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ON TWO RESUMMATION SCHEMESOF A HOT SCALAR FIELD MODELThierry GrandouInstitut Non Linéaire de Ni
e UMR CNRS 66181361, Route des Lu
ioles, 06560 Valbonne, Fran
ee-mail: grandou�inln.
nrs.fr(Re
eived November 2, 2000)Considering a 
harged s
alar massless quantum �eld model with globalgauge symmetry U(1), at �nite temperature T , we analyze the light 
onesingular stru
ture of the photoni
 two-point fun
tion, as derived in twodi�erent resummation s
hemes of leading thermal e�e
ts.PACS numbers: 12.38.Cy, 11.10.Wx1. Introdu
tionBe
ause of an inherent non perturbative 
hara
ter, quantum �eld the-ories at high temperature require that original perturbative expansions bereorganized into e�e
tive perturbation theories. The so 
alled ResummationProgram (RP) [1℄ a
hieves this task, while en
ountering serious obstru
tionsin the infrared (IR) se
tors of hot quantum �elds [2℄. Infrared divergingresults have been found begging the question of the reorganization of renor-malized perturbative series. In some re
ent publi
ations it has been stressedthat the ne
essary resummation of leading thermal �u
tuations 
ould be
onsistently 
arried out, a perturbative way, with, in the end, very di�erentensuing IR se
tors [3℄. In this arti
le, pursuing along this line of thinking,the 
ollinear singularity problem of hot QCD is addressed [4℄, though, as a�rst step, through a mu
h simpler 
harged s
alar �eld version.At D = 6 � 2" spa
e-time dimensions, the s
alar �eld self 
ubi
 inter-a
tion g0'3 is renormalizable and asymptoti
ally free: Having subtra
tedthe ultraviolet poles at the renormalization mass s
ale �, and introdu
ingthe new dimensionless 
oupling 
onstant g = g0�", the zero temperatureFeynman rules 
an be given. At �nite non zero temperature T , though, themodel does not display the usual ri
hness of gauge theories. In parti
ular,no Hard Thermal Loops (HTL) are known to show up in the proper vertex(1185)
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tions [5℄, and thermal e�e
tive perturbation theory is a

ordingly deter-mined by e�e
tive propagators only. In the R=A real time formalism [6℄ thelatter read ?��(P ) = iP 2 ���(p0; p) + i��p0 ; � = R;A : (1.1)The fun
tion ��(P ) is the HTL self energy to be dealt with later on. Inthe 
ourse of pra
ti
al 
al
ulations, this formalism gets 
ompleted by further
onventions like, for example, �R = +1, �A = �1. Also, �� = ���. Some
hanges allow to raise the previous s
alar �eld model up to the status ofa gauge theory, endowed with a global U(1) symmetry. These 
hanges areeasily read from the Lagrangian densityL(x) = ��'���'+ 12�������+ g0�''� + ie'� $��'A� (1:2)that is, the original Hermitian s
alar �eld gets di�erentiated into a 
harged�s
alar quark� �eld '(x), and a neutral �s
alar gluoni
� one �(x), whereas thefree photoni
 part of L(x) is omitted for short. Eventually, the 
harged s
alarquark �eld intera
ts with the photon �eld A�, with 
oupling strength e. Thebare �quark-gluon� vertex, V (0), and bare ele
tromagneti
 �quark� vertex,� (0)� are given byV (0)(P�; P 0� ; P"Æ) = �ig ; � (0)� (P�; Q� ; P 0Æ) = �ie(p� + p0�) ; (1:3)where � is the photon �eld Lorentz index, and P; P 0 the 6-momenta ofexternal quark legs. For both zero and non zero temperature formalisms,bare R=A propagators 
an be read from (1.1) by omitting the self energyfun
tions ��(P ). One may remark that by �minimally 
oupling�, the pures
alar model 
ould have been promoted to the status of a lo
al, rather thanglobal, U(1) gauge theory. The additional 
omplexity, for both bare ande�e
tive perturbation theories, had brought the model in 
loser analogywith QCD. These extra stru
tures, though, turn out to be unne
essary toour 
on
ern.The arti
le is organized as follows. The two elements that are ne
essaryto de�ne the required parts of both resummation s
hemes are the HTL s
alarquark self energy and ele
tromagneti
 vertex: They are derived in Se
tion 2.In Se
tion 3, taking advantage of a powerful HTL-self energy representa-tion, these elements are used to derive the (very) soft real photon propertwo point fun
tion, within the 
ustomary Resummation Program (RP), andwithin a so-
alled Perturbative Resummation s
heme (PR) of leading ther-mal �u
tuations. Results are 
ompared, while in order to alleviate the maintext, a te
hni
al proof of that se
tion is deferred to the Appendix. A shortdis
ussion of our results is presented in Se
tion 4.
