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In the framework of the chiral quark—soliton model of the nucleon we inves-
tigate the properties of the polarized quark distribution. In particular we
analyse the so called anomalous difference between the representations for
the quark distribution functions in terms of occupied and of non-occupied
quark states. By an explicit analytical calculation it is shown that this
anomaly is absent in the polarized isoscalar distribution Au+ Ad, which is
ultraviolet finite. In the case of the polarized isovector quark distribution
Au— Ad the anomaly can be cancelled by a Pauli—Villars subtraction which
is also needed for the regularization of the ultraviolet divergence.

PACS numbers: 13.60.Hb, 14.20.Dh, 12.38.Lg, 12.39.Ki

1. Introduction

Since the discovery of the axial anomaly [1] this phenomenon has been
attracting the interest of physicists leading to such an amount of general-
izations, variations and applications that nowadays it is rather hard to give
a definition of “quantum anomalies” which could cover all cases. With this
reservation, it is still reasonable to think that typically quantum anomalies
are associated with a situation where
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1. a naively vanishing quantity is actually different from zero due to the
nontrivial role of the ultraviolet effects,

2. once these ultraviolet effects are taken into account, the nonzero result
for this quantity can be computed analytically whatever complicated
functional and operator constructions stand behind it.

In this paper we want to attract attention to a phenomenon that appears
if one considers the nucleon in the limit of large number of colors N.. It is
well known [2] that in this limit the nucleon is described by a sort of Hartree
(mean field) approximation where the nucleon parameters can be represented
as sums over “occupied single-quark states” in the mean field corresponding
to the solution of Hartree equations. Using the C' parity argument we can
alternatively rewrite these quantities as sums over “nonoccupied single-quark
states”. As a result at large N, we have two equivalent representations for
various nucleon parameters

(N|IOIN) = Y (nlToln) =~ (nlToln). (1)

n,occ n,non—occ

Here (N|O|N) is a nucleon matrix element of some operator O in the full
theory whereas ['p is the “image” of the observable O in the single-quark
Hilbert space in the Hartree approximation justified by large N.. Next, |n) is
the full set of single-quark states appearing in the mean field approximation.
Strictly speaking in Eq. (1) we must subtract the corresponding vacuum
sums and take into account the translational and rotational zero modes of
the large N, mean field solution.

The equivalence of the two representations (1) relies on the general ar-
gument of C' invariance but formally it is based on the identity

> (o) + Y~ (nlToln) = (n|loln) =0, (2)

Trlo =Y (nlloln)=0. (3)

n

At this moment one can meet the same problem as in the case of the Fujikawa
approach [3] to the axial anomaly where naively one has

Tr v5 =0 (4)

but actually the careful treatment of the ultraviolet regularization leads to
a nonzero result for the axial anomaly.
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The exact form of the large N, Hartree equations for QCD is not known
and one has to deal with models imitating the large N, QCD. The subsequent
consideration will proceed in the framework of the chiral quark—soliton model
[4-6]. We shall be interested in two questions:

1. For which ultraviolet regularizations the naive identity Tr I'o = 0 re-
ally holds?

2. If in some regularization the “anomaly” Tr I'o # 0 occurs, is it possible
to compute this anomaly analytically?

The first question has a direct physical meaning since for practical calcu-
lations of nucleon observables one should use a regularization preserving the
equivalence of two representations (1). In certain unphysical regularizations
one can have a nonvanishing anomaly Tr I'o # 0. Its analytical calculation
is of certain interest because the numerical calculation of physical observ-
ables (1) in the quark soliton model is usually rather involved technically
and any analytical results that can be compared with the numerical output
are extremely useful for the check of the numerical procedure.

These general issues are of importance for the calculation of parton distri-
butions in the quark soliton model. Recently the problem of the equivalence
of the two different representations (1) has caused certain troubles [7]. In
this paper we clarify the situation by a straightforward calculation of the
“anomaly” associated with polarized quark distributions and demonstrate
that this anomaly is cancelled by the Pauli-Villars subtraction.

2. Parton distributions in the quark soliton model

Recently a rather successful program of computing the quark distribu-
tion functions in the framework of the effective quark—soliton model was
developed [7712). The quark soliton model [4-6] includes the chiral pion
field U = "™ 7"/F= and the quark field 1/ whose interaction is described by
the Lagrangian

L= (iy"0y = MU)y. (5)

In the mean field approximation (justified in the limit of the large number
of quark colors N [2]) the nucleon arises as a soliton of the chiral field U

m(,l

U(z) = exp[i(n®Tt®)P(r)], n®= = |z . (6)

This effective theory allows a quantum field-theoretical approach to the
calculation of the quark and antiquark distributions in the nucleon. In con-
trast to naive quark composite models and to the bag model here we have
a consistent approach reproducing the main features of the QCD parton
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model like positivity of the quark and antiquark distributions, various sum
rules etc.

