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QUARK DISTRIBUTION FUNCTIONSIN THE CHIRAL QUARK�SOLITON MODEL:CANCELLATION OF QUANTUM ANOMALIESK. Goekea, P.V. Pobylitsaa;b, M.V. Polyakova;bP. S
hweitzera and D. Urbanoa;
aInstitute for Theoreti
al Physi
s II, Ruhr University Bo
humD-44780 Bo
hum, GermanybPetersburg Nu
lear Physi
s InstituteGat
hina, St. Petersburg 188350, Russia
Fa
uldade de Engenharia da Universidade do Porto4000 Porto, Portugal(Re
eived De
ember 21, 2000)In the framework of the 
hiral quark�soliton model of the nu
leon we inves-tigate the properties of the polarized quark distribution. In parti
ular weanalyse the so 
alled anomalous di�eren
e between the representations forthe quark distribution fun
tions in terms of o

upied and of non-o

upiedquark states. By an expli
it analyti
al 
al
ulation it is shown that thisanomaly is absent in the polarized isos
alar distribution �u+�d, whi
h isultraviolet �nite. In the 
ase of the polarized isove
tor quark distribution�u��d the anomaly 
an be 
an
elled by a Pauli�Villars subtra
tion whi
his also needed for the regularization of the ultraviolet divergen
e.PACS numbers: 13.60.Hb, 14.20.Dh, 12.38.Lg, 12.39.Ki1. Introdu
tionSin
e the dis
overy of the axial anomaly [1℄ this phenomenon has beenattra
ting the interest of physi
ists leading to su
h an amount of general-izations, variations and appli
ations that nowadays it is rather hard to givea de�nition of �quantum anomalies� whi
h 
ould 
over all 
ases. With thisreservation, it is still reasonable to think that typi
ally quantum anomaliesare asso
iated with a situation where

(1201)



1202 K. Goeke et al.1. a naively vanishing quantity is a
tually di�erent from zero due to thenontrivial role of the ultraviolet e�e
ts,2. on
e these ultraviolet e�e
ts are taken into a

ount, the nonzero resultfor this quantity 
an be 
omputed analyti
ally whatever 
ompli
atedfun
tional and operator 
onstru
tions stand behind it.In this paper we want to attra
t attention to a phenomenon that appearsif one 
onsiders the nu
leon in the limit of large number of 
olors N
. It iswell known [2℄ that in this limit the nu
leon is des
ribed by a sort of Hartree(mean �eld) approximation where the nu
leon parameters 
an be representedas sums over �o

upied single-quark states� in the mean �eld 
orrespondingto the solution of Hartree equations. Using the C parity argument we 
analternatively rewrite these quantities as sums over �nono

upied single-quarkstates�. As a result at large N
 we have two equivalent representations forvarious nu
leon parametershN jOjNi = Xn; o

hnj�Ojni = � Xn;non�o

hnj�Ojni: (1)Here hN jOjNi is a nu
leon matrix element of some operator O in the fulltheory whereas �O is the �image� of the observable O in the single-quarkHilbert spa
e in the Hartree approximation justi�ed by large N
. Next, jni isthe full set of single-quark states appearing in the mean �eld approximation.Stri
tly speaking in Eq. (1) we must subtra
t the 
orresponding va
uumsums and take into a

ount the translational and rotational zero modes ofthe large N
 mean �eld solution.The equivalen
e of the two representations (1) relies on the general ar-gument of C invarian
e but formally it is based on the identityXn; o

hnj�Ojni+ Xn; non�o

hnj�Ojni =Xn hnj�Ojni = 0 ; (2)i.e. Tr�O =Xn hnj�Ojni = 0 : (3)At this moment one 
an meet the same problem as in the 
ase of the Fujikawaapproa
h [3℄ to the axial anomaly where naively one hasTr 
5 = 0 (4)but a
tually the 
areful treatment of the ultraviolet regularization leads toa nonzero result for the axial anomaly.



Quark Distribution Fun
tions in the Chiral Quark�Soliton : : : 1203The exa
t form of the large N
 Hartree equations for QCD is not knownand one has to deal with models imitating the large N
 QCD. The subsequent
onsideration will pro
eed in the framework of the 
hiral quark�soliton model[4�6℄. We shall be interested in two questions:1. For whi
h ultraviolet regularizations the naive identity Tr�O = 0 re-ally holds?2. If in some regularization the �anomaly� Tr�O 6= 0 o

urs, is it possibleto 
ompute this anomaly analyti
ally?The �rst question has a dire
t physi
al meaning sin
e for pra
ti
al 
al
u-lations of nu
leon observables one should use a regularization preserving theequivalen
e of two representations (1). In 
ertain unphysi
al regularizationsone 
an have a nonvanishing anomaly Tr�O 6= 0. Its analyti
al 
al
ulationis of 
ertain interest be
ause the numeri
al 
al
ulation of physi
al observ-ables (1) in the quark soliton model is usually rather involved te
hni
allyand any analyti
al results that 
an be 
ompared with the numeri
al outputare extremely useful for the 
he
k of the numeri
al pro
edure.These general issues are of importan
e for the 
al
ulation of parton distri-butions in the quark soliton model. Re
ently the problem of the equivalen
eof the two di�erent representations (1) has 
aused 
ertain troubles [7℄. Inthis paper we 
larify the situation by a straightforward 
al
ulation of the�anomaly� asso
iated with polarized quark distributions and demonstratethat this anomaly is 
an
elled by the Pauli�Villars subtra
tion.2. Parton distributions in the quark soliton modelRe
ently a rather su

essful program of 
omputing the quark distribu-tion fun
tions in the framework of the e�e
tive quark�soliton model wasdeveloped [7�12℄. The quark soliton model [4�6℄ in
ludes the 
hiral pion�eld U = ei�a�a=F� and the quark �eld  whose intera
tion is des
ribed bythe Lagrangian L = � (i
��� �MU
5) : (5)In the mean �eld approximation (justi�ed in the limit of the large numberof quark 
olors N
 [2℄) the nu
leon arises as a soliton of the 
hiral �eld UU(x) = exp[i(na�a)P (r)℄; na = xar ; r = jxj : (6)This e�e
tive theory allows a quantum �eld-theoreti
al approa
h to the
al
ulation of the quark and antiquark distributions in the nu
leon. In 
on-trast to naive quark 
omposite models and to the bag model here we havea 
onsistent approa
h reprodu
ing the main features of the QCD parton



