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QUARK DISTRIBUTION FUNCTIONSIN THE CHIRAL QUARK�SOLITON MODEL:CANCELLATION OF QUANTUM ANOMALIESK. Goekea, P.V. Pobylitsaa;b, M.V. Polyakova;bP. Shweitzera and D. Urbanoa;aInstitute for Theoretial Physis II, Ruhr University BohumD-44780 Bohum, GermanybPetersburg Nulear Physis InstituteGathina, St. Petersburg 188350, RussiaFauldade de Engenharia da Universidade do Porto4000 Porto, Portugal(Reeived Deember 21, 2000)In the framework of the hiral quark�soliton model of the nuleon we inves-tigate the properties of the polarized quark distribution. In partiular weanalyse the so alled anomalous di�erene between the representations forthe quark distribution funtions in terms of oupied and of non-oupiedquark states. By an expliit analytial alulation it is shown that thisanomaly is absent in the polarized isosalar distribution �u+�d, whih isultraviolet �nite. In the ase of the polarized isovetor quark distribution�u��d the anomaly an be anelled by a Pauli�Villars subtration whihis also needed for the regularization of the ultraviolet divergene.PACS numbers: 13.60.Hb, 14.20.Dh, 12.38.Lg, 12.39.Ki1. IntrodutionSine the disovery of the axial anomaly [1℄ this phenomenon has beenattrating the interest of physiists leading to suh an amount of general-izations, variations and appliations that nowadays it is rather hard to givea de�nition of �quantum anomalies� whih ould over all ases. With thisreservation, it is still reasonable to think that typially quantum anomaliesare assoiated with a situation where
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1202 K. Goeke et al.1. a naively vanishing quantity is atually di�erent from zero due to thenontrivial role of the ultraviolet e�ets,2. one these ultraviolet e�ets are taken into aount, the nonzero resultfor this quantity an be omputed analytially whatever ompliatedfuntional and operator onstrutions stand behind it.In this paper we want to attrat attention to a phenomenon that appearsif one onsiders the nuleon in the limit of large number of olors N. It iswell known [2℄ that in this limit the nuleon is desribed by a sort of Hartree(mean �eld) approximation where the nuleon parameters an be representedas sums over �oupied single-quark states� in the mean �eld orrespondingto the solution of Hartree equations. Using the C parity argument we analternatively rewrite these quantities as sums over �nonoupied single-quarkstates�. As a result at large N we have two equivalent representations forvarious nuleon parametershN jOjNi = Xn; ohnj�Ojni = � Xn;non�ohnj�Ojni: (1)Here hN jOjNi is a nuleon matrix element of some operator O in the fulltheory whereas �O is the �image� of the observable O in the single-quarkHilbert spae in the Hartree approximation justi�ed by large N. Next, jni isthe full set of single-quark states appearing in the mean �eld approximation.Stritly speaking in Eq. (1) we must subtrat the orresponding vauumsums and take into aount the translational and rotational zero modes ofthe large N mean �eld solution.The equivalene of the two representations (1) relies on the general ar-gument of C invariane but formally it is based on the identityXn; ohnj�Ojni+ Xn; non�ohnj�Ojni =Xn hnj�Ojni = 0 ; (2)i.e. Tr�O =Xn hnj�Ojni = 0 : (3)At this moment one an meet the same problem as in the ase of the Fujikawaapproah [3℄ to the axial anomaly where naively one hasTr 5 = 0 (4)but atually the areful treatment of the ultraviolet regularization leads toa nonzero result for the axial anomaly.



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1203The exat form of the large N Hartree equations for QCD is not knownand one has to deal with models imitating the large N QCD. The subsequentonsideration will proeed in the framework of the hiral quark�soliton model[4�6℄. We shall be interested in two questions:1. For whih ultraviolet regularizations the naive identity Tr�O = 0 re-ally holds?2. If in some regularization the �anomaly� Tr�O 6= 0 ours, is it possibleto ompute this anomaly analytially?The �rst question has a diret physial meaning sine for pratial alu-lations of nuleon observables one should use a regularization preserving theequivalene of two representations (1). In ertain unphysial regularizationsone an have a nonvanishing anomaly Tr�O 6= 0. Its analytial alulationis of ertain interest beause the numerial alulation of physial observ-ables (1) in the quark soliton model is usually rather involved tehniallyand any analytial results that an be ompared with the numerial outputare extremely useful for the hek of the numerial proedure.These general issues are of importane for the alulation of parton distri-butions in the quark soliton model. Reently the problem of the equivaleneof the two di�erent representations (1) has aused ertain troubles [7℄. Inthis paper we larify the situation by a straightforward alulation of the�anomaly� assoiated with polarized quark distributions and demonstratethat this anomaly is anelled by the Pauli�Villars subtration.2. Parton distributions in the quark soliton modelReently a rather suessful program of omputing the quark distribu-tion funtions in the framework of the e�etive quark�soliton model wasdeveloped [7�12℄. The quark soliton model [4�6℄ inludes the hiral pion�eld U = ei�a�a=F� and the quark �eld  whose interation is desribed bythe Lagrangian L = � (i��� �MU5) : (5)In the mean �eld approximation (justi�ed in the limit of the large numberof quark olors N [2℄) the nuleon arises as a soliton of the hiral �eld UU(x) = exp[i(na�a)P (r)℄; na = xar ; r = jxj : (6)This e�etive theory allows a quantum �eld-theoretial approah to thealulation of the quark and antiquark distributions in the nuleon. In on-trast to naive quark omposite models and to the bag model here we havea onsistent approah reproduing the main features of the QCD parton