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hemes of a Hot S
alar Field Model 11872. Elements of HTL-resummation s
hemesIn this se
tion, we deal with the only quark self energy and ele
tromag-neti
 vertex, evaluated at leading HTL order. The s
alar quark �eld selfenergy is given by��(P ) = �2ig2 Z d6K(2�)5 �(k0)Æ(K2)[1 + 2n(k0)℄��(K + P ) ; (2.1)where �(x) is the distribution �sign of x�, the fa
tor of 2, a fa
tor of symmetry,and n(k0), the Bose Einstein statisti
al distribution de�ned without absolutevalue pres
ription [6℄, whi
h makes the 
ombination �(k0)[1+2n(k0)℄ an evenfun
tion of k0. At P 2 = 0 thermal part of (2.1) is identi
ally zero and in thekinemati
al regime P 2 � p2 � T 2 one has [7℄�HTL� (P ) = m2P 2p2 �1� p02p �ln ����p0 + pp0 � p ����� i��(��)�(�P 2)�� ; m2 = g2T 248�(2.2)it therefore entails a HTL pie
e of leading order g2T 2 whi
h makes it ne
-essary to use (1.1) as the s
alar quark e�e
tive propagator, whenever p� issoft, that is, of order gT . Now, the modi�
ations adopted above for s
alar�elds bring no 
hange for the three point fun
tion whi
h remains free of HTL
ounterpart. For the quark ele
tromagneti
 vertex the situation is di�erent.At zeroth order in g the latter satis�es an obvious tree level Ward identityq�� (0)� (P�; Q� ; P 0Æ) = e��(0)(P 0)��1� e��(0)(P )��1 = �ie 2Q �P ; (2.3)where, on the right hand side, R=A indi
es are irrelevant. Identity (2.3) keepsbeing satis�ed at renormalized pure one-loop order, thermal 
ontributionsin
luded, and one must haveq�� (1)� (P�; Q� ;�P 0Æ) = ie ��Æ(�P 0)���(P )� = ie ��Æ(P 0)���(P )� ;(2.4)where properties spe
i�
 to massless �elds have been used [6℄. Fo
using onthermal 
ontributions (2.2) only, one gets, 
onsidering orders of magnitudesof (2.4), estimated over soft momenta P; P 0O(q�)�O(� (1)� ) = O(P 02 � P 2)�O(1) = O(q�)�O(p�)�O(1) : (2.5)This indi
ates the possibility for � (1)� of being of the same order of magnitudeas p�, that is, of � (0)� itself. Of 
ourse, Power Counting is not su�
ient to
on
lude that the ele
tromagneti
 quark vertex entails su
h a HTL pie
e,and one has to re
ourse to a
tual 
al
ulations: Within the R=A formalism



1188 Th. Grandoustandard notations one may write the one-loop vertex 
orre
tion as the sumof three terms,� (1)� (P�; Q� ;�P 0Æ) = (A� +B� + C�) (P�; Q�;�P 0Æ) (2.6)withA� = 2ieg2Z d6K(2�)5 [2k�℄�(k0)�12 + n(k0)� Æ(K2) f��(P +K)�Æ(K + P 0)+��(Q+K)��(K � P ) +��(K �Q)�Æ(K � P 0)g ; (2.7)B� = 2ieg2[p� + p0�℄Z d6K(2�)5 �(k0)�12 + n(k0)� Æ(K2)�f��(P +K)�Æ(K + P 0)g ; (2.8)C� = 2ieg2[q�℄Z d6K(2�)5 �(k0)�12 + n(k0)� Æ(K2)�f��(Q+K)��(K � P )���(K �Q)�Æ(K � P 0)g : (2.9)Whereas it is easy to 
he
k that Ward identity (2.4) is satis�ed by the lastfour equations, rather spe
i�
 features 
ome about when the HTL approx-imation is taken. Indeed, it is tempting to believe that the form of mostHTL verti
es is universal and di
tated by tree like Ward identities. In QCDthe e�e
tive quark�photon vertex reads, with bK = (1;bk) and bK2 = 0,� (1)� (P�; Q�; P 0Æ) = iem2QCD Z d bK4� bk� /bK( bK � P + i��)( bK � P + i�Æ) : (2.10)Considering that in our present situation the role of Dira
 matri
es 
� isplayed by the dimensionful ve
torial 