1204 K. Goeke et al.model like positivity of the quark and antiquark distributions, various sumrules et
.In terms of the quark degrees of freedom this pi
ture of the nu
leon
orresponds to o

upying with N
 = 3 quarks the negative 
ontinuum levelsas well as the valen
e level of the one-parti
le Dira
 Hamiltonian HH = �i
0
k�k +M
0U
5 ; (7)in the ba
kground soliton �eld U . For the pion �eld (6) one 
an �nd thespe
trum of the Hamiltonian (7)Hjni = Enjni : (8)A

ording to Eq. (1) various nu
leon observables 
an be naturally rep-resented as sums over eigenstates jni of the Dira
 Hamiltonian H. Forexample, the nu
leon mass MN is given byMN = N
 Xn;o

(En �E(0)n ) = �N
 Xn;non�o

(En �E(0)n ) : (9)Here the energy of the va
uum is subtra
ted whi
h is given by the sum ofthe eigenvalues E(0)n of the free HamiltonianH0jn(0)i = E(0)n jn(0)i; H0 = �i
0
k�k +M
0: (10)The physi
al reason for the existen
e of the two equivalent expressionsin (9) is that the polarized Dira
 sea pi
ture 
an be formulated either interms of quark or in terms of antiquark states (o

upied antiquark states
orrespond to non-o

upied quark states).Formally the equivalen
e of two representations (9) for MN follows fromthe identity Xn;o

En +Xn;non�o

En!� (En ! E(0)n ) =Xn (En �E(0)n ) = Tr (H �H0) = 0 :(11)At the last step we took into a

ount that the tra
es of H and of H0 over thespin indi
es vanish. Stri
tly speaking, this naive argument is not safe sin
ethe sums (9) over the o

upied and non-o

upied states are ultraviolet di-vergent and must be regularized. In prin
iple, the ultraviolet regularization
ould lead to an anomalous di�eren
e between the summation over o

u-pied and non-o

upied states but in the 
ase of the nu
leon mass (9) one
an 
he
k that in the regularizations suppressing the 
ontributions of higheigenvalues the anomaly is absent:lim�!1Tr�Hf �H���H0f �H0� �� = 0 ; (12)



Quark Distribution Fun
tions in the Chiral Quark�Soliton : : : 1205where f is an arbitrary even fun
tion vanishing at in�nity fast enough(f(�1) = 0) and su
h that f(0) = 1.We 
an reformulate this verbally as the �absen
e of the anomaly� in thenu
leon mass MN (in the above regularization). The usage of the word�anomaly� is invoked by the similarity with the axial anomaly whi
h 
an beinterpreted as a nonvanishing tra
e of 
5 
omputed in the basis of eigenstatesof the Dira
 operator in a ba
kground gauge �eld with a regularizationsuppressing the 
ontribution of large eigenvalues [3℄.The main obje
t of interest in this paper is the study of the quark distri-bution fun
tions. In the mean �eld approa
h (justi�ed in the large N
 limit)the quark distributions 
an be represented as single or double sums overo

upied or non-o

upied one-parti
le eigenstates (8) of the Dira
 Hamil-tonian (7). We shall see that for the same parton distribution one 
anwrite two naively equivalent representations but whether this equivalen
epersists or not when one takes into a

ount the ultraviolet regularization isa rather subtle question and the situation is di�erent for di�erent distribu-tions. Moreover, even in the limit of the large 
uto�, the 
an
ellation ofthis anomalous di�eren
e between the naively equivalent representations issensitive to the regularization used.Let us start from the unpolarized isosinglet quark distribution u(x)+d(x)whi
h is given by the following expressions [8℄ in the leading order of the1=N
 expansionu(x) + d(x) = N
 Xn;o

Z d3p(2�)3 Æ�p3 +EnMN �x� hnjpi(1+
0
3)hpjni= �N
 Xn;non�o

Z d3p(2�)3 Æ�p3+EnMN �x� hnjpi(1+
0
3)hpjni :(13)Also here the subtra
tion of similar sums with the eigenstates and eigenval-ues of the Hamiltonian (7) repla
ed by those of the free Hamiltonian (10) isimplied. The result (13) has a transparent physi
al meaning of the probabil-ity to �nd a quark with momentum fra
tion x in the nu
leon in the in�nitemomentum frame. In Ref. [8℄ it was shown that in the Pauli�Villars regular-ization the sums over o

upied and non-o

upied states in (13) really givethe same result.We stress that the fa
t of the equivalen
e of the two representations forparton distributions is 
ru
ial for the positivity of unpolarized distributionsand for the validity of various sum rules inherited by the model from QCD [8℄.Therefore the 
he
k of this equivalen
e is an essential part of the 
al
ulationof parton distributions in the 
hiral soliton model.