1204 K. Goeke et al.model like positivity of the quark and antiquark distributions, various sumrules et.In terms of the quark degrees of freedom this piture of the nuleonorresponds to oupying with N = 3 quarks the negative ontinuum levelsas well as the valene level of the one-partile Dira Hamiltonian HH = �i0k�k +M0U5 ; (7)in the bakground soliton �eld U . For the pion �eld (6) one an �nd thespetrum of the Hamiltonian (7)Hjni = Enjni : (8)Aording to Eq. (1) various nuleon observables an be naturally rep-resented as sums over eigenstates jni of the Dira Hamiltonian H. Forexample, the nuleon mass MN is given byMN = N Xn;o(En �E(0)n ) = �N Xn;non�o(En �E(0)n ) : (9)Here the energy of the vauum is subtrated whih is given by the sum ofthe eigenvalues E(0)n of the free HamiltonianH0jn(0)i = E(0)n jn(0)i; H0 = �i0k�k +M0: (10)The physial reason for the existene of the two equivalent expressionsin (9) is that the polarized Dira sea piture an be formulated either interms of quark or in terms of antiquark states (oupied antiquark statesorrespond to non-oupied quark states).Formally the equivalene of two representations (9) for MN follows fromthe identity Xn;oEn +Xn;non�oEn!� (En ! E(0)n ) =Xn (En �E(0)n ) = Tr (H �H0) = 0 :(11)At the last step we took into aount that the traes of H and of H0 over thespin indies vanish. Stritly speaking, this naive argument is not safe sinethe sums (9) over the oupied and non-oupied states are ultraviolet di-vergent and must be regularized. In priniple, the ultraviolet regularizationould lead to an anomalous di�erene between the summation over ou-pied and non-oupied states but in the ase of the nuleon mass (9) onean hek that in the regularizations suppressing the ontributions of higheigenvalues the anomaly is absent:lim�!1Tr�Hf �H���H0f �H0� �� = 0 ; (12)



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1205where f is an arbitrary even funtion vanishing at in�nity fast enough(f(�1) = 0) and suh that f(0) = 1.We an reformulate this verbally as the �absene of the anomaly� in thenuleon mass MN (in the above regularization). The usage of the word�anomaly� is invoked by the similarity with the axial anomaly whih an beinterpreted as a nonvanishing trae of 5 omputed in the basis of eigenstatesof the Dira operator in a bakground gauge �eld with a regularizationsuppressing the ontribution of large eigenvalues [3℄.The main objet of interest in this paper is the study of the quark distri-bution funtions. In the mean �eld approah (justi�ed in the large N limit)the quark distributions an be represented as single or double sums overoupied or non-oupied one-partile eigenstates (8) of the Dira Hamil-tonian (7). We shall see that for the same parton distribution one anwrite two naively equivalent representations but whether this equivalenepersists or not when one takes into aount the ultraviolet regularization isa rather subtle question and the situation is di�erent for di�erent distribu-tions. Moreover, even in the limit of the large uto�, the anellation ofthis anomalous di�erene between the naively equivalent representations issensitive to the regularization used.Let us start from the unpolarized isosinglet quark distribution u(x)+d(x)whih is given by the following expressions [8℄ in the leading order of the1=N expansionu(x) + d(x) = N Xn;oZ d3p(2�)3 Æ�p3 +EnMN �x� hnjpi(1+03)hpjni= �N Xn;non�oZ d3p(2�)3 Æ�p3+EnMN �x� hnjpi(1+03)hpjni :(13)Also here the subtration of similar sums with the eigenstates and eigenval-ues of the Hamiltonian (7) replaed by those of the free Hamiltonian (10) isimplied. The result (13) has a transparent physial meaning of the probabil-ity to �nd a quark with momentum fration x in the nuleon in the in�nitemomentum frame. In Ref. [8℄ it was shown that in the Pauli�Villars regular-ization the sums over oupied and non-oupied states in (13) really givethe same result.We stress that the fat of the equivalene of the two representations forparton distributions is ruial for the positivity of unpolarized distributionsand for the validity of various sum rules inherited by the model from QCD [8℄.Therefore the hek of this equivalene is an essential part of the alulationof parton distributions in the hiral soliton model.



