the variable p0. In a PR sheme alulation of �R(Q)one, therefore, alulates the sum1XN=0 lim"=0 +1Z�1 dp02� (1 + 2n(p0)) dis���R(P; ")P 2 i�(N+1)R (P; ")�= 1XN=0 lim"=0 +1Z�1 dp02� (1 + 2n(p0)) dis��i�(N+2)R (P; ")� ; (3.16)where �(N)R (P; ") is obtained by substituting in (3.10) the representation(3.15) for the HTL self energy (2.2); and likewise for the e�etive propagatorof (1.1) giving then the expression ?�R(P; "). Eah term of (3.16) involvesmass singular ontributions all of them obeying �nite series of arithmetialanellation patterns� "k(2")j�� jXm=0Cmj (�1)m mk = 0 ; 1 � k � j � 1 (3.17)so that �R(Q) is eventually singularity free. Sine the proof of (3.17) is abit lengthy, we defer it to the Appendix.The RP sequene ends up with a di�erent senario sine inverting thesum and integral operations one has to alulate+1Z�1 dp02� (1 + 2n(p0)) dis ��R(P )P 2 i 1XN=0�(N+1)R (P )!= +1Z�1 dp02� (1 + 2n(p0)) dis lim"=0 ���R(P; ")P 2 � i 1XN=0 lim"=0�(N+1)R (P; ")!



On Two Resummation Shemes of a Hot Salar Field Model 1195= +1Z�1 dp02� (1 + 2n(p0))�dis�lim"=0 ���R(P; ")P 2 � i lim"=0 h?�R(P; ") ��(0)R (P )i� : (3.18)With the remaining integration over p, one gets for �R(Q) the expression�4ie2 Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0))�dis�lim"=0 ���R(P; ")P 2 � i lim"=0 h?�R(P; ")��(0)R (P )i� : (3.19)Then, we take the same alulational step as taken along the RP sequeneof QCD passing from (3.5) to (3.6) and single out the ontribution attahedto the disontinuity of (2.19) whih reads nowdis ���R(P; ")P 2 � = �i�(�P 2)sin(�")" m2p2 p0p ����p0 � pp0 + p ����" : (3.20)In (3.20) the previously alluded ommutativity of the " = 0 limit with thedisontinuity presription is obvious sine the limit at " = 0 just reproduesthe disontinuity of the (retarded) self energy funtion (2.2) divided by P 2.Letting aside for a while the ontribution to (3.18) whih is attahed to?�R(P; "), we fous on that part of �R(Q) whih is due to the PrinipalPart omponent of the bare propagator �(0)R (P ). It is�4ie2 sin(�")" Z d5p(2�)5 m2p2 1Z0 dp0� (1 + 2n(p0)) PP 2 dis���R(P; ")P 2 �
= +4e2 sin(�")�" Z d5p(2�)5 m2p2 pZ0 dp0 (1 + 2n(p0)) p0p �p�p0p+p0�"(p� p0)(p+ p0) ;(3.21)where in the seond line the Prinipal Part presription an be given up inview of the "-regularization supplied by (3.15): Clearly, a mass singularitydevelops at the light one boundary p0 = p, whih eventually plagues theRP alulation of �R(Q). That is, following the ustomary alulationalsteps of the Resummation Program, a divergent result is obtained due tosome �residual� mass singularity. Now, the above omparison of the two



1196 Th. GrandouPR and RP alulations shed some interesting new light on both the ori-gin and spurious harater of this singularity. Proeeding along the RPsequene, the sum over N is performed �rst resulting in the e�etive prop-agator [?�R(P; ") � �(0)R (P )℄ of (3.18). By the same token though, thearithmetial anellation patterns (3.17) of mass singularities whih alongthe PR sequene take plae at all partial e�etive propagator �(N+2)R (P; ")are de�nitely broken. As ould be intuitively expeted then [13℄ a �residual�mass singularity pops out of a given ontribution to �R(Q) and this appears,therefore, as a purely strutural artefat resulting from the reorganizationinto the form (1.1) of the e�etive propagator original perturbative series(3.10).In a somewhat surprising but remarkable analogy with QCD it is inter-esting to note that another ollinear singularity is indued also by the twoterms orresponding to one insertion of one-loop vertex (2.19), the otherbare (1.3). Within the same approximations as used so far, and along theRP sequene, these two idential ontributions to �R(Q) e�etively add upto �2ie2 Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0))� 1XN+N 0=0 dis� iP 2 + i�p0�(N+N 0)R (P; ")2�R(P; ")�= �4ie2Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0)) 1XN=0 dis��R(P; ")P 2 i�(N)R (P; ")� :(3.22)Summing over N , and taking as before the disontinuity of the �rst terminside the parenthesis of (3.22), yields�4ie2 Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0)) dis��R(P; ")P 2 � i[?�R(P; ")℄ : (3.23)Though, involving a residue di�erent from the one in (3.21), a mass singu-larity an be shown to develop out of (3.23). However, it is readily seenthat the whole expression anels against the same term in (3.19). Thisompensation is a onsequene of identity (2.19), relating, at the order ofapproximation we are alulating, the e�etive vertex to the self energy: As