In terms of the quark degrees of freedom this picture of the nucleon
corresponds to occupying with N, = 3 quarks the negative continuum levels
as well as the valence level of the one-particle Dirac Hamiltonian H

H = —in"y o + MA U™ | (7)

in the background soliton field U. For the pion field (6) one can find the
spectrum of the Hamiltonian (7)

Hin) = En|n). (8)

According to Eq. (1) various nucleon observables can be naturally rep-
resented as sums over eigenstates |n) of the Dirac Hamiltonian H. For
example, the nucleon mass My is given by

My =N > (By—EY)=-N. > (E,—ED). (9)
7,0CC 7,N0N—0CC
Here the energy of the vacuum is subtracted which is given by the sum of

(0)

the eigenvalues Ey

Ho|n©) = EQn®)y, Hy = —in®yka), + MA°. (10)

of the free Hamiltonian

The physical reason for the existence of the two equivalent expressions
in (9) is that the polarized Dirac sea picture can be formulated either in
terms of quark or in terms of antiquark states (occupied antiquark states
correspond to non-occupied quark states).

Formally the equivalence of two representations (9) for My follows from
the identity

(ZE +ZE> (Bn — B =Y (By — EY) = Tr (H — Ho) = 0.

n,0CcC n,non—occ n
(11)

At the last step we took into account that the traces of H and of H over the
spin indices vanish. Strictly speaking, this naive argument is not safe since
the sums (9) over the occupied and non-occupied states are ultraviolet di-
vergent and must be regularized. In principle, the ultraviolet regularization
could lead to an anomalous difference between the summation over occu-
pied and non-occupied states but in the case of the nucleon mass (9) one
can check that in the regularizations suppressing the contributions of high
eigenvalues the anomaly is absent:

lim Tr [Hf <H> Hyf <H°>] =0, (12)

A=
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where f is an arbitrary even function vanishing at infinity fast enough
(f(£oo) = 0) and such that f(0) =

We can reformulate this verbally as the “absence of the anomaly” in the
nucleon mass My (in the above regularization). The usage of the word
“anomaly” is invoked by the similarity with the axial anomaly which can be
interpreted as a nonvanishing trace of 5 computed in the basis of eigenstates
of the Dirac operator in a background gauge field with a regularization
suppressing the contribution of large eigenvalues [3].

The main object of interest in this paper is the study of the quark distri-
bution functions. In the mean field approach (justified in the large N, limit)
the quark distributions can be represented as single or double sums over
occupied or non-occupied one-particle eigenstates (8) of the Dirac Hamil-
tonian (7). We shall see that for the same parton distribution one can
write two naively equivalent representations but whether this equivalence
persists or not when one takes into account the ultraviolet regularization is
a rather subtle question and the situation is different for different distribu-
tions. Moreover, even in the limit of the large cutoff, the cancellation of
this anomalous difference between the naively equivalent representations is
sensitive to the regularization used.

Let us start from the unpolarized isosinglet quark distribution u(x)4+d(z)
which is given by the following expressions [8] in the leading order of the
1/N, expansion

3 3
o) +e) = N Y [0 (B ) (alp) 1% )

=N Y [l (EEE ) Gl ).

n,non—occ
(13)

Also here the subtraction of similar sums with the eigenstates and eigenval-
ues of the Hamiltonian (7) replaced by those of the free Hamiltonian (10) is
implied. The result (13) has a transparent physical meaning of the probabil-
ity to find a quark with momentum fraction z in the nucleon in the infinite
momentum frame. In Ref. [8] it was shown that in the Pauli-Villars regular-
ization the sums over occupied and non-occupied states in (13) really give
the same result.

We stress that the fact of the equivalence of the two representations for
parton distributions is crucial for the positivity of unpolarized distributions
and for the validity of various sum rules inherited by the model from QCD [8].
Therefore the check of this equivalence is an essential part of the calculation
of parton distributions in the chiral soliton model.
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Now let us turn to the polarized quark distributions. In the leading order
of the 1/N, expansion only the isovector polarized distribution survives

Au(z) — Ad(z) = —%Nc 3 / (;if)’ga <p3A;NE” - m)

*(n[p) (1 +~°7*) 7y (pln). (14)

Compared to the expression (13) for u(x)+d(z) here we have an extra factor
73~° which reflects the fact that now we deal with the isovector polarized
distribution. The factor of 1/3 comes from the matrix element over the
rotational wave functions of the soliton [13].

One can ask whether the summation over the occupied quark states in
(14) can be replaced by the summation over non-occupied states

Au(z) — Ad(z) = %Nc 3 / (gjf)’?,(s(prE” —x>

7n,N0Nn—0cC

x(n|p) (1 +°9*) 7%y (p|n) . (15)

In this paper we shall show that in the case of the Pauli-Villars regular-
ization (the sum over states n in (14) is logarithmically divergent) the two
representations (14) and (15) are really equivalent.