1206 K. Goeke et al.Now let us turn to the polarized quark distributions. In the leading orderof the 1=N expansion only the isovetor polarized distribution survives�u(x)��d(x) = �13N Xn;o Z d3p(2�)3 Æ�p3 +EnMN � x��hnjpi(1 + 03)�35hpjni : (14)Compared to the expression (13) for u(x)+d(x) here we have an extra fator�35 whih re�ets the fat that now we deal with the isovetor polarizeddistribution. The fator of 1=3 omes from the matrix element over therotational wave funtions of the soliton [13℄.One an ask whether the summation over the oupied quark states in(14) an be replaed by the summation over non-oupied states�u(x)��d(x) = 13N Xn;non�o Z d3p(2�)3 Æ�p3 +EnMN � x��hnjpi(1 + 03)�35hpjni : (15)In this paper we shall show that in the ase of the Pauli�Villars regular-ization (the sum over states n in (14) is logarithmially divergent) the tworepresentations (14) and (15) are really equivalent.We stress that the equivalene of the summation over the oupied andnon-oupied states is very sensitive to the hoie of the regularization. Forexample, if instead of the Pauli�Villars regularization we simply ut thesummation over quark states in (14) inluding only states with jEnj < !0then a nonzero di�erene between the two representations (14) and (15) willremain even in the limit of the in�nite uto� !0 ! 1. The mehanismhow this anomalous di�erene appears is similar in many respets to thefamous axial anomaly. In partiular, suh similarity manifests itself in thefat that the anomalous di�erene between the two representations (14) and(15) an be omputed analytially in the limit !0 !1. The alulation ofthe anomalous di�erene is presented in this paper.Although the regularization inluding only states with jEnj < !0 is notaeptable as a physial one and the Pauli�Villars regularization is morepreferable in this respet, we want to emphasize that in the pratial alu-lations based on the numerial diagonalization of the Dira operator in thebakground soliton �eld, the jEnj < !0 regularization appears naturally. In-deed, in the numerial alulation one an work only with a �nite amount ofquark states so that one atually uses both Pauli�Villars subtration (withthe regulator massMPV) and the jEnj < !0 regularization. The pure Pauli�Villars subtration is simulated by working with !0 �MPV. The numerial



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1207alulation is rather involved and the analytial result for the anomaly inthe jEnj < !0 regularization is very helpful for the ontrol of numeris evenif the anomaly anels after the Pauli�Villars subtration.Now let us turn to the polarized isosalar quark distribution �u(x) +�d(x) whih gets the �rst nonzero ontribution only in the subleading orderof the 1=N expansion�u(x) + �d(x) = NMN2I Xm;all Xn;o 1En �Em�hnj�3jmihmj(1 + 03)5Æ(En + P 3 � xMN )jni+N4I ��x Xn;ohnj(1 + 03)�35Æ(En + P 3 � xMN )jni :(16)Here P 3 is the quark momentum projetion on the third axisP 3 = �i ��x3 ; (17)and I is the moment of inertia of the soliton.Another representation for �u + �d an be written in terms of thesummation over non-oupied states n�u(x) + �d(x) = �NMN2I Xm;all Xn;non�o 1En �Em�hnj�3jmihmj(1 + 03)5Æ(En + P 3 � xMN )jni�N4I ��x Xn;non�ohnj(1 + 03)�35Æ(En + P 3 � xMN )jni :(18)The numerial alulation of �u + �d with the Pauli�Villars subtrationwas presented in paper [7℄. Unfortunately there the question about theequivalene of the two representation (16) and (18) was not investigatedproperly. Also the Pauli�Villars subtration was used in paper [7℄ withoutproper justi�ation.In this paper we show that if one uts the sum over oupied (non-oupied) states n allowing only jEnj < !0 in the Eqs. (16), (18) then in thein�nite uto� limit !0 !1