1206 K. Goeke et al.Now let us turn to the polarized quark distributions. In the leading orderof the 1=N
 expansion only the isove
tor polarized distribution survives�u(x)��d(x) = �13N
 Xn;o

 Z d3p(2�)3 Æ�p3 +EnMN � x��hnjpi(1 + 
0
3)�3
5hpjni : (14)Compared to the expression (13) for u(x)+d(x) here we have an extra fa
tor�3
5 whi
h re�e
ts the fa
t that now we deal with the isove
tor polarizeddistribution. The fa
tor of 1=3 
omes from the matrix element over therotational wave fun
tions of the soliton [13℄.One 
an ask whether the summation over the o

upied quark states in(14) 
an be repla
ed by the summation over non-o

upied states�u(x)��d(x) = 13N
 Xn;non�o

 Z d3p(2�)3 Æ�p3 +EnMN � x��hnjpi(1 + 
0
3)�3
5hpjni : (15)In this paper we shall show that in the 
ase of the Pauli�Villars regular-ization (the sum over states n in (14) is logarithmi
ally divergent) the tworepresentations (14) and (15) are really equivalent.We stress that the equivalen
e of the summation over the o

upied andnon-o

upied states is very sensitive to the 
hoi
e of the regularization. Forexample, if instead of the Pauli�Villars regularization we simply 
ut thesummation over quark states in (14) in
luding only states with jEnj < !0then a nonzero di�eren
e between the two representations (14) and (15) willremain even in the limit of the in�nite 
uto� !0 ! 1. The me
hanismhow this anomalous di�eren
e appears is similar in many respe
ts to thefamous axial anomaly. In parti
ular, su
h similarity manifests itself in thefa
t that the anomalous di�eren
e between the two representations (14) and(15) 
an be 
omputed analyti
ally in the limit !0 !1. The 
al
ulation ofthe anomalous di�eren
e is presented in this paper.Although the regularization in
luding only states with jEnj < !0 is nota

eptable as a physi
al one and the Pauli�Villars regularization is morepreferable in this respe
t, we want to emphasize that in the pra
ti
al 
al
u-lations based on the numeri
al diagonalization of the Dira
 operator in theba
kground soliton �eld, the jEnj < !0 regularization appears naturally. In-deed, in the numeri
al 
al
ulation one 
an work only with a �nite amount ofquark states so that one a
tually uses both Pauli�Villars subtra
tion (withthe regulator massMPV) and the jEnj < !0 regularization. The pure Pauli�Villars subtra
tion is simulated by working with !0 �MPV. The numeri
al



Quark Distribution Fun
tions in the Chiral Quark�Soliton : : : 1207
al
ulation is rather involved and the analyti
al result for the anomaly inthe jEnj < !0 regularization is very helpful for the 
ontrol of numeri
s evenif the anomaly 
an
els after the Pauli�Villars subtra
tion.Now let us turn to the polarized isos
alar quark distribution �u(x) +�d(x) whi
h gets the �rst nonzero 
ontribution only in the subleading orderof the 1=N
 expansion�u(x) + �d(x) = N
MN2I Xm;all Xn;o

 1En �Em�hnj�3jmihmj(1 + 
0
3)
5Æ(En + P 3 � xMN )jni+N
4I ��x Xn;o

hnj(1 + 
0
3)�3
5Æ(En + P 3 � xMN )jni :(16)Here P 3 is the quark momentum proje
tion on the third axisP 3 = �i ��x3 ; (17)and I is the moment of inertia of the soliton.Another representation for �u + �d 
an be written in terms of thesummation over non-o

upied states n�u(x) + �d(x) = �N
MN2I Xm;all Xn;non�o

 1En �Em�hnj�3jmihmj(1 + 
0
3)
5Æ(En + P 3 � xMN )jni�N
4I ��x Xn;non�o

hnj(1 + 
0
3)�3
5Æ(En + P 3 � xMN )jni :(18)The numeri
al 
al
ulation of �u + �d with the Pauli�Villars subtra
tionwas presented in paper [7℄. Unfortunately there the question about theequivalen
e of the two representation (16) and (18) was not investigatedproperly. Also the Pauli�Villars subtra
tion was used in paper [7℄ withoutproper justi�
ation.In this paper we show that if one 
uts the sum over o

upied (non-o

upied) states n allowing only jEnj < !0 in the Eqs. (16), (18) then in thein�nite 
uto� limit !0 !1



1208 K. Goeke et al.1. both representations (16) and (18) have a �nite limit (i.e. �u(x) +�d(x) has no ultraviolet divergen
es),2. the two representations (16), (18) give the same result.Comparing the last terms in the rhs of representations (16) and (18)for �u + �d with expressions (14) and (15) for �u � �d we see thatthe total expression for �u + �d 
ontains a 
ontribution proportional to��x [�u(x)��d(x)℄.Therefore we start our analysis by investigating the anomaly of �u��dwhi
h we do in Se
tion 3. In Se
tion 4 we show by expli
it 
al
ulation that forthe quark distribution �u+�d there is no anomalous di�eren
e between thesummations over o

upied and non-o

upied states. In Se
tion 5 we dis
ussthe numeri
al results and 
ompare them to the GRSV parametrization ofexperimental data. 3. Anomaly of �u(x)��d(x)As it was explained in the introdu
tion one of our aims is to investigatewhether the two representations (14) and (15) for the polarized isove
torquark distribution �u(x)��d(x) are equivalent. The answer to this ques-tion is sensitive to the ultraviolet regularization. Let us start from theregularization that allows only the quark states n with jEnj < !0. In thisregularization Eq. (14) 
an be rewritten as follows.[�u(x)��d(x)℄!0o

= �13N
MN Elev+0Z�!0 d!Tr �Æ(H � !)Æ(! + P 3 � xMN )�3(1 + 
0
3)
5� : (19)Here H is the Dira
 Hamiltonian (7) and P 3 is momentum operator (17).Similarly, representation (15) be
omes[�u(x)��d(x)℄!0non�o