We stress that the equivalence of the summation over the occupied and
non-occupied states is very sensitive to the choice of the regularization. For
example, if instead of the Pauli—Villars regularization we simply cut the
summation over quark states in (14) including only states with |E,| < wp
then a nonzero difference between the two representations (14) and (15) will
remain even in the limit of the infinite cutoff wg — oo0. The mechanism
how this anomalous difference appears is similar in many respects to the
famous axial anomaly. In particular, such similarity manifests itself in the
fact that the anomalous difference between the two representations (14) and
(15) can be computed analytically in the limit wy — oco. The calculation of
the anomalous difference is presented in this paper.

Although the regularization including only states with |E,| < wq is not
acceptable as a physical one and the Pauli-Villars regularization is more
preferable in this respect, we want to emphasize that in the practical calcu-
lations based on the numerical diagonalization of the Dirac operator in the
background soliton field, the |F,| < wp regularization appears naturally. In-
deed, in the numerical calculation one can work only with a finite amount of
quark states so that one actually uses both Pauli-Villars subtraction (with
the regulator mass Mpy) and the |E,| < wp regularization. The pure Pauli-
Villars subtraction is simulated by working with wg > Mpy. The numerical
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calculation is rather involved and the analytical result for the anomaly in
the |Ey| < wp regularization is very helpful for the control of numerics even
if the anomaly cancels after the Pauli—Villars subtraction.

Now let us turn to the polarized isoscalar quark distribution Awu(z) +
Ad(z) which gets the first nonzero contribution only in the subleading order
of the 1/N, expansion

N .My 1
n m

msall n,0cc

*(n|r*[m){m|(1 +7°y* ) 3(En + P° — zMy)|n)

N. 0

4—; p (n|(1 + 7%y *y°8(E, + P? — zMy)|n).
7,0CC
(16)
Here P? is the quark momentum projection on the third axis
0

P3=—i— 17
i a7)

and [ is the moment of inertia of the soliton.
Another representation for Au + Ad can be written in terms of the
summation over non-occupied states n

N.My 1
n m

m,all n,non—occ
x(n|r?[m)(m|(1 +~v°9*)y°8(Bn + P° — 2 My)|n)

N. 0
D Sl AT + PP = M)l

n,non—occ

(18)

The numerical calculation of Au + Ad with the Pauli—Villars subtraction
was presented in paper [7]. Unfortunately there the question about the
equivalence of the two representation (16) and (18) was not investigated
properly. Also the Pauli-Villars subtraction was used in paper [7] without
proper justification.

In this paper we show that if one cuts the sum over occupied (non-
occupied) states n allowing only |E,| < wp in the Egs. (16), (18) then in the
infinite cutoff limit wy — 0o
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1. both representations (16) and (18) have a finite limit (i.e. Au(z) +
Ad(z) has no ultraviolet divergences),

2. the two representations (16), (18) give the same result.

Comparing the last terms in the rhs of representations (16) and (18)
for Au + Ad with expressions (14) and (15) for Au — Ad we see that
the total expression for Au + Ad contains a contribution proportional to
a% [Au(z) — Ad(z)].

Therefore we start our analysis by investigating the anomaly of Au — Ad
which we do in Section 3. In Section 4 we show by explicit calculation that for
the quark distribution Au+ Ad there is no anomalous difference between the
summations over occupied and non-occupied states. In Section 5 we discuss
the numerical results and compare them to the GRSV parametrization of
experimental data.

3. Anomaly of Au(xz) — Ad(x)

As it was explained in the introduction one of our aims is to investigate
whether the two representations (14) and (15) for the polarized isovector
quark distribution Au(x) — Ad(z) are equivalent. The answer to this ques-
tion is sensitive to the ultraviolet regularization. Let us start from the
regularization that allows only the quark states n with |E,| < wg. In this
regularization Eq. (14) can be rewritten as follows.

[Au(z) — Ad(z)]5

occ

Frey+0
_ —%NCMN / dwTr [§(H — w)d(w + P* = zMy)7* (1 +7°*)s] . (19)
—wo

Here H is the Dirac Hamiltonian (7) and P? is momentum operator (17).
Similarly, representation (15) becomes

[Au(z) — Ad(z)]5g

non—occ
1 7
= S NeMy / dwTr [§(H — w)d(w + P? — 2 My)73 (1 +9°93)y5] . (20)
E‘lev'i'0

The main results of this section can be formulated as follows:

1. Both [Au(z) — Ad(z)]2°. and [Au(z) — Ad(z)]=° are logarithmi-

[e]¢¢ non—occ
cally divergent in the limit of large cutoff wy — oo
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2 w
(Au(e) — Ad()EL, ~ [ulr) — Ad(a)]ih, = S, @0
3 ~ ~
« /%spﬂ (k)0 (0] 6 (5~ [2]Mx) + ... . (21)