1208 K. Goeke et al.1. both representations (16) and (18) have a �nite limit (i.e. �u(x) +�d(x) has no ultraviolet divergenes),2. the two representations (16), (18) give the same result.Comparing the last terms in the rhs of representations (16) and (18)for �u + �d with expressions (14) and (15) for �u � �d we see thatthe total expression for �u + �d ontains a ontribution proportional to��x [�u(x)��d(x)℄.Therefore we start our analysis by investigating the anomaly of �u��dwhih we do in Setion 3. In Setion 4 we show by expliit alulation that forthe quark distribution �u+�d there is no anomalous di�erene between thesummations over oupied and non-oupied states. In Setion 5 we disussthe numerial results and ompare them to the GRSV parametrization ofexperimental data. 3. Anomaly of �u(x)��d(x)As it was explained in the introdution one of our aims is to investigatewhether the two representations (14) and (15) for the polarized isovetorquark distribution �u(x)��d(x) are equivalent. The answer to this ques-tion is sensitive to the ultraviolet regularization. Let us start from theregularization that allows only the quark states n with jEnj < !0. In thisregularization Eq. (14) an be rewritten as follows.[�u(x)��d(x)℄!0o= �13NMN Elev+0Z�!0 d!Tr �Æ(H � !)Æ(! + P 3 � xMN )�3(1 + 03)5� : (19)Here H is the Dira Hamiltonian (7) and P 3 is momentum operator (17).Similarly, representation (15) beomes[�u(x)��d(x)℄!0non�o= 13NMN !0ZElev+0 d!Tr �Æ(H � !)Æ(! + P 3 � xMN )�3(1 + 03)5� : (20)The main results of this setion an be formulated as follows:1. Both [�u(x)��d(x)℄!0o and [�u(x)��d(x)℄!0non�o are logarithmi-ally divergent in the limit of large uto� !0 !1



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1209
[�u(x) � �d(x)℄!0o � [�u(x)��d(x)℄!0non�o = NMNM212�2 ln !0M� Z d3k(2�)3Spfl h( ~U [k℄)+�3 ~U(k)i � �k3 � jxjMN�+ : : : : (21)2. In the di�erene [�u(x)��d(x)℄!0o� [�u(x)��d(x)℄!0non�o the ul-traviolet divergenes anel and the !0 ! 1 limit of this di�ereneredues to the following �nite expressionlim!0!1�[�u(x)��d(x)℄!0o � [�u(x)��d(x)℄!0non�o	= � 112�2NMNM2 Z d3k(2�)3 ln jxMN + k3jjxMN j Spfl h�3( ~U [k℄)+ ~U(k)i ;(22)where ~U(k) is the Fourier transform of the hiral mean �eld U(r)entering the Dira Hamiltonian (7)~U(k) = Z d3r e�i(kr) [U(r)� 1℄ : (23)Note that [�u(x)��d(x)℄!0o and [�u(x)��d(x)℄!0non�o separatelyare given by ompliated funtional traes (19) and (20) whih anbe omputed only numerially. The fat that the anomalous di�erenebetween the representations in terms of the oupied and non-oupiedstates redues to a simple momentum integral (22) is highly nontrivialand is similar to the well known fat that the famous axial anomalygets its ontribution only from the simplest diagram.The fat that the divergene (21) is proportional to M2 means thatthis divergene an be removed by the Pauli�Villars subtration so that thefollowing ombinations are �nite1[�u(x)��d(x)℄PVo= lim!0!1�[�u(x)��d(x)℄!0;Mo � M2M2PV [�u(x)��d(x)℄!0;MPVo � ; (24)1 Following Refs. [17, 18℄, in our numerial alulations we de�ne [�u��d℄!0;MPVo byEq. (19) withM !MPV but do not inlude the disrete valene level of the regulatorDira Hamiltonian (i.e. we replae Elev + 0 ! EMPVlev � 0 in Eq. (19)). In ontrast,our regulator analogue of Eq. (20) for [�u��d℄!0;MPVnon�o inludes this valene level.Obviously the di�erene [�u��d℄!0;MPVo � [�u��d℄!0;MPVnon�o is insensitive to thistreatment of the level. Therefore this subtlety of the regularization does not a�etthe anomaly study in this paper.



1210 K. Goeke et al.[�u(x)��d(x)℄PVnon�o= lim!0!1�[�u(x)��d(x)℄!0;Mnon�o � M2M2PV [�u(x)��d(x)℄!0;MPVnon�o� :(25)Next, sine the anomaly (22) is proportional toM2 we see that in the Pauli�Villars regularization the summation over oupied and non-oupied statesgives the same results:[�u(x)��d(x)℄PVo = [�u(x)��d(x)℄PVnon�o : (26)Now let us turn to the derivation of the result (22) for the anomalousdi�erene between the summation over oupied and non-oupied states.Subtrating (20) from (19) we obtain[�u(x)��d(x)℄!0o � [�u(x)��d(x)℄!0non�o= �13NMN !0Z�!0 d!Tr �Æ(H � !)Æ(! + P 3 � xMN )�3(1 + 03)5� : (27)We use the following representation for the operator delta funtion Æ(H�!)Æ(H � !) = sign!2�i � 1H2 � !2 � i0 � 1H2 � !2 + i0� (H + !) : (28)The squared Dira Hamiltonian (7) isH2 = ��2 +M2 + iM(k�kU5) : (29)Now (27) takes the form[�u(x)��d(x)℄!0o�[�u(x)��d(x)℄!0non�o = �23NMN Im !0Z�!0 d!2� sign!�Tr( 1��2 +M2 � !2 � i0 + iM(k�kU5) (! � i0k�k + 0MU5)�Æ(! + P 3 � xMN )�3(1 + 03)5) : (30)