= 13N
MN !0ZElev+0 d!Tr �Æ(H � !)Æ(! + P 3 � xMN )�3(1 + 
0
3)
5� : (20)The main results of this se
tion 
an be formulated as follows:1. Both [�u(x)��d(x)℄!0o

 and [�u(x)��d(x)℄!0non�o

 are logarithmi-
ally divergent in the limit of large 
uto� !0 !1



Quark Distribution Fun
tions in the Chiral Quark�Soliton : : : 1209
[�u(x) � �d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

 = N
MNM212�2 ln !0M� Z d3k(2�)3Spfl h( ~U [k℄)+�3 ~U(k)i � �k3 � jxjMN�+ : : : : (21)2. In the di�eren
e [�u(x)��d(x)℄!0o

� [�u(x)��d(x)℄!0non�o

 the ul-traviolet divergen
es 
an
el and the !0 ! 1 limit of this di�eren
eredu
es to the following �nite expressionlim!0!1�[�u(x)��d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

	= � 112�2N
MNM2 Z d3k(2�)3 ln jxMN + k3jjxMN j Spfl h�3( ~U [k℄)+ ~U(k)i ;(22)where ~U(k) is the Fourier transform of the 
hiral mean �eld U(r)entering the Dira
 Hamiltonian (7)~U(k) = Z d3r e�i(kr) [U(r)� 1℄ : (23)Note that [�u(x)��d(x)℄!0o

 and [�u(x)��d(x)℄!0non�o

 separatelyare given by 
ompli
ated fun
tional tra
es (19) and (20) whi
h 
anbe 
omputed only numeri
ally. The fa
t that the anomalous di�eren
ebetween the representations in terms of the o

upied and non-o

upiedstates redu
es to a simple momentum integral (22) is highly nontrivialand is similar to the well known fa
t that the famous axial anomalygets its 
ontribution only from the simplest diagram.The fa
t that the divergen
e (21) is proportional to M2 means thatthis divergen
e 
an be removed by the Pauli�Villars subtra
tion so that thefollowing 
ombinations are �nite1[�u(x)��d(x)℄PVo

= lim!0!1�[�u(x)��d(x)℄!0;Mo

 � M2M2PV [�u(x)��d(x)℄!0;MPVo

 � ; (24)1 Following Refs. [17, 18℄, in our numeri
al 
al
ulations we de�ne [�u��d℄!0;MPVo

 byEq. (19) withM !MPV but do not in
lude the dis
rete valen
e level of the regulatorDira
 Hamiltonian (i.e. we repla
e Elev + 0 ! EMPVlev � 0 in Eq. (19)). In 
ontrast,our regulator analogue of Eq. (20) for [�u��d℄!0;MPVnon�o

 in
ludes this valen
e level.Obviously the di�eren
e [�u��d℄!0;MPVo

 � [�u��d℄!0;MPVnon�o

 is insensitive to thistreatment of the level. Therefore this subtlety of the regularization does not a�e
tthe anomaly study in this paper.



1210 K. Goeke et al.[�u(x)��d(x)℄PVnon�o

= lim!0!1�[�u(x)��d(x)℄!0;Mnon�o

 � M2M2PV [�u(x)��d(x)℄!0;MPVnon�o

� :(25)Next, sin
e the anomaly (22) is proportional toM2 we see that in the Pauli�Villars regularization the summation over o

upied and non-o

upied statesgives the same results:[�u(x)��d(x)℄PVo

 = [�u(x)��d(x)℄PVnon�o

 : (26)Now let us turn to the derivation of the result (22) for the anomalousdi�eren
e between the summation over o

upied and non-o

upied states.Subtra
ting (20) from (19) we obtain[�u(x)��d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

= �13N
MN !0Z�!0 d!Tr �Æ(H � !)Æ(! + P 3 � xMN )�3(1 + 
0
3)
5� : (27)We use the following representation for the operator delta fun
tion Æ(H�!)Æ(H � !) = sign!2�i � 1H2 � !2 � i0 � 1H2 � !2 + i0� (H + !) : (28)The squared Dira
 Hamiltonian (7) isH2 = ��2 +M2 + iM(
k�kU
5) : (29)Now (27) takes the form[�u(x)��d(x)℄!0o

�[�u(x)��d(x)℄!0non�o

 = �23N
MN Im !0Z�!0 d!2� sign!�Tr( 1��2 +M2 � !2 � i0 + iM(
k�kU
5) (! � i
0
k�k + 
0MU
5)�Æ(! + P 3 � xMN )�3(1 + 
0
3)
5) : (30)



Quark Distribution Fun
tions in the Chiral Quark�Soliton : : : 1211Next we expand the �propagator� in the rhs in powers of iM(
k�kU
5)1��2 +M2 � !2 � i0 + iM(
k�kU
5) = 1��2 +M2 � !2 � i0� 1��2 +M2 � !2 � i0 iM(
k�kU
5) 1��2 +M2 � !2 � i0 + : : : :(31)The �rst nonvanishing 
ontribution to (30) 
omes from the term linear iniM(
k�kU
5)[�u(x)��d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

 = �23N
MN Im !0Z�!0 d!2��Tr( 1��2 +M2 � !2 � i0 [�iM(�kU
5)℄ 1��2 +M2 � !2 � i0�(! � i
0
k�k + 
0MU
5)(1 + 
0
3)
5
kÆ(! + P 3 � xMN )�3) : (32)Computing the tra
e over the spin indi
es and turning to the momentumrepresentation a

ording to (23) we arrive at[�u(x)��d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