2. In the difference [Au(z) — Ad(x)]20, — [Au(z) — Ad(z)]*° the ul-

occe non—occ
traviolet divergences cancel and the wg — oo limit of this difference

reduces to the following finite expression
lim {[Au(z) — Ad(z)]22 — [Au(z) — Ad(z)]2 }

wWo—00 ocCcC non—occ
1 Bk |zMy + k3| X

(22)

where U(k) is the Fourier transform of the chiral mean field U(r)
entering the Dirac Hamiltonian (7)

U(k) = / Bre kT () — 1] . (23)

Note that [Au(z) — Ad(z)]20. and [Au(z) — Ad(z)]50 .. separately
are given by complicated functional traces (19) and (20) which can
be computed only numerically. The fact that the anomalous difference
between the representations in terms of the occupied and non-occupied
states reduces to a simple momentum integral (22) is highly nontrivial
and is similar to the well known fact that the famous axial anomaly

gets its contribution only from the simplest diagram.

The fact that the divergence (21) is proportional to M 2 means that
this divergence can be removed by the Pauli—Villars subtraction so that the
following combinations are finite!

PV

[AU(IIJ) - Ad(x)]occ
"-707M _ M2
ocCcC M]%V

occ

= lim {[Au(m) — Ad(z)]

wo—00

[Au(z) - Ad(x)]%MPV} (24)

! Following Refs. [17,18], in our numerical calculations we define [Au — Ad]“% PV by
Eq. (19) with M — Mpvy but do not include the discrete valence level of the regulator
Dirac Hamiltonian (i.e. we replace Eley + 0 — ErPV — 0 in Eq. (19)). In contrast,

lev

our regulator analogue of Eq. (20) for [Au — Ad];’gl’f\_/f(fc‘g includes this valence level.

Obviously the difference [Au — Ad]“%MPV — [Au — Ad]2:MPV s insensitive to this

treatment of the level. Therefore this subtlety of the regularization does not affect
the anomaly study in this paper.
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[Au(z) = Ad(2)]o,

non—occ

2
= lim {[Au(m) — Ad(z)]PoM M [Au(z) — Ad(z)]“MPY } ‘
(

non—occ non—occ
Wo—00 M I2’V

25)

Next, since the anomaly (22) is proportional to M? we see that in the Pauli—
Villars regularization the summation over occupied and non-occupied states
gives the same results:
PV PV
Now let us turn to the derivation of the result (22) for the anomalous

difference between the summation over occupied and non-occupied states.
Subtracting (20) from (19) we obtain

[Au(z) — Ad(z)]5e. — [Au(z) — Ad(z)]5

occe non—occ
1 7
=~ NeMy / dwTr [§(H — w)d(w + P? — 2 M) (1 +9°9)y5] . (27)
e

We use the following representation for the operator delta function 6(H —w)

signw 1 1
0(H —w) = — H . 28
H-w) =55 [H2—w2—i0 i) At (28)
The squared Dirac Hamiltonian (7) is
H? = —9% + M? +iM (v*0,U™) . (29)

Now (27) takes the form

wo
d
NeMyTm / % signw
2m

—wo

[Au(z) - Ad(2)]*° — [Au(z) - M), . = -2

occ non—occ 3

1

xTr N UNLY:) OpUs
{—82+M2—w2—z'0+z'M(7k8kU75)(w YO+ )

x8(w + P* — zMpy)T3(1 + 7073)75} . (30)



Quark Distribution Functions in the Chiral Quark—Soliton ... 1211

Next we expand the “propagator” in the rhs in powers of iM (y*9,U)

1 1
—02 4+ M? — w? —i0 +iM(Yk O U)  —02 + M2 — w? — 0
1 1
_ i M (A%, U5
P == M) g

The first nonvanishing contribution to (30) comes from the term linear in
iM(y*0,U)

.(31)

(Bu(w) — Ad(a) 5, — [Bu(a) — Ad(@)]5h, oo =~ VoMl [ 5

1
—0%+ M? —w? -0

1
Tr —iM (3™
% {—82+M2—w2—i0[ iM@U))

X (w — iy yk(?k + 'yOMU%)( + 7073)757k5(w + P3 — xMN)7'3} . (32)

Computing the trace over the spin indices and turning to the momentum
representation according to (23) we arrive at

[Au(z) — Ad(x)]5e — [Au( ) — Ad(x)]50n oce
_ _gN MNM2Im/ kS {(OR) O (k)

signw §(w+p* —zMy)
X/ / )31k + |2 + M2 — w2 — 40 |p|? + M2 — w2 ~i5-33)