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1211Next we expand the �propagator� in the rhs in powers of iM(k�kU5)1��2 +M2 � !2 � i0 + iM(k�kU5) = 1��2 +M2 � !2 � i0� 1��2 +M2 � !2 � i0 iM(k�kU5) 1��2 +M2 � !2 � i0 + : : : :(31)The �rst nonvanishing ontribution to (30) omes from the term linear iniM(k�kU5)[�u(x)��d(x)℄!0o � [�u(x)��d(x)℄!0non�o = �23NMN Im !0Z�!0 d!2��Tr( 1��2 +M2 � !2 � i0 [�iM(�kU5)℄ 1��2 +M2 � !2 � i0�(! � i0k�k + 0MU5)(1 + 03)5kÆ(! + P 3 � xMN )�3) : (32)Computing the trae over the spin indies and turning to the momentumrepresentation aording to (23) we arrive at[�u(x)��d(x)℄!0o � [�u(x)��d(x)℄!0non�o= �83NMNM2ImZ d3k(2�)3 k3Spfl n( ~U [k℄)+ ~U(k)�3o� !0Z�!0 d!2� Z d3p(2�)3 sign!jk + pj2 +M2 � !2 � i0 Æ(! + p3 � xMN )jpj2 +M2 � !2 � i0 :(33)We �rst integrate over ! and p3[�u(x)��d(x)℄!0o � [�u(x)��d(x)℄!0non�o= 43NMNM2 Z d3k(2�)3 Z d2p?2(2�)3 k3Spfl h( ~U [k℄)+ ~U(k)�3i�n(xMN + k3)jp?j2 � xMN jp? + k?j2 + k3[M2 � xMN (xMN + k3)℄o�1�"��!0� jp?j2+M2+(xMN )22jxjMN � � �!0+ jp?+k?j2+M2+(xMN+k3)22jxMN+k3j !� ���!0+ jp?j2+M2+(xMN )22jxjMN � � !0� jp?+k?j2+M2+(xMN+k3)22jxMN+k3j !#:(34)



1212 K. Goeke et al.In the limit of large uto� !0 we have for any �xed A, Blim!0!1 �(!0 �A)�(�!0 +B) = 0 : (35)Nevertheless the integral in the rhs of (34) does not vanish in the limit!0 !1 sine this limit gets ontributions from the region!0 � jp?j2jxjMN �M � jxjMN � jkj ; (36)where jp?j grows with !0. In this region (34) simpli�es tolim!0!1�[�u(x)��d(x)℄!0o � [�u(x)��d(x)℄!0non�o	= 43NMNM2 Z d3k(2�)3 Z d2p?2(2�)3 Spfl h( ~U [k℄)+ ~U(k)�3i� 1jp?j2 ���!0 � jp?j2 +M2 + (xMN )22jxjMN � ���!0 + jp?j22jxMN + k3j�� ���!0 + jp?j22jxjMN � ��!0 � jp?j22jxMN + k3j�� : (37)Now the integral over p? beomes trivial and we arrive at the �nal re-sult (22).An important feature of our alulation is that in the limit of large uto�!0 ! 1 the integral gets a ontribution only from large p?. Atually thesituation is analogous to the alulation of the axial anomaly whih an alsobe formulated as saturated by the ultraviolet region.The analogy with the axial anomaly goes further if we go to the higherterms of the expansion (31): these higher terms vanish in the limit of thelarge uto� !0 ! 1. The mehanism of this vanishing is as follows. Simi-larly to the leading term (34) one �nds that in the limit !0 !1 the integralover p? omes from large p?. But a simple dimensional ounting shows thatin the higher order terms the integrand deays at large p? too fast so thatthe integral vanishes in the limit !0 ! 1. Sine the higher order termsvanish our result for the anomaly (22) is atually exat.Restriting the integration over ! in Eq. (30) to the interval�!0 < ! < 0 or to 0 < ! < !0 we an investigate separate distributionfuntions [�u(x)��d(x)℄!0o or [�u(x)��d(x)℄!0non�o. In this ase onegets nonzero ontributions from all terms of the in�nite series (31). How-ever, it is not di�ult to hek that only the �rst nonvanishing term of thisexpansion is logarithmially divergent in the limit of large uto� !0 ! 1and this logarithmi divergene is given by (21). This logarithmi diver-gene is proportional to M2 and therefore in our previous alulation of