oupling 2k� + p� + p0�, one would getfor � (1)� (P�; Q� ;�P 0Æ) an expression likeiem2 Z d bKbk� bk�(2k� + p� + p0�)( bK � P + i��)( bK � P 0 + i�Æ)= iem2 Z d bK bk� bK � (P + P 0)( bK � P + i��)( bK � P 0 + i�Æ) (2.11)whi
h over soft values of P; P 0 is e�e
tively of the same order of magnitudeas � (0)� , the bare ele
tromagneti
 vertex, but on the other hand, is hardlyseen to obey (2.4). Indeed, in an a
tual 
al
ulation of (2.6), it is 
onvenient



On Two Resummation S
hemes of a Hot S
alar Field Model 1189to de
ompose the R=A propagators into the so 
alled �Landau damping� and�Parti
le produ
tion� terms [8℄, writing��(K + P ) = 12j~k + ~pj� ik + p0 � j~k + ~pj+ i�� � ik + p0 + j~k + ~pj+ i��!HTL= 12k � ibK � P + i�� � i2k + i��� ; (2.12)where the se
ond equality holds in the HTL sense only. A simple PowerCounting argument then shows that, 
ontrary to the 
ases of QED and QCDfor whi
h only the �rst type of terms matters, a mixing of both �Landaudamping� and �Parti
le produ
tion� terms is here required to yield a properHTL behavior, to wit,��(P +K)�Æ(K + P 0) 7! � 12k�2� ibK � P + i�� �i2k + i�Æ + �i2k + i�� ibK � P 0 + i�Æ!= � 12k�3 bK � (P + P 0)( bK � P + i��)( bK � P 0 + i�Æ)! : (2.13)Cal
ulations are hereafter straightforward and yield a full 
an
ellation oftype (2.11), (2.13)-terms :AHTL� (P�; Q�;�P 0Æ) = 0 : (2.14)The only HTL pie
es are those of B� and C�, respe
tively, given byBHTL� (P�; Q�;�P 0Æ) = �ie[p� + p0�℄ m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) ;(2.15)CHTL� (P�; Q�;�P 0Æ) = +ie[q�℄ m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) (2.16)and the e�e
tive ele
tromagneti
 vertex to be treated on the same footingas (1.3) reads, therefore,� (1)� (P�; Q� ;�P 0Æ) = �ie [p�+p0��q�℄m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) :(2.17)



1190 Th. GrandouThis rather pe
uliar result is, of 
ourse, inherent to the model under 
onsider-ation, with its dimensionful ve
torial �quark-photon� 
oupling [9℄. Likewise,one may observe that, 
ontrary to QED and QCD, the phase spa
e fa
tor of8�2 is not, and 
annot be (in view of (2.2), (2.4) and (2.17)), the total solidangle of the model, whi
h is only one third of it. As the diagrams, we willbe interested in shortly, do not involve higher points HTL verti
es, they willnot be 
onsidered in the sequel. Now, in an emission rate 
al
ulation, whereboth HTL self energies and e�e
tive verti
es are involved, it is 
ru
ial thatWard identity (2.4) be satis�ed. One has, however,q�� (1)� (P�; Q�; P 0Æ) = �iem2[P 02 � P 2℄Z d bK8�2 1( bK � P + i��)( bK � P 0 + i�Æ) ;(2.18)that is (2.4) and (2.18) do not 
oin
ide. This is not surprising sin
e we aredealing with HTL approximated forms whi
h, in parti
ular, satisfy (2.14).A remnant of the original symmetry is re
overed, though, in the limit of a
al
ulation involving only very soft photons satisfying the 
ondition q�=p� �1. For example, by taking q� of order g2T , one would mimi
 the 
ouplingmediated by the QCD e�e
tive verti
es, of the very soft s
ale �u
tuations ofthe order of g2T , to the soft ones, of the order of gT [10℄. Over these verysoft photon �eld 
on�gurations, one has, at least in a formal sense�HTL� (P 0) = �HTL� (P )�1 +O�qp�� ;m2Z d bK8�2 1( bK � P + i��)( bK � P 0 + i��) = ��HTL� (P )P 2 �1 +O�qp��; (2.19)where for the se
ond equality, anti