= �83N
MNM2ImZ d3k(2�)3 k3Spfl n( ~U [k℄)+ ~U(k)�3o� !0Z�!0 d!2� Z d3p(2�)3 sign!jk + pj2 +M2 � !2 � i0 Æ(! + p3 � xMN )jpj2 +M2 � !2 � i0 :(33)We �rst integrate over ! and p3[�u(x)��d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

= 43N
MNM2 Z d3k(2�)3 Z d2p?2(2�)3 k3Spfl h( ~U [k℄)+ ~U(k)�3i�n(xMN + k3)jp?j2 � xMN jp? + k?j2 + k3[M2 � xMN (xMN + k3)℄o�1�"��!0� jp?j2+M2+(xMN )22jxjMN � � �!0+ jp?+k?j2+M2+(xMN+k3)22jxMN+k3j !� ���!0+ jp?j2+M2+(xMN )22jxjMN � � !0� jp?+k?j2+M2+(xMN+k3)22jxMN+k3j !#:(34)



1212 K. Goeke et al.In the limit of large 
uto� !0 we have for any �xed A, Blim!0!1 �(!0 �A)�(�!0 +B) = 0 : (35)Nevertheless the integral in the rhs of (34) does not vanish in the limit!0 !1 sin
e this limit gets 
ontributions from the region!0 � jp?j2jxjMN �M � jxjMN � jkj ; (36)where jp?j grows with !0. In this region (34) simpli�es tolim!0!1�[�u(x)��d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

	= 43N
MNM2 Z d3k(2�)3 Z d2p?2(2�)3 Spfl h( ~U [k℄)+ ~U(k)�3i� 1jp?j2 ���!0 � jp?j2 +M2 + (xMN )22jxjMN � ���!0 + jp?j22jxMN + k3j�� ���!0 + jp?j22jxjMN � ��!0 � jp?j22jxMN + k3j�� : (37)Now the integral over p? be
omes trivial and we arrive at the �nal re-sult (22).An important feature of our 
al
ulation is that in the limit of large 
uto�!0 ! 1 the integral gets a 
ontribution only from large p?. A
tually thesituation is analogous to the 
al
ulation of the axial anomaly whi
h 
an alsobe formulated as saturated by the ultraviolet region.The analogy with the axial anomaly goes further if we go to the higherterms of the expansion (31): these higher terms vanish in the limit of thelarge 
uto� !0 ! 1. The me
hanism of this vanishing is as follows. Simi-larly to the leading term (34) one �nds that in the limit !0 !1 the integralover p? 
omes from large p?. But a simple dimensional 
ounting shows thatin the higher order terms the integrand de
ays at large p? too fast so thatthe integral vanishes in the limit !0 ! 1. Sin
e the higher order termsvanish our result for the anomaly (22) is a
tually exa
t.Restri
ting the integration over ! in Eq. (30) to the interval�!0 < ! < 0 or to 0 < ! < !0 we 
an investigate separate distributionfun
tions [�u(x)��d(x)℄!0o

 or [�u(x)��d(x)℄!0non�o

. In this 
ase onegets nonzero 
ontributions from all terms of the in�nite series (31). How-ever, it is not di�
ult to 
he
k that only the �rst nonvanishing term of thisexpansion is logarithmi
ally divergent in the limit of large 
uto� !0 ! 1and this logarithmi
 divergen
e is given by (21). This logarithmi
 diver-gen
e is proportional to M2 and therefore in our previous 
al
ulation of
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ould regularize it by the Pauli�Villars subtra
tion. Moreover,sin
e the anomaly (22) is also proportional toM2 it is 
an
elled by the samePauli�Villars subtra
tion [9℄.4. Can
ellation of the anomaly of �u(x) + �d(x)Now we turn to the investigation of�u(x)+�d(x). The !0 
uto� versionof (16) is[�u(x) +�d(x)℄!0o

 = N
MN2I Xm X�!0<En�Elev 1En �Em�hnj�3jmihmj(1 + 
0
3)
5Æ(En + P 3 � xMN )jni+N
4I ��x X�!0<En�Elevhnj(1+
0
3)�3
5Æ(En+P 3 � xMN )jni: (38)Although we use notations 
orresponding to the dis
rete spe
trum, a
tu-ally most of the spe
trum is 
ontinuous. The singularities 
orresponding toEm = En are assumed to be regularized a

ording to the prin
ipal valuepres
ription.Making use of (19) we �nd[�u(x) + �d(x)℄!0o

=[�u(x)+�d(x)℄(1)!0o

 � 34IMN ��x [�u(x)��d(x)℄!0o

 ;(39)where [�u(x) + �d(x)℄(1)!0o

 = N
MN2I Xm X�!0<En�Elev 1En �Em�hnj�3jmihmj(1 + 
0
3)
5Æ(En + P 3 � xMN )jni : (40)Similarly (18) leads to[�u(x) + �d(x)℄!0non�o

 = [�u(x) + �d(x)℄(1)!0non�o

� 34IMN ��x [�u(x)��d(x)℄!0non�o

 ; (41)where [�u(x) + �d(x)℄(1)!0non�o

 = �N
MN2I Xm XElev<En<!0 1En �Em�hnj�3jmihmj(1 + 
0
3)
5Æ(En + P 3 � xMN )jni : (42)