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1213�u��d we ould regularize it by the Pauli�Villars subtration. Moreover,sine the anomaly (22) is also proportional toM2 it is anelled by the samePauli�Villars subtration [9℄.4. Canellation of the anomaly of �u(x) + �d(x)Now we turn to the investigation of�u(x)+�d(x). The !0 uto� versionof (16) is[�u(x) +�d(x)℄!0o = NMN2I Xm X�!0<En�Elev 1En �Em�hnj�3jmihmj(1 + 03)5Æ(En + P 3 � xMN )jni+N4I ��x X�!0<En�Elevhnj(1+03)�35Æ(En+P 3 � xMN )jni: (38)Although we use notations orresponding to the disrete spetrum, atu-ally most of the spetrum is ontinuous. The singularities orresponding toEm = En are assumed to be regularized aording to the prinipal valuepresription.Making use of (19) we �nd[�u(x) + �d(x)℄!0o=[�u(x)+�d(x)℄(1)!0o � 34IMN ��x [�u(x)��d(x)℄!0o ;(39)where [�u(x) + �d(x)℄(1)!0o = NMN2I Xm X�!0<En�Elev 1En �Em�hnj�3jmihmj(1 + 03)5Æ(En + P 3 � xMN )jni : (40)Similarly (18) leads to[�u(x) + �d(x)℄!0non�o = [�u(x) + �d(x)℄(1)!0non�o� 34IMN ��x [�u(x)��d(x)℄!0non�o ; (41)where [�u(x) + �d(x)℄(1)!0non�o = �NMN2I Xm XElev<En<!0 1En �Em�hnj�3jmihmj(1 + 03)5Æ(En + P 3 � xMN )jni : (42)



1214 K. Goeke et al.We see that[�u(x) + �d(x)℄!0o � [�u(x) +�d(x)℄!0non�o= [�u(x) + �d(x)℄(1)!0o � [�u(x) + �d(x)℄(1)!0non�o� 34IMN ��x �[�u(x)��d(x)℄!0o � [�u(x)��d(x)℄!0non�o	 : (43)Here [�u(x) + �d(x)℄(1)!0o � [�u(x) + �d(x)℄(1)!0non�o= NMN2I Xm X�!0<En<!0� 1En �Em�PV�hnj�3jmihmj(1 + 03)5Æ(En + P 3 � xMN )jni : (44)We remind that here the prinipal value presription for (En � Em)�1 isimplied. This an be rewritten in the form[�u(x) +�d(x)℄(1)!0o � [�u(x) + �d(x)℄(1)!0non�o = �MNN4I !0Z�!0 d!�Sp��� 1H � !�PV �3Æ(H � !) + Æ(H � !)�3� 1H � !�PV�� Æ(! + P 3 � xMN )(1 + 03)5	 = � iMNN4I !0Z�!0 d!2��Sp�� 1H � ! + i0�3 1H � ! + i0� Æ(! + P 3 � xMN )(1 + 03)5�+ iMNN4I !0Z�!0 d!2��Sp�� 1H � ! � i0�3 1H � ! � i0� Æ(! + P 3 � xMN )(1 + 03)5� :(45)Hene[�u(x) + �d(x)℄(1)!0o � [�u(x) + �d(x)℄(1)!0non�o= �ImMNN2I !0Z�!0 d!2� Sp� 1H2 � !2 � i0sign! (H + !)�3(H + !)



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1215� 1H2 � !2 � i0sign!Æ(! + P 3 � xMN )(1 + 03)5�= �ImMNN2I !0Z�!0 d!2� sign!Sp� 1H2 � !2 � i0(H + !)�3(H + !)� 1H2 � !2 � i0Æ(! + P 3 � xMN )(1 + 03)5�= �ImMNN2I !0Z�!0 d!2� sign!Sp� 1��2 +M2 � !2 � i0 + iM(k�kU5)�(! � i0k�k + 0MU5)�3(! � i0k�k + 0MU5)� 1��2 +M2 � !2 � i0 + iM(k�kU5)Æ(! � i�3 � xMN )(1 + 03)5�:(46)The rest of the alulation is similar to how we worked with expression (30)for the anomaly of �u(x)��d(x).Nonzero ontributions to the anomaly ome from the expansion of thepropagators up to terms linear and quadrati in iM(k�kU5):[�u(x) + �d(x)℄(1)!0o � [�u(x) + �d(x)℄(1)!0non�o= A1(x) +A2(x) : (47)Here A1(x) orresponds to terms linear in iM(k�kU5)A1(x) = ImMNN2I !0Z�!0 d!2� sign!Sp(�iM(l�lU5) 1��2 +M2 � !2 � i0�(! � i0k�k + 0MU5)�3(! � i0k�k + 0MU5)+(! � i0k�k + 0MU5)�3(! � i0k�k + 0MU5)� 1��2 +M2 � !2 � i0 iM(l�lU5)��� 1��2 +M2 � !2 � i0�2Æ(! � i�3 � xMN )(1 + 03)5); (48)