We first integrate over w and p?
[AU( ) — Ad(z)]5g. — [Au(z) — Ad(z)]5g
B / d2pt
~ 3 (2m)3
-1
X { (e My + ) |p 2 — sMylpt + k2 + K3[M? — oMy (zMy + kS)]}

|pJ‘|2+M2 (.’BMN)2 0w +|pJ‘+kJ‘|2+M2+(IBMN+k3)2
2|z My 0 2z My +k3)|

non—occ

2 N My M2 / K*Sp [(U[k])*ﬁ(k)ff‘]

ol +|pL|2+M2+(£EMN)2 0 (. lpt R P M2 (s My + )
’ 2[| My ’ Sl My + k7] '

(34)
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In the limit of large cutoff wy we have for any fixed A, B
lim O(wy— A)f(—wo+ B) =0. (35)

wo—00

Nevertheless the integral in the rhs of (34) does not vanish in the limit
wg — oo since this limit gets contributions from the region

o~ 2L s MMy~ R (36)
|| My
where |p*| grows with wg. In this region (34) simplifies to

lim {[Au(z) — Ad(2)]%, — [Au(z) — Ad(2)]%, e}

Wo—00 occ non—occ
4 d*k d’*pt . .
= —N.MyM? Spy [(UK) U (K)T?
s r? [ o [P @k O k)]
1 12 M2 M 2 12
Ly g M@ et
|pt|? 2|z| My 2|z My + k3|
p|? lp*?
A 0 -0 . 37
< “ot iy ) U\ T 2y + (87)
Now the integral over p' becomes trivial and we arrive at the final re-
sult (22).

An important feature of our calculation is that in the limit of large cutoff
wo — 0o the integral gets a contribution only from large p. Actually the
situation is analogous to the calculation of the axial anomaly which can also
be formulated as saturated by the ultraviolet region.

The analogy with the axial anomaly goes further if we go to the higher
terms of the expansion (31): these higher terms vanish in the limit of the
large cutoff wy — oo. The mechanism of this vanishing is as follows. Simi-
larly to the leading term (34) one finds that in the limit wg — oo the integral
over p- comes from large p. But a simple dimensional counting shows that
in the higher order terms the integrand decays at large p* too fast so that
the integral vanishes in the limit wg — occ. Since the higher order terms
vanish our result for the anomaly (22) is actually exact.

Restricting the integration over w in Eq. (30) to the interval
—wp < w < 0ortol < w < wy we can investigate separate distribution
functions [Au(z) — Ad(z)]e or [Au(z) — Ad(z)]50 _oce- In this case one
gets nonzero contributions from all terms of the infinite series (31). How-
ever, it is not difficult to check that only the first nonvanishing term of this
expansion is logarithmically divergent in the limit of large cutoff wy — oo
and this logarithmic divergence is given by (21). This logarithmic diver-
gence is proportional to M? and therefore in our previous calculation of



Quark Distribution Functions in the Chiral Quark—Soliton ... 1213

Au — Ad we could regularize it by the Pauli—Villars subtraction. Moreover,
since the anomaly (22) is also proportional to M? it is cancelled by the same
Pauli-Villars subtraction [9].

4. Cancellation of the anomaly of Au(z) + Ad(x)

Now we turn to the investigation of Au(x)+Ad(z). The wy cutoff version
of (16) is

[Au(z) +Ad(z )OCCZNMNZ > ﬁ

m —wo<Ep<Fey

x(n|7?|m)(m|(1 +~"y*)y°6(En + P? — My )|n)
N, 8
tm o= Y (nl(149%*) 7P (B + PP — mMy)|n). (38)
e 0<Fn< By

Although we use notations corresponding to the discrete spectrum, actu-
ally most of the spectrum is continuous. The singularities corresponding to
E,, = E, are assumed to be regularized according to the principal value
prescription.

Making use of (19) we find

[Bu(e) + @)t = [Bu()+ Ad@IL - 22 [Au(a) - Ad@)2s
(39)
where
N. M 1
[Au(z) + Ad(z)] [ = =525 —
%: wo<§<Elev En = Em
X (n|73|m)(m|(1 + 7073)755@” + P3 — zMy)|n). (40)
Similarly (18) leads to
[Au(z) + Ad(@2)]0, oo = [Au(2) + Ad(2)] 0 e
3 9
_W a_ [Au( ) Ad( )]non occ ! (41)

where

[Au(z) + Ad(2)] ke = — NMNZ > ﬁ

m  Fey<Fn<wo
x(n|m3m){(m|(1 + ')y 8(E, + P3 — 2 My)|n). (42)
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We see that
[Au(z) + Ad(x)]22, — [Au(z) + Ad(x)]2
= [Au(z) + Ad(@)]()° — [Au(z) + Ad(2)] e e

3 a occe
e 5 {1Au(@) - M), — [Bu(z) - Ad()]::

non—occ

occ non— OCC} : (43)

Here

[Au(z) + Ad(@)] D — [Au(z) + Ad(2)] o oce

occ

S Y (mmw).