ipating the next se
tion, both P and P 0internal lines bear the same R=A index, ��, thanks to the massless 
hara
terof the involved s
alar quark �elds. Up to 
orre
tions of relative order q=pthat form of (2.4), whi
h is relevant to the next 
al
ulations, is eventuallypreserved. 3. A 
omparison of PR and RP 
al
ulationsWe are now in a position to 
al
ulate the (very) soft real photon emissionrate from the plasma, relying on e�e
tive propagators (1.1) and e�e
tiveverti
es� e�� (P�; Q�;�P 0Æ) = � (0)� (P�; Q� ;�P 0Æ) + � (1)� (P�; Q� ;�P 0Æ) : (3.1)For the sake of later purpose it is instru
tive to re
all the basi
 steps enter-ing the soft photon emission rate 
al
ulation of thermal QCD. In the R=A



On Two Resummation S
hemes of a Hot S
alar Field Model 1191formalism being used, this result enjoys a simple and systemati
 derivation,whi
h we follow here [8℄. In view of (3.1) one gets three types of terms:A term with two bare verti
es � (0)� , two terms with one bare vertex � (0)�and the other � (1)� , and a term with two verti
es � (1)� . In QCD the �rstthree terms pose no problem: Terms of se
ond type entail a 
ollinear sin-gularity that 
an
els out with a similar singularity 
oming from the lastterm. A residual 
ollinear singularity remains, though indu
ed by the lat-ter, and we will, therefore, fo
us on that parti
ular 
ontribution in
ludingtwo verti
es � (1)� . One gets within standard notations (Feynman gauge)�R(Q) = iZ d4P(2�)4 (1� 2nF (p0)) g�� dis
Tr�?SR(P )� (1)�(PR; QR;�P 0A)�?SR(P 0)� (1)�(PR; QR;�P 0A)� : (3.2)Substituting the relevant QCD expressions, one 
an write, with the 
onven-tion �R = +�,�R(Q) = �ie2m4QCD Z d4P(2�)4 (1� 2nF (p0))Z d bK4� Z d bK 04��dis
 bK � bK 0Tr�?SR(P )/bK?SR(P 0)/bK 0�( bK � P + i�)( bK � P 0 + i�)( bK 0 � P + i�)( bK 0 � P 0 + i�) : (3.3)Be
ause of the fa
tor bK � bK 0 appearing in the numerator there is no doublepole but a simple 
ollinear one at bK = bQ whose residue just involves theWard identity equivalent to (2.4), that ism2QCD Z d bK 04� [ bQ � bK 0℄ /bK 0( bK 0 � P + i�)( bK 0 � P 0 + i�) = 1q [�R(P )��R(P 0)℄ (3.4)and yields for �R(Q) the expression�ie2q Z d4P(2�)4 (1 �2nF (p0)) dis
m2QCD Z d bK4� 1( bK � P + i�)( bK � P 0 + i�)�Tr�?SR(P )/bQ?SR(P 0)[�R(P )��R(P 0)℄� : (3.5)The dis
ontinuity in p0 
an be taken by forming the di�eren
e of R andA-indi
ed P -dependent quantities. Then, an appropriate 
hoi
e of the inte-gration 
ontour in the p0-
omplex plane allows to write
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�R(Q) = �2e2m2QCDq Z d4P(2�)3 (1� 2nF (p0))Z d bK4� Æ( bK � P )bK �Q+ i��Tr�?SA(P )/bQ?SR(P 0) [�A(P )��R(P 0)℄� ; (3.6)where a fa
tor of 2 a

ounts for the two possibilities bK = bQ and bK 0 = bQ,and where the relation P 0 = P +Q has been used. The angular integrationdevelops a 
ollinear singularity at bK = bQ, and is responsible for that singularpart of �R(Q) whi
h 
an be expressed as�2e2m2QCDq  Z d bK4� 1Q � bK + i�!Z d4P(2�)3 Æ(P � bQ) (1� 2nF (p0))�Tr�?SA(P )/bQ?SR(P 0) [�A(P )��R(P 0)℄� : (3.7)The two terms involving one bare vertex � (0)� and a one-loop HTL 
orre
tion� (1)� , entail a similar singularity whi
h, when 
ombined with (3.7), leaveun
an
eled the �R(Q) singular 