1216 K. Goeke et al.and A2 is quadrati in iM(k�kU5)A2(x) = �ImMNN2I !0Z�!0 d!2� sign!Tr� 1��2 +M2 � !2 � i0� �iM(m�mU5) 1��2 +M2 � !2 � i0 iM(n�nU5) 1��2 +M2 � !2 � i0�(! � i0k�k + 0MU5)�3(! � i0l�l + 0MU5)+iM(m�mU5) 1��2 +M2 � !2 � i0�(! � i0k�k + 0MU5)�3(! � i0l�l + 0MU5)� 1��2 +M2 � !2 � i0 iM(n�nU5)+(! � i0k�k + 0MU5)�3(! � i0l�l + 0MU5)� 1��2 +M2 � !2 � i0 iM(m�mU5)� 1��2 +M2 � !2 � i0 iM(n�nU5)�� 1��2 +M2 � !2 � i0Æ(! � i�3 � xMN )(1 + 03)5� : (49)A straightforward alulation leads to the following results for A1(x)and A2(x)A1(x) = �M2MNN8�2I Z d3k(2�)3 1k3 ln ����1 + k3xMN ����Sp��3 h ~U(k)i+ ~U(k)� ;(50)A2(x) = MNNM28�2I Z d3k(2�)3 ln ����k3 + xMNxMN ������ 1k3 + 12 ��k3�Sp��3 h ~U(k)i+ ~U(k)� : (51)Now we insert these results into (47)[�u(x) + �d(x)℄(1)!0o � [�u(x) + �d(x)℄(1)!0non�o= MNNM216�2I Z d3k(2�)3 ln ����k3 + xMNxMN ���� ��k3Sp��3 h ~U(k)i+ ~U(k)� : (52)Note that shifting the integration variablek3 ! k3 � xMN ; (53)



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1217we obtainZ d3k(2�)3 ln ����k3 + xMNxMN ���� ��k3Sp��3 h ~U(k)i+ ~U(k)�= � 1MN ��x Z d3k(2�)3 ln ��k3 + xMN �� Sp��3 h ~U(k)i+ ~U(k)� : (54)Therefore[�u(x) + �d(x)℄(1)!0o � [�u(x) + �d(x)℄(1)!0non�o= �NM216�2I ��x Z d3k(2�)3 ln ����k3 + xMNxMN ����Sp��3 h ~U(k)i+ ~U(k)� : (55)Inserting this result and (22) into (43) we observe a omplete anellation:lim!0!1�[�u(x) + �d(x)℄!0o � [�u(x) + �d(x)℄!0non�o	 = 0 : (56)Thus the isosalar polarized quark distribution �u(x)+�d(x) is nonanoma-lous.Using similar methods one an hek that funtion �u(x) + �d(x) isfree of ultraviolet divergenes: although the two separate terms in the rhsof (39) are UV divergent the total sum is �nite.5. Numerial resultsThe numerial results for the isovetor polarized distribution funtion�u(x)��d(x) are given in [9℄. For the omputation of �u(x)+�d(x) (16),(18) we use the numerial methods whih were developed in [9℄ and later ex-tended in [11℄ for the omputation of the isovetor unpolarized distribution.The eigenvetors and eigenvalues of the Dira Hamiltonian (7) are de-termined by diagonalizing in the free Hamiltonian basis (10). This basis ismade disrete by plaing the soliton in a three-dimensional spherial box of�nite radius D and imposing the Kahana�Ripka boundary onditions [15℄.Both �u(x) � �d(x) and �u(x) + �d(x) were omputed using the stan-dard value of the onstituent quark mass M = 350 MeV as derived from theinstanton vauum [16℄.In our alulation we use the self-onsistent solitoni pro�le P (r) (seee.g. Ref. [17, 18℄ for the details of the regularization proedure). However,performing the numerial alulations in the �nite spherial box one shouldbe areful about the large distane e�ets. To be safe, we arti�ially expo-nentially suppress the pion tail of the soliton pro�le at large distanes sothat the �eld vanishes outside the box (a similar problem in the alulationof gA was studied in [19℄).