1214 K. Goeke et al.We see that[�u(x) + �d(x)℄!0o

 � [�u(x) +�d(x)℄!0non�o

= [�u(x) + �d(x)℄(1)!0o

 � [�u(x) + �d(x)℄(1)!0non�o

� 34IMN ��x �[�u(x)��d(x)℄!0o

 � [�u(x)��d(x)℄!0non�o

	 : (43)Here [�u(x) + �d(x)℄(1)!0o

 � [�u(x) + �d(x)℄(1)!0non�o

= N
MN2I Xm X�!0<En<!0� 1En �Em�PV�hnj�3jmihmj(1 + 
0
3)
5Æ(En + P 3 � xMN )jni : (44)We remind that here the prin
ipal value pres
ription for (En � Em)�1 isimplied. This 
an be rewritten in the form[�u(x) +�d(x)℄(1)!0o

 � [�u(x) + �d(x)℄(1)!0non�o

 = �MNN
4I !0Z�!0 d!�Sp��� 1H � !�PV �3Æ(H � !) + Æ(H � !)�3� 1H � !�PV�� Æ(! + P 3 � xMN )(1 + 
0
3)
5	 = � iMNN
4I !0Z�!0 d!2��Sp�� 1H � ! + i0�3 1H � ! + i0� Æ(! + P 3 � xMN )(1 + 
0
3)
5�+ iMNN
4I !0Z�!0 d!2��Sp�� 1H � ! � i0�3 1H � ! � i0� Æ(! + P 3 � xMN )(1 + 
0
3)
5� :(45)Hen
e[�u(x) + �d(x)℄(1)!0o

 � [�u(x) + �d(x)℄(1)!0non�o

= �ImMNN
2I !0Z�!0 d!2� Sp� 1H2 � !2 � i0sign! (H + !)�3(H + !)
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tions in the Chiral Quark�Soliton : : : 1215� 1H2 � !2 � i0sign!Æ(! + P 3 � xMN )(1 + 
0
3)
5�= �ImMNN
2I !0Z�!0 d!2� sign!Sp� 1H2 � !2 � i0(H + !)�3(H + !)� 1H2 � !2 � i0Æ(! + P 3 � xMN )(1 + 
0
3)
5�= �ImMNN
2I !0Z�!0 d!2� sign!Sp� 1��2 +M2 � !2 � i0 + iM(
k�kU
5)�(! � i
0
k�k + 
0MU
5)�3(! � i
0
k�k + 
0MU
5)� 1��2 +M2 � !2 � i0 + iM(
k�kU
5)Æ(! � i�3 � xMN )(1 + 
0
3)
5�:(46)The rest of the 
al
ulation is similar to how we worked with expression (30)for the anomaly of �u(x)��d(x).Nonzero 
ontributions to the anomaly 
ome from the expansion of thepropagators up to terms linear and quadrati
 in iM(
k�kU
5):[�u(x) + �d(x)℄(1)!0o

 � [�u(x) + �d(x)℄(1)!0non�o

= A1(x) +A2(x) : (47)Here A1(x) 
orresponds to terms linear in iM(
k�kU
5)A1(x) = ImMNN
2I !0Z�!0 d!2� sign!Sp(�iM(
l�lU
5) 1��2 +M2 � !2 � i0�(! � i
0
k�k + 
0MU
5)�3(! � i
0
k�k + 
0MU
5)+(! � i
0
k�k + 
0MU
5)�3(! � i
0
k�k + 
0MU
5)� 1��2 +M2 � !2 � i0 iM(
l�lU
5)��� 1��2 +M2 � !2 � i0�2Æ(! � i�3 � xMN )(1 + 
0
3)
5); (48)



1216 K. Goeke et al.and A2 is quadrati
 in iM(
k�kU
5)A2(x) = �ImMNN
2I !0Z�!0 d!2� sign!Tr� 1��2 +M2 � !2 � i0� �iM(
m�mU
5) 1��2 +M2 � !2 � i0 iM(
n�nU
5) 1��2 +M2 � !2 � i0�(! � i
0
k�k + 
0MU
5)�3(! � i
0
l�l + 
0MU
5)+iM(
m�mU
5) 1��2 +M2 � !2 � i0�(! � i
0
k�k + 
0MU
5)�3(! � i
0
l�l + 
0MU
5)� 1��2 +M2 � !2 � i0 iM(
n�nU
5)+(! � i
0
k�k + 
0MU
5)�3(! � i
0
l�l + 
0MU
5)� 1��2 +M2 � !2 � i0 iM(
m�mU
5)� 1��2 +M2 � !2 � i0 iM(
n�nU
5)�� 1��2 +M2 � !2 � i0Æ(! � i�3 � xMN )(1 + 
0
3)
5� : (49)A straightforward 
al
ulation leads to the following results for A1(x)and A2(x)A1(x) = �M2MNN
8�2I Z d3k(2�)3 1k3 ln ����1 + k3xMN ����Sp��3 h ~U(k)i+ ~U(k)� ;(50)A2(x) = MNN
M28�2I Z d3k(2�)3 ln ����k3 + xMNxMN ������ 1k3 + 12 ��k3�Sp��3 h ~U(k)i+ ~U(k)� : (51)Now we insert these results into (47)[�u(x) + �d(x)℄(1)!0o

 � [�u(x) + �d(x)℄(1)!0non�o

= MNN
M216�2I Z d3k(2�)3 ln ����k3 + xMNxMN ���� ��k3Sp��3 h ~U(k)i+ ~U(k)� : (52)Note that shifting the integration variablek3 ! k3 � xMN ; (53)
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tions in the Chiral Quark�Soliton : : : 1217we obtainZ d3k(2�)3 ln ����k3 + xMNxMN ���� ��k3Sp��3 h ~U(k)i+ ~U(k)�= � 1MN ��x Z d3k(2�)3 ln ��k3 + xMN �� Sp��3 h ~U(k)i+ ~U(k)� : (54)Therefore[�u(x) + �d(x)℄(1)!0o