On Two Resummation Shemes of a Hot Salar Field Model 1197mentioned in the introdution of this setion and after equation (3.7) thesame mehanism is known to take plae in thermal QCD as a onsequeneof the Ward identity whih, in HTL approximation, relates self energy andeletromagneti vertex [8℄. 4. DisussionOn the basis of a simple harged salar �eld model and restriting thephoton �eld to very soft modes, q=p � 1, it is possible to propose a fewarguments in favor of a net di�erene separating in the transposed ontext ofthe ollinear singularity problem of thermal QCD the Resummation Program(RP) from the perturbative resummation sheme (PR) of thermal leading�utuations.Within a given approximation level of the order of zero in the small q=p--parameter expansion, the trae of the very soft photon polarization ten-sor appears as a mass (or ollinear) singularity free quantity in the lattersheme, whereas it entails a mass singularity when the usual steps of the RPalulational sheme are taken. Out of this simpli�ed example a possiblemehanism responsible for the ollinear singularity of QCD may be fore-seen: Reorganizing for the propagator the original perturbative series intothe e�etive form used in the RP results in a breaking of the mass singularityarithmetial anellation patterns that are atual at any order of bare Per-turbation Theory. More preisely, replaing �(N;N 0)R (P; P 0) by ?�R(P; P 0)would amount to isolating a mass singularity oming from the disontinu-ity of the (double) e�etive vertex insertion, from those indued by partiale�etive propagators �(N;N 0)R (P; P 0) themselves. The former is aordinglysingled out with no other singular ounterpart to anel against.Sine we have been dealing with a simple, unphysial model, we do notthink worth addressing the reliability issue of an expansion in term of thevery soft photon parameter q=p. In full rigour, our results should aordinglybe taken at the level of a formal, still enouraging indiation that thingsould ome out di�erent in a PR treatment of the QCD situation and, inpartiular, not so singular. The physial ase of QCD is, of ourse, moredi�ult to deal with but it is interesting to note that the formal indiationprovided by the present model gets supported by preliminary QCD results,obtained without approximations [14℄.



1198 Th. GrandouAppendix AThe following proof is onstruted out of the one given in [3℄, Setion 4.The general term of the series islim"=0 +1Z�1 dp02� (1 + 2n(p0)) dis��i�(N+2)R (P; ")� (A.1)with the disontinuity of (A.1) being given bydis��i�(N)R (P; ")� = �2(�1)NN ! �"(p0)Æ(N)(P 2)Re (�R(P; "))N+2P Im (�R(P; "))N(P 2)N+1 : (A.2)Changing the integration variable from p0 to x = jP 2j=p2, the ontributionof the �rst part of (A:2) is found to be1p �m2p2 �N 1Z0 dxÆ(x)1 + 2n(pp1� x)p1� x 1N ! � ddx�N�xNRe�1� p1� x2" �1� ei�"x"(1 +p1� x)2"��N= 1 + 2n(p)p �m2p2 �N �1� 12"�N ; (A.3)where the parity of the integrand under the transformation p0 ! �p0 hasbeen used. For the seond term of (A.2), one �nds1p�m2p2�N 1� 1Z0 dxx 1 + 2n(pp1� x)p1� x Im�1�p1� x2" �1� ei�"x"(1 +p1� x)2"��N:(A.4)Writing,1 + 2n(pp1� x) = 1 + 2n(p) + [1 + 2n(pp1� x)� 1� 2n(p)℄ (A.5)it is easy to see that the singular part of (A.4) is attahed to the �rst termof (A.5), and reads
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1 + 2n(p)p �m2p2 �N AN (")A(N)(")= 1� NXj=1CjN �� 12"�j jXm=1Cmj (�1)m sin(�m")fjm(") ; (A.6)where the range j � m � 1 omes from the disontinuity (or imaginarypart) presription, and where the fjm(") are the funtions:fjm(") = 1m" +0� 1Z0 dxx p1� xj�1(1 +p1� x)2m" � 1m"1A : (A.7)In (A.7), the �rst term, 1=m", ontributes to AN (") an amount1��1� 12"�N (A.8)whih is readily seen to ompensate for the singularities of (A.3). Now, thefuntions " 7�! gjm(") = 0� 1Z0 dxx p1� xj�1(1 +p1� x)2m" � 1m"1A (A.9)de�ne analyti funtions of " in the half of the omplex plane Pj =f"jRe(")i � 1j g, where they enjoy the Taylor expansion [3℄gjm(") = 1Xn=0 mn"nn! b(n)j : (A.10)The proof of statement (A:10) an be found in the Appendix A of [3℄. Theoe�ients AN (") read thereforeA(N)(") = 1� NXj=1CjN (�1)j jXm=1Cmj (�1)m 1Xp=10� Xn+2k+1=p(�1)k �2k+1(2k + 1)! b(n)jn! 1A�mp"p(2")j (A.11)
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