ontribution�2ie2m2QCDq2  Z d bK4� 1bQ � bK + i�!Z d4P(2�)3 Æ(P � bQ) (1� 2nF (p0))� hTr�?SA(P )=bQ�� Tr�?SR(P 0)=bQ�i : (3.8)Getting ba
k to our s
alar model, we analyze things starting from ordi-nary Perturbation Theory and keep in mind that the two RP and PR-HTL-resummation s
hemes just 
orrespond to the two possible sequen
es alongwhi
h one performs in loop integrals, the sum over N , the number of HTLself energy insertions, and the integral on p0, the looping energy [3℄. Onehas at leading order in q=p�R(Q) ' �ie2 Z d5p(2�)5 1XN;N 0=0 +1Z�1 dp02� (1 + 2n(p0))�dis
m2 Z d bK8�2 1( bK � P + i�)( bK � P 0 + i�)��(N)R (P )�(N 0)R (P 0) (2�R(P )) ; (3.9)
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hemes of a Hot S
alar Field Model 1193and where �(N)R is the partial e�e
tive propagator obtained by insertingN HTL-self energy fun
tions �R(P ) along the internal P -line�(N)R (P ) = i ��HTLR (P )�N(P 2 + i�p0)N+1 : (3.10)Permuting in (3.9) the sum (N;N 0) and integral (p0) operations one re
oversthe sequen
e 
orresponding to the emission rate RP 
al
ulation. In order totake advantage of important simpli�
ations and make the essential di�eren
eof RP and PR stru
tures more transparent it is 
onvenient to rely on thesame order of approximation as used so far, (2.19), and write�(N)R (P )�(N 0)R (P 0) = iP 2 + i�p0�(N+N 0)R (P )�1 +O�qp�� : (3.11)It is worth stressing that relying on (3.11) is in no way 
ompulsory to makethe point we are interested in, but amounts to simplifying 
al
ulations that,otherwise, would be
ome extremely 
umbersome, as 
an be read o� theAppendix of [11℄. One gets then, [3℄,�R(Q) ' �ie2 1XN+N 0=0Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0)) dis
���R(P )P 2� iP 2 + i�p0�(N+N 0)R (P ) 2�R(P )� ; (3.12)where (2.19) has been used. Equation (3.12) 
an be written as�R(Q) ' �2ie2 Z d5p(2�)5 1XN=0 +1Z�1 dp02� (1 + 2n(p0))�dis
���R(P )P 2 i�(N+1)R (P )� ; (3.13)where (2.19), whose dis
ontinuity we have just seen to be 
ru
ial in obtainingthe fa
tored out singular integral of (3.8) along the QCD-RP sequen
e, issingled out. Thus, in a PR s
heme, �R(Q) involves the series with generalterm +1Z�1 dp02� (1 + 2n(p0))dis
���R(P )P 2 i�(N+1)R (P ) � : (3.14)



1194 Th. GrandouBe
ause of mass singularities, though, (3.14) is not de�ned. A parti
ularrepresentation for the HTL self energy fun
tion (2.2) 
an be introdu
ed [3℄� = m2P 2p2 � m22 P 2p2 p0p lim"=0 1" �1��p0 � pp0 + p�"� : (3.15)Thanks to the (p0 � p)�" fa
tors this representation is able to providemass/
ollinear singularities with the same regularization as a dimensionalone would operate at D = 6 + 2" dimensions and is endowed with most in-teresting properties, [3,12℄: The limit " = 0 
ommutes with the sum over N ,the integral on p0, and, as will be illustrated shortly, with the pres
riptionof dis
ontinuity in the variable p0. In a PR s
heme 
al
ulation of �R(Q)one, therefore, 
al
ulates the sum1XN=0 lim"=0 +1Z�1 dp02� (1 + 2n(p0)) dis
���R(P; ")P 2 i�(N+1)R (P; ")�= 1XN=0 lim"=0 +1Z�1 dp02� (1 + 2n(p0)) dis
��i�(N+2)R (P; ")� ; (3.16)where �(N)R (P; ") is obtained by substituting in (3.10) the representation(3.15) for the HTL self energy (2.2); and likewise for the e�e
tive propagatorof (1.1) giving then the expression ?�R(P; "). Ea
h term of (3.16) involvesmass singular 