 � [�u(x) + �d(x)℄(1)!0non�o

= �N
M216�2I ��x Z d3k(2�)3 ln ����k3 + xMNxMN ����Sp��3 h ~U(k)i+ ~U(k)� : (55)Inserting this result and (22) into (43) we observe a 
omplete 
an
ellation:lim!0!1�[�u(x) + �d(x)℄!0o

 � [�u(x) + �d(x)℄!0non�o

	 = 0 : (56)Thus the isos
alar polarized quark distribution �u(x)+�d(x) is nonanoma-lous.Using similar methods one 
an 
he
k that fun
tion �u(x) + �d(x) isfree of ultraviolet divergen
es: although the two separate terms in the rhsof (39) are UV divergent the total sum is �nite.5. Numeri
al resultsThe numeri
al results for the isove
tor polarized distribution fun
tion�u(x)��d(x) are given in [9℄. For the 
omputation of �u(x)+�d(x) (16),(18) we use the numeri
al methods whi
h were developed in [9℄ and later ex-tended in [11℄ for the 
omputation of the isove
tor unpolarized distribution.The eigenve
tors and eigenvalues of the Dira
 Hamiltonian (7) are de-termined by diagonalizing in the free Hamiltonian basis (10). This basis ismade dis
rete by pla
ing the soliton in a three-dimensional spheri
al box of�nite radius D and imposing the Kahana�Ripka boundary 
onditions [15℄.Both �u(x) � �d(x) and �u(x) + �d(x) were 
omputed using the stan-dard value of the 
onstituent quark mass M = 350 MeV as derived from theinstanton va
uum [16℄.In our 
al
ulation we use the self-
onsistent solitoni
 pro�le P (r) (seee.g. Ref. [17, 18℄ for the details of the regularization pro
edure). However,performing the numeri
al 
al
ulations in the �nite spheri
al box one shouldbe 
areful about the large distan
e e�e
ts. To be safe, we arti�
ially expo-nentially suppress the pion tail of the soliton pro�le at large distan
es sothat the �eld vanishes outside the box (a similar problem in the 
al
ulationof gA was studied in [19℄).



1218 K. Goeke et al.In Fig. 1 we 
ompare our numeri
al results for the anomaly of�u(x) � �d(x) with the analyti
al result (22). We observe a rather goodagreement.Fig. 2 shows the numeri
al results for the Dira
 sea 
ontribution to�u(x)+�d(x) based on the two representations (o

upied and non-o

upied).

0.0 0.2 0.4 0.6 0.8 1.0
x

−3.0
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−1.0

0.0

analytical calculation
numerical calculation

Fig. 1. Analyti
al (solid) and numeri
al (dashed) results for the anomalous di�er-en
e [�u��d℄o

 � [�u��d℄non�o

.

−1.0 −0.5 0.0 0.5 1.0
x

−0.10

−0.05

0.00

0.05

occupied
non−occupied

Fig. 2. Results for 
ontinuum 
ontribution [�u+�d℄sea based on the o

upied andnon-o

upied representations.



Quark Distribution Fun
tions in the Chiral Quark�Soliton : : : 1219We see a reasonable agreement between the two results whi
h 
on�rms theabsen
e of the anomaly in �u(x)+�d(x). Some di�eren
e between the two
urves at negative x is �nite-box artefa
t. In
reasing the size of the box one
an see that this di�eren
e tends to disappear.In Fig. 3 we 
ompare the result of the 
al
ulation of �u(x) + �d(x),��u(x) +��d(x) with the GRSV-LO parametrization [22℄ at the low s
ale ofthe model � = 600MeV. We see that the quark distribution �u(x)+�d(x)is in a reasonable agreement with the GRSV parametrization whereas theantiquark distribution ��u(x)+��d(x) obtained in the model is 
onsiderablysmaller than that of the GRSV parametrization. Note that the polarizedantiquark distributions are not dire
tly a

essible in in
lusive hard rea
tions.Due to the la
k of data the GRSV parametrizations therefore are basedon 
ertain assumptions, e.g. in the GRSV analysis it was assumed that��u(x) = ��d(x). In 
ontrast to this the QCD large N
 
ounting and thequark soliton model predi
t a large �avor asymmetry in the light polarizedsea. Some physi
al appli
ations of this have been studied in Refs. [21,23,24℄.
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x(∆u
− 
+∆d

−
 ) (x)
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GRSVFig. 3. The quark soliton model results for x[�u + �d℄ and x[��u + ��d℄ versusLO-GRSV parametrization at the s
ale � � 600 MeV.Fig. 4 shows our predi
tions for the polarized antiquark distributions��u(x) and ��d(x) separately at the s
ale � = 600MeV.Sin
e the quark distribution �u+�d is �nite, no ultraviolet regulariza-tion is needed for this quantity. There is even an argument against regulariz-ing �u+�d 
oming from the fa
t that the �rst moment of this distributionis related to the imaginary part of the quark determinant in the ba
kgroundsoliton �eld whi
h has to be left nonregularized if one wants to keep baryon
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Fig. 4. The quark soliton model predi
tions for x��u and x��d at the s
ale � �600 MeV.number 
onserved � this is an analog of the nonrenormalizability of theWess�Zumino term in pure 
hiral models.Several 
omments should be made about the 
al
ulations of �u + �dwithin the same model by Wakamatsu et al. who published three dif-ferent versions of the 
al
ulation in papers [7, 20, 21℄. In paper [20℄ oneof the terms was overlooked. This mistake was 
orre
ted by the authorsof [11℄. The revised version of 
al
ulation of Wakamatsu et al. was pub-lished in [7℄. In this paper the question about the anomalous di�eren
e[�u(x) + �d(x)℄!0o