m —wo<FEn<wo

x(n|r?|m)(m|(L +7°7*)7°8(Ey + P* — xMy)|n) . (44)

We remind that here the principal value prescription for (E, — E,,)~" is
implied. This can be rewritten in the form

occ

[Bu(e) + AdIL — [Bue) + AdE e, = ~ 200 [

—wo

s M <H1- M

’LMNN

X §(w+ P? —zMy)(1+7°%)7°} = -

—wo

1 1
S ’ S(w+ P* — zMy)(1++"9*)y°
% p{[H—w—H’OT H—w+i0] @+ PP aMy) (L4777

wo
1My N, dw
41 27

—wo

xSp{[H L ! .]6(w+P3—xMN)(1+'yO'yS)'y5} .(45)

—w—10 H-—w-—10
Hence

[Au(z) + Ad(z )]( 0 [Au(z) + Ad(x)] S e

occ

I MpyN, de
= —1m _
or or P\ H?2 =

—wo

(H + w)73(H + w)

w? — i0signw
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1
0w+ P? — zMy) (1 +7"9%)7°
X HQ_WQ_,L'OSignw (w+ T N)( +’7'Y)'7
Q]Od
My N, 1
—wo
1 3 0.3\,

L My / do 1
= —1lm —S1gnw
o7 on DBUPP T TR T 02 0 1M (R 8, U )

—wo

x(w — iy’ O + " MU) 73 (w — iy"y* oy, + /" MU)

1
_ —xM 1 0.3\~ ]
X T M = — 0+ M (e ) & T % T eMy) Ly )7}
(46)

The rest of the calculation is similar to how we worked with expression (30)

for the anomaly of Au(z) — Ad(x).
Nonzero contributions to the anomaly come from the expansion of the
propagators up to terms linear and quadratic in iM (y*0,U):

[Au(z) + Ad(@)]()° — [Au(x) + Ad(2)] e e

occ

= Ay(z) + Ag(z) . (47)

Here A;(z) corresponds to terms linear in i M (y*9,U7)

MNN [ 1
Ai(z) = / —SlgHWSP{ [ M(yoU™) —92 4+ M2 — w2 —40

—wo

x(w = i7" O + A" MUP) T (w — iy O + A" MU™)
+(w — iYY* 0 + MU 73 (w — iy"4* 0y, + AP MU

1
M (v o, U
X —a M )]

1 2 ,
02+ M2 — 2 — 10:| 5((‘) - 183 - :EMN)(l + ’7073)’75}a (4-8)
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and As is quadratic in 1M (y*0,U"5)

M N 1
Ag(z) = — N / —31ganr{

—2 + M? —w? — 0

—wo

1 . 1
a U’Ys
82+M2—w2—10 My ) —0%2 + M? —w? —40
X (w — m%kak + WOMU""")T (w— z'y v Lo, + 'yOMU75)
1
M (v 0, U5
FMO" U)o =
X (w — iy 8y, + ’)’OMU%)T?)((U — iy + 7' MU)
1
X—82+M2—w2 M(y"0U™)
+(w — i’y 0, +7°MU7"’)T (w—iv°y'0, + A" MU™)
1 m
a U’Y5
TR LMo 40 o )
1
oy M2 —w2—10
1
X -
—0%2+ M? —w? -0

x |iM (Y™, U7

1M

M(ra,0)]

0w —103 —xMpy)(1 + 7073)75} . (49)

A straightforward calculation leads to the following results for Ap(z)
and As(x)

(o) = -2 [ s L sp{o [0<k>]+0<k>%,)
50

ot = M [ G
x <;—3 + %%) Sp {T3 [f](k)r f](k)} : (51)

Now we insert these results into (47)

[Au(z) + Ad(z)] D% — [Au(z) + Ad(z)]

occ non—occ

A [ |0 s o o] o).

n

Note that shifting the integration variable
E— k3 —aMy, (53)
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we obtain

/ (Z:;S 8

kS;xMN‘ it {73 [ﬁ(k)rﬁ(k)}
19

_ _MNB_:E/ (d E |k + 2y Sp{ [ﬁ(k)rﬁ(k)} . (54)
Therefore

[Au(z) + Ad(2)] 4 — [Au(z) + Ad(@)] S e
k3 + .’L‘MN

_ _]1‘;0%;(%/ (;ljjs In | =N sp {73 [f](k)rf](k)} . (55)

Inserting this result and (22) into (43) we observe a complete cancellation:

hm { AU’ + Ad( )]occ [A’U,( ) + Ad( )]non occ} = O (56)

wp—00

Thus the isoscalar polarized quark distribution Au(z)+ Ad(z) is nonanoma-
lous.

Using similar methods one can check that function Au(z) + Ad(z) is
free of ultraviolet divergences: although the two separate terms in the rhs
of (39) are UV divergent the total sum is finite.