ontributions all of them obeying �nite series of arithmeti
al
an
ellation patterns� "k(2")j�� jXm=0Cmj (�1)m mk = 0 ; 1 � k � j � 1 (3.17)so that �R(Q) is eventually singularity free. Sin
e the proof of (3.17) is abit lengthy, we defer it to the Appendix.The RP sequen
e ends up with a di�erent s
enario sin
e inverting thesum and integral operations one has to 
al
ulate+1Z�1 dp02� (1 + 2n(p0)) dis
 ��R(P )P 2 i 1XN=0�(N+1)R (P )!= +1Z�1 dp02� (1 + 2n(p0)) dis
 lim"=0 ���R(P; ")P 2 � i 1XN=0 lim"=0�(N+1)R (P; ")!



On Two Resummation S
hemes of a Hot S
alar Field Model 1195= +1Z�1 dp02� (1 + 2n(p0))�dis
�lim"=0 ���R(P; ")P 2 � i lim"=0 h?�R(P; ") ��(0)R (P )i� : (3.18)With the remaining integration over p, one gets for �R(Q) the expression�4ie2 Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0))�dis
�lim"=0 ���R(P; ")P 2 � i lim"=0 h?�R(P; ")��(0)R (P )i� : (3.19)Then, we take the same 
al
ulational step as taken along the RP sequen
eof QCD passing from (3.5) to (3.6) and single out the 
ontribution atta
hedto the dis
ontinuity of (2.19) whi
h reads nowdis
 ���R(P; ")P 2 � = �i�(�P 2)sin(�")" m2p2 p0p ����p0 � pp0 + p ����" : (3.20)In (3.20) the previously alluded 
ommutativity of the " = 0 limit with thedis
ontinuity pres
ription is obvious sin
e the limit at " = 0 just reprodu
esthe dis
ontinuity of the (retarded) self energy fun
tion (2.2) divided by P 2.Letting aside for a while the 
ontribution to (3.18) whi
h is atta
hed to?�R(P; "), we fo
us on that part of �R(Q) whi
h is due to the Prin
ipalPart 
omponent of the bare propagator �(0)R (P ). It is�4ie2 sin(�")" Z d5p(2�)5 m2p2 1Z0 dp0� (1 + 2n(p0)) PP 2 dis
���R(P; ")P 2 �
= +4e2 sin(�")�" Z d5p(2�)5 m2p2 pZ0 dp0 (1 + 2n(p0)) p0p �p�p0p+p0�"(p� p0)(p+ p0) ;(3.21)where in the se
ond line the Prin
ipal Part pres
ription 
an be given up inview of the "-regularization supplied by (3.15): Clearly, a mass singularitydevelops at the light 
one boundary p0 = p, whi
h eventually plagues theRP 
al
ulation of �R(Q). That is, following the 
ustomary 
al
ulationalsteps of the Resummation Program, a divergent result is obtained due tosome �residual� mass singularity. Now, the above 
omparison of the two
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al
ulations shed some interesting new light on both the ori-gin and spurious 
hara
ter of this singularity. Pro
eeding along the RPsequen
e, the sum over N is performed �rst resulting in the e�e
tive prop-agator [?�R(P; ") � �(0)R (P )℄ of (3.18). By the same token though, thearithmeti
al 
an
ellation patterns (3.17) of mass singularities whi
h alongthe PR sequen
e take pla
e at all partial e�e
tive propagator �(N+2)R (P; ")are de�nitely broken. As 
ould be intuitively expe
ted then [13℄ a �residual�mass singularity pops out of a given 
ontribution to �R(Q) and this appears,therefore, as a purely stru
tural artefa
t resulting from the reorganizationinto the form (1.1) of the e�e
tive propagator original perturbative series(3.10).In a somewhat surprising but remarkable analogy with QCD it is inter-esting to note that another 
ollinear singularity is indu
ed also by the twoterms 
orresponding to one insertion of one-loop vertex (2.19), the otherbare (1.3). Within the same approximations as used so far, and along theRP sequen