 � [�u(x) + �d(x)℄!0non�o

 was investigated only numer-i
ally but the a

ura
y of the 
al
ulation did not allow the authors to drawany 
on
lusions 
on
erning whether this di�eren
e vanishes or not. A
tu-ally the numeri
al a

ura
y of the agreement between the two representa-tions whi
h we observe in our 
al
ulation (see Fig. 2), and whi
h is ne
-essary for a proper evaluation of the parton distributions, is of two ordersof magnitude better than the same di�eren
e presented in [7℄. The pra
-ti
al solution a

epted in [7℄ was to use [�u(x) + �d(x)℄!0o

 for x > 0 and[�u(x) + �d(x)℄!0non�o

 for x < 0 (i.e. for the antiquark distribution). Asit was explained above, �u(x) + �d(x) should not be regularized 
ontraryto what the authors of Ref. [7℄ do.The �rst moment of the �u(x) + �d(x) gives the singlet axial 
harge.Our result of g(0)A = R 1�1 dx(�u+�d)(x) = 0:35 agrees with the 
al
ulationperformed in other works [14,26℄. Note that in the 
al
ulation of this 
hargeno ultraviolet regularization was used.
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tions in the Chiral Quark�Soliton : : : 12216. Con
lusionsWe have proved that the representation of singlet polarized (anti)quarkdistributions in the 
hiral quark�soliton model as a sum over quark orbitalsis ultraviolet �nite and free of quantum anomalies. This is a serious 
he
kof the 
onsisten
y of the quark�soliton model.In fa
t, the 
an
ellation of quantum anomalies in the model is relatedto the fa
t that 
ertain basi
 properties of QCD as a lo
al quantum �eldtheory are realized in the model. The equivalen
e of the summation overo

upied and non-o

upied states is dire
tly 
onne
ted to anti
ommutativityof fermion �elds at spa
e-like intervals. A
tually this lo
ality property hasa dire
t relation to the positivity of quark and antiquark densities in thequark soliton model [8, 9℄.Another 
onsequen
e of the 
an
ellation of anomalies is that the modelresults for the parton distributions are 
ompatible with the 
harge 
onjuga-tion invarian
e: the quark distributions in nu
leon 
oin
ide with the anti-quark distributions in the antinu
leon.From the pra
ti
al point of view the results presented in this paper allowus to 
on
lude that for the 
al
ulation of the singlet polarized quark andantiquark distributions no Pauli�Villars subtra
tion is needed. Additionallythe numeri
al 
he
k of the 
an
ellation of the anomalies is a powerful toolto 
ontrol the a

ura
y of the numeri
s.We have 
omputed the singlet polarized quark and antiquark distribu-tions whi
h arise in the subleading order of 1=N
 expansion. We found thequark distribution �u(x) + �d(x) to be in a reasonable agreement withGRSV [22℄ parametrization of parton distributions at low normalizationpoint.Con
erning the 
omparison of the parton distributions 
omputed in the
urrent model with the �ts to experimental data it is often asked whetherthe model deals with 
urrent or 
onstituent quarks. A
tually one should berather 
areful with the term �
onstituent quark� sin
e the obje
t is stri
tlyspeaking absent in QCD and appears only in the 
ontext of various modelsand heuristi
 approximations. The 
hiral quark soliton model used in thepresent paper 
an be derived from QCD by assuming the QCD va
uum tobe dominated by a gas of instantons. Thus in the present model the nu
leonparton distributions are 
omputed starting from QCD expressions. Certainapproximations are used, in parti
ular, the fun
tional integral over the gluon�elds is approximated by the statisti
al average over the instanton medium,large N
 limit is taken et
. However, whatever approximations are used,we always deal with the quark �elds inherited from the QCD a
tion andin this sense our quark distributions are usual 
urrent quark distributions.The stru
ture of the model 
al
ulation also �xes the s
ale at whi
h the



1222 K. Goeke et al.parton distributions are 
omputed � it is determined by the inverse averageinstanton size whi
h is of order of 600 MeV. In this sense the 
omparisonof our 
al
ulations with the phenomenologi
al �ts is quite justi�ed (witha 
ertain 
are about the a

ura
y of the model and the region of x wherethe model makes sense as well as about the assumptions made in the �ts toexperimental data).A remarkable predi
tion of our model is that the polarized distribu-tions of u and d antiquarks are essentially di�erent, see Fig. 4. Usually,in parametrizations of polarized parton distributions, it was assumed that��u(x) = ��d(x), whi
h is not 
on�rmed by our model 
al
ulations (seeFig. 4). It would be extremely interesting to in
lude into the �ts of the datathe �avor de
omposition pattern for polarized antiquarks obtained in ourmodel 
al
ulations. Future experiments at HERA and RHIC investigatingDrell�Yan lepton pair produ
tion in polarized nu
leon�nu
leon 
ollisions will
larify the situation. For a dis
ussion see [23,24℄. Let us note that in the sin-glet polarized 
hannel under the evolution the quark distributions mix withpolarized gluon distribution. Analysis of Refs. [8,27℄ in the framework of theinstanton model of the QCD va
uum shows that the gluon distribution isparametri
ally smaller (suppressed by M2=M2PV) than quark and antiquarkdistributions. In order to obtain a non-zero result one has to go beyond thezero-mode approximation of Ref. [27℄ and/or 
onsider 
ontributions of manyinstantons. Both ways would lead to extra powers of the pa
king fra
tionof instantons. This means that gluons at low normalization point inside thenu
leons appear only at the level of M2=M2PV.We are grateful to N.-Y. Lee, V.Yu. Petrov, T. Watabe and C. Weissfor numerous interesting dis
ussions. P.V.P. and M.V.P. have been partiallysupported by RFBR grant 96-15-96764. D.U. a
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