5. Numerical results

The numerical results for the isovector polarized distribution function
Au(z)— Ad(z) are given in [9]. For the computation of Au(z)+ Ad(z) (16),
(18) we use the numerical methods which were developed in [9] and later ex-
tended in [11] for the computation of the isovector unpolarized distribution.

The eigenvectors and eigenvalues of the Dirac Hamiltonian (7) are de-
termined by diagonalizing in the free Hamiltonian basis (10). This basis is
made discrete by placing the soliton in a three-dimensional spherical box of
finite radius D and imposing the Kahana—Ripka boundary conditions [15].
Both Au(z) — Ad(z) and Au(z) + Ad(x) were computed using the stan-
dard value of the constituent quark mass M = 350 MeV as derived from the
instanton vacuum [16].

In our calculation we use the self-consistent solitonic profile P(r) (see
e.g. Ref. [17,18] for the details of the regularization procedure). However,
performing the numerical calculations in the finite spherical box one should
be careful about the large distance effects. To be safe, we artificially expo-
nentially suppress the pion tail of the soliton profile at large distances so
that the field vanishes outside the box (a similar problem in the calculation
of g4 was studied in [19]).
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In Fig. 1 we compare our numerical results for the anomaly of
Au(z) — Ad(z) with the analytical result (22). We observe a rather good
agreement.

Fig. 2 shows the numerical results for the Dirac sea contribution to
Au(zHAd(z) based on the two representations (occupied and non-occupied).

0.0 ' T T T T T

—— analytical calculation
— — numerical calculation |

Fig. 1. Analytical (solid) and numerical (dashed) results for the anomalous differ-
ence [Au — Ad]ocec — [Au — Ad]non—oce-

—— occupied
0.05- — —- nhon-occupied i
/\ R
0.00 ———X/ |
-0.05 - b
-0.10 :

-1.0 -0.5 0.0 0.5 1.0
X

Fig. 2. Results for continuum contribution [Au+ Ad]ses based on the occupied and
non-occupied representations.
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We see a reasonable agreement between the two results which confirms the
absence of the anomaly in Au(z)+ Ad(x). Some difference between the two
curves at negative z is finite-box artefact. Increasing the size of the box one
can see that this difference tends to disappear.

In Fig. 3 we compare the result of the calculation of Au(z) + Ad(x),
Au(z) + Ad(x) with the GRSV-LO parametrization [22] at the low scale of
the model ;1 = 600 MeV. We see that the quark distribution Au(z)+ Ad(z)
is in a reasonable agreement with the GRSV parametrization whereas the
antiquark distribution A(z)+ Ad(z) obtained in the model is considerably
smaller than that of the GRSV parametrization. Note that the polarized
antiquark distributions are not directly accessible in inclusive hard reactions.
Due to the lack of data the GRSV parametrizations therefore are based
on certain assumptions, e.g. in the GRSV analysis it was assumed that
Aii(z) = Ad(z). In contrast to this the QCD large N, counting and the
quark soliton model predict a large flavor asymmetry in the light polarized
sea. Some physical applications of this have been studied in Refs. [21,23,24].

X(Au+Ad)(x) X(Au+Ad) (x)
0.40 ‘ 0.020
0.010 | .
0.30
0.000
-
//
0.20 -0.0104 / 1
0020/} / 1
0.10 ‘ /
: -0.030 ! / 1
\ /
\ /
-0.0401 \ / —— model 1
0.00 7 ——- GRSV
-0.050 | .
_010 1 1 1 1 _0060 L L L L
00 02 04 06 08 10 00 02 04 06 08 10
X X

Fig.3. The quark soliton model results for z[Au + Ad] and z[A#@ + Ad] versus
LO-GRSV parametrization at the scale u ~ 600 MeV.

Fig. 4 shows our predictions for the polarized antiquark distributions
Au(z) and Ad(z) separately at the scale u = 600 MeV.

Since the quark distribution Au + Ad is finite, no ultraviolet regulariza-
tion is needed for this quantity. There is even an argument against regulariz-
ing Au+ Ad coming from the fact that the first moment of this distribution
is related to the imaginary part of the quark determinant in the background
soliton field which has to be left nonregularized if one wants to keep baryon
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0.06 w w w —
XAu
0.04 ——- xAd

0.02 - :

0.00 —

-0.02 1\ / 4

-0.04t / .

N\~

_0.06 L 1 L 1 L 1 n 1 n
0.0 0.2 0.4 0.6 0.8 1.0

X

Fig.4. The quark soliton model predictions for zA@ and xAd at the scale p ~
600 MeV.

number conserved — this is an analog of the nonrenormalizability of the
Wess—Zumino term in pure chiral models.