e, these two identi
al 
ontributions to �R(Q) e�e
tively add upto �2ie2 Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0))� 1XN+N 0=0 dis
� iP 2 + i�p0�(N+N 0)R (P; ")2�R(P; ")�= �4ie2Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0)) 1XN=0 dis
��R(P; ")P 2 i�(N)R (P; ")� :(3.22)Summing over N , and taking as before the dis
ontinuity of the �rst terminside the parenthesis of (3.22), yields�4ie2 Z d5p(2�)5 +1Z�1 dp02� (1 + 2n(p0)) dis
��R(P; ")P 2 � i[?�R(P; ")℄ : (3.23)Though, involving a residue di�erent from the one in (3.21), a mass singu-larity 
an be shown to develop out of (3.23). However, it is readily seenthat the whole expression 
an
els against the same term in (3.19). This
ompensation is a 
onsequen
e of identity (2.19), relating, at the order ofapproximation we are 
al
ulating, the e�e
tive vertex to the self energy: As
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alar Field Model 1197mentioned in the introdu
tion of this se
tion and after equation (3.7) thesame me
hanism is known to take pla
e in thermal QCD as a 
onsequen
eof the Ward identity whi
h, in HTL approximation, relates self energy andele
tromagneti
 vertex [8℄. 4. Dis
ussionOn the basis of a simple 
harged s
alar �eld model and restri
ting thephoton �eld to very soft modes, q=p � 1, it is possible to propose a fewarguments in favor of a net di�eren
e separating in the transposed 
ontext ofthe 
ollinear singularity problem of thermal QCD the Resummation Program(RP) from the perturbative resummation s
heme (PR) of thermal leading�u
tuations.Within a given approximation level of the order of zero in the small q=p--parameter expansion, the tra
e of the very soft photon polarization ten-sor appears as a mass (or 
ollinear) singularity free quantity in the latters
heme, whereas it entails a mass singularity when the usual steps of the RP
al
ulational s
heme are taken. Out of this simpli�ed example a possibleme
hanism responsible for the 
ollinear singularity of QCD may be fore-seen: Reorganizing for the propagator the original perturbative series intothe e�e
tive form used in the RP results in a breaking of the mass singularityarithmeti
al 
an
ellation patterns that are a
tual at any order of bare Per-turbation Theory. More pre
isely, repla
ing �(N;N 0)R (P; P 0) by ?�R(P; P 0)would amount to isolating a mass singularity 
oming from the dis
ontinu-ity of the (double) e�e
tive vertex insertion, from those indu
ed by partiale�e
tive propagators �(N;N 0)R (P; P 0) themselves. The former is a

ordinglysingled out with no other singular 
ounterpart to 
an
el against.Sin
e we have been dealing with a simple, unphysi
al model, we do notthink worth addressing the reliability issue of an expansion in term of thevery soft photon parameter q=p. In full rigour, our results should a

ordinglybe taken at the level of a formal, still en
ouraging indi
ation that things
ould 
ome out di�erent in a PR treatment of the QCD situation and, inparti
ular, not so singular. The physi
al 
ase of QCD is, of 
ourse, moredi�
ult to deal with but it is interesting to note that the formal indi
ationprovided by the present model gets supported by preliminary QCD results,obtained without approximations [14℄.
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onstru
ted out of the one given in [3℄, Se
tion 4.The general term of the series islim"=0 +1Z�1 dp02� (1 + 2n(p0)) dis
��i�(N+2)R (P; ")� (A.1)with the dis
ontinuity of (A.1) being given bydis
��i�(N)R (P; ")� = �2(�1)NN ! �"(p0)Æ(N)(P 2)Re (�R(P; "))N+2P Im (�R(P; "))N(P 2)N+1 : (A.2)Changing the integration variable from p0 to x = jP 2j=p2, the 
ontributionof the �rst part of (A:2) is found to be1p �m2p2 �N 1Z0 dxÆ(x)1 + 2n(pp1� x)p1� x 1N ! � ddx�N�xNRe�1� p1� x2" �1� ei�"x"(1 +p1� x)2"��N= 1 + 2n(p)p �m2p2 �N �1� 12"�N ; (A.3)where the parity of the integrand under the transformation p0 ! �p0 hasbeen used. For the se
ond term of (A.2), one �nds1p�m2p2�N 1� 1Z0 dxx 1 + 2n(pp1� x)p1� x Im�1�p1� x2" �1� ei�"x"(1 +p1� x)2"��N:(A.4)Writing,1 + 2n(pp1� x) = 1 + 2n(p) + [1 + 2n(pp1� x)� 1� 2n(p)℄ (A.5)it is easy to see that the singular part of (A.4) is atta
hed to the �rst termof (A.5), and reads



On Two Resummation S
hemes of a Hot S
alar Field Model 1199
1 + 2n(p)p �m2p2 �N AN (")A(N)(")= 1� NXj=1CjN �� 12"�j jXm=1Cmj (�1)m sin(�m")fjm(") ; (A.6)where the range j � m � 1 
omes from the dis
ontinuity (or imaginarypart) pres
ription, and where the fjm(") are the fun
tions:fjm(") = 1m" +0� 1Z0 dxx p1� xj�1(1 +p1� x)2m" � 1m"1A : (A.7)In (A.7), the �rst term, 1=m", 
ontributes to AN (") an amount1��1� 12"�N (A.8)whi
h is readily seen to 
ompensate for the singularities of (A.3). Now, thefun
tions " 7�! gjm(") = 0� 1Z0 dxx p1� xj�1(1 +p1� x)2m" � 1m"1A (A.9)de�ne analyti
 fun
tions of " in the half of the 
omplex plane Pj =f"jRe(")i � 1j g, where they enjoy the Taylor expansion [3℄gjm(") = 1Xn=0 mn"nn! b(n)j : (A.10)The proof of statement (A:10) 
an be found in the Appendix A of [3℄. The
oe�
ients AN (") read thereforeA(N)(") = 1� NXj=1CjN (�1)j jXm=1Cmj (�1)m 1Xp=10� Xn+2k+1=p(�1)k �2k+1(2k + 1)! b(n)jn! 1A�mp"p(2")j (A.11)



1200 Th. Grandouand in the limit " = 0, the (N + 1)(N + 2)=2 mass singularities 
an
el outa

ording to the set of N(N � 1)=2 arithmeti
al identities� "p(2")j�� jXm=0Cmj (�1)mmp = 0 ; 1 � p � j � 1 (A.12)whi
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