Several comments should be made about the calculations of Au + Ad
within the same model by Wakamatsu et al. who published three dif-
ferent versions of the calculation in papers [7,20,21|. In paper [20] one
of the terms was overlooked. This mistake was corrected by the authors
of [11]. The revised version of calculation of Wakamatsu et al. was pub-
lished in [7]. In this paper the question about the anomalous difference
[Au(z) + Ad(z2)]20 — [Au(z) + Ad(z)]20 . Was investigated only numer-
ically but the accuracy of the calculation did not allow the authors to draw
any conclusions concerning whether this difference vanishes or not. Actu-
ally the numerical accuracy of the agreement between the two representa-
tions which we observe in our calculation (see Fig. 2), and which is nec-
essary for a proper evaluation of the parton distributions, is of two orders
of magnitude better than the same difference presented in [7]. The prac-
tical solution accepted in [7] was to use [Au(z) + Ad(z)]2° for z > 0 and

[Au(z) + Ad(2)]30, _oee for £ < 0 (i.e. for the antiquark O(ﬁ:stribution). As
it was explained above, Au(z) + Ad(z) should not be regularized contrary
to what the authors of Ref. 7] do.

The first moment of the Au(z) + Ad(z) gives the singlet axial charge.
Our result of gg)) = f}l dz(Au+ Ad)(z) = 0.35 agrees with the calculation

performed in other works [14,26]. Note that in the calculation of this charge
no ultraviolet regularization was used.
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6. Conclusions

We have proved that the representation of singlet polarized (anti)quark
distributions in the chiral quark—soliton model as a sum over quark orbitals
is ultraviolet finite and free of quantum anomalies. This is a serious check
of the consistency of the quark—soliton model.

In fact, the cancellation of quantum anomalies in the model is related
to the fact that certain basic properties of QCD as a local quantum field
theory are realized in the model. The equivalence of the summation over
occupied and non-occupied states is directly connected to anticommutativity
of fermion fields at space-like intervals. Actually this locality property has
a direct relation to the positivity of quark and antiquark densities in the
quark soliton model [8,9].

Another consequence of the cancellation of anomalies is that the model
results for the parton distributions are compatible with the charge conjuga-
tion invariance: the quark distributions in nucleon coincide with the anti-
quark distributions in the antinucleon.

From the practical point of view the results presented in this paper allow
us to conclude that for the calculation of the singlet polarized quark and
antiquark distributions no Pauli-Villars subtraction is needed. Additionally
the numerical check of the cancellation of the anomalies is a powerful tool
to control the accuracy of the numerics.

We have computed the singlet polarized quark and antiquark distribu-
tions which arise in the subleading order of 1/N, expansion. We found the
quark distribution Au(z) + Ad(x) to be in a reasonable agreement with
GRSV [22] parametrization of parton distributions at low normalization
point.

Concerning the comparison of the parton distributions computed in the
current model with the fits to experimental data it is often asked whether
the model deals with current or constituent quarks. Actually one should be
rather careful with the term “constituent quark” since the object is strictly
speaking absent in QCD and appears only in the context of various models
and heuristic approximations. The chiral quark soliton model used in the
present paper can be derived from QCD by assuming the QCD vacuum to
be dominated by a gas of instantons. Thus in the present model the nucleon
parton distributions are computed starting from QCD expressions. Certain
approximations are used, in particular, the functional integral over the gluon
fields is approximated by the statistical average over the instanton medium,
large N, limit is taken etc. However, whatever approximations are used,
we always deal with the quark fields inherited from the QCD action and
in this sense our quark distributions are usual current quark distributions.
The structure of the model calculation also fixes the scale at which the
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parton distributions are computed — it is determined by the inverse average
instanton size which is of order of 600 MeV. In this sense the comparison
of our calculations with the phenomenological fits is quite justified (with
a certain care about the accuracy of the model and the region of x where
the model makes sense as well as about the assumptions made in the fits to
experimental data).

A remarkable prediction of our model is that the polarized distribu-
tions of w and d antiquarks are essentially different, see Fig. 4. Usually,
in parametrizations of polarized parton distributions, it was assumed that
Aii(z) = Ad(z), which is not confirmed by our model calculations (see
Fig. 4). Tt would be extremely interesting to include into the fits of the data
the flavor decomposition pattern for polarized antiquarks obtained in our
model calculations. Future experiments at HERA and RHIC investigating
Drell-Yan lepton pair production in polarized nucleon—nucleon collisions will
clarify the situation. For a discussion see [23,24|. Let us note that in the sin-
glet polarized channel under the evolution the quark distributions mix with
polarized gluon distribution. Analysis of Refs. [8,27] in the framework of the
instanton model of the QCD vacuum shows that the gluon distribution is
parametrically smaller (suppressed by M?/M2,;) than quark and antiquark
distributions. In order to obtain a non-zero result one has to go beyond the
zero-mode approximation of Ref. [27] and/or consider contributions of many
instantons. Both ways would lead to extra powers of the packing fraction
of instantons. This means that gluons at low normalization point inside the
nucleons appear only at the level of M? /MI?,V.
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