1218 K. Goeke et al.In Fig. 1 we ompare our numerial results for the anomaly of�u(x) � �d(x) with the analytial result (22). We observe a rather goodagreement.Fig. 2 shows the numerial results for the Dira sea ontribution to�u(x)+�d(x) based on the two representations (oupied and non-oupied).
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Fig. 1. Analytial (solid) and numerial (dashed) results for the anomalous di�er-ene [�u��d℄o � [�u��d℄non�o.
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Fig. 2. Results for ontinuum ontribution [�u+�d℄sea based on the oupied andnon-oupied representations.



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 1219We see a reasonable agreement between the two results whih on�rms theabsene of the anomaly in �u(x)+�d(x). Some di�erene between the twourves at negative x is �nite-box artefat. Inreasing the size of the box onean see that this di�erene tends to disappear.In Fig. 3 we ompare the result of the alulation of �u(x) + �d(x),��u(x) +��d(x) with the GRSV-LO parametrization [22℄ at the low sale ofthe model � = 600MeV. We see that the quark distribution �u(x)+�d(x)is in a reasonable agreement with the GRSV parametrization whereas theantiquark distribution ��u(x)+��d(x) obtained in the model is onsiderablysmaller than that of the GRSV parametrization. Note that the polarizedantiquark distributions are not diretly aessible in inlusive hard reations.Due to the lak of data the GRSV parametrizations therefore are basedon ertain assumptions, e.g. in the GRSV analysis it was assumed that��u(x) = ��d(x). In ontrast to this the QCD large N ounting and thequark soliton model predit a large �avor asymmetry in the light polarizedsea. Some physial appliations of this have been studied in Refs. [21,23,24℄.
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GRSVFig. 3. The quark soliton model results for x[�u + �d℄ and x[��u + ��d℄ versusLO-GRSV parametrization at the sale � � 600 MeV.Fig. 4 shows our preditions for the polarized antiquark distributions��u(x) and ��d(x) separately at the sale � = 600MeV.Sine the quark distribution �u+�d is �nite, no ultraviolet regulariza-tion is needed for this quantity. There is even an argument against regulariz-ing �u+�d oming from the fat that the �rst moment of this distributionis related to the imaginary part of the quark determinant in the bakgroundsoliton �eld whih has to be left nonregularized if one wants to keep baryon



1220 K. Goeke et al.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

x∆u
−

x∆d
−

Fig. 4. The quark soliton model preditions for x��u and x��d at the sale � �600 MeV.number onserved � this is an analog of the nonrenormalizability of theWess�Zumino term in pure hiral models.Several omments should be made about the alulations of �u + �dwithin the same model by Wakamatsu et al. who published three dif-ferent versions of the alulation in papers [7, 20, 21℄. In paper [20℄ oneof the terms was overlooked. This mistake was orreted by the authorsof [11℄. The revised version of alulation of Wakamatsu et al. was pub-lished in [7℄. In this paper the question about the anomalous di�erene[�u(x) + �d(x)℄!0o � [�u(x) + �d(x)℄!0non�o was investigated only numer-ially but the auray of the alulation did not allow the authors to drawany onlusions onerning whether this di�erene vanishes or not. Atu-ally the numerial auray of the agreement between the two representa-tions whih we observe in our alulation (see Fig. 2), and whih is ne-essary for a proper evaluation of the parton distributions, is of two ordersof magnitude better than the same di�erene presented in [7℄. The pra-tial solution aepted in [7℄ was to use [�u(x) + �d(x)℄!0o for x > 0 and[�u(x) + �d(x)℄!0non�o for x < 0 (i.e. for the antiquark distribution). Asit was explained above, �u(x) + �d(x) should not be regularized ontraryto what the authors of Ref. [7℄ do.The �rst moment of the �u(x) + �d(x) gives the singlet axial harge.Our result of g(0)A = R 1�1 dx(�u+�d)(x) = 0:35 agrees with the alulationperformed in other works [14,26℄. Note that in the alulation of this hargeno ultraviolet regularization was used.



Quark Distribution Funtions in the Chiral Quark�Soliton : : : 12216. ConlusionsWe have proved that the representation of singlet polarized (anti)quarkdistributions in the hiral quark�soliton model as a sum over quark orbitalsis ultraviolet �nite and free of quantum anomalies. This is a serious hekof the onsisteny of the quark�soliton model.In fat, the anellation of quantum anomalies in the model is relatedto the fat that ertain basi properties of QCD as a loal quantum �eldtheory are realized in the model. The equivalene of the summation overoupied and non-oupied states is diretly onneted to antiommutativityof fermion �elds at spae-like intervals. Atually this loality property hasa diret relation to the positivity of quark and antiquark densities in thequark soliton model [8, 9℄.Another onsequene of the anellation of anomalies is that the modelresults for the parton distributions are ompatible with the harge onjuga-tion invariane: the quark distributions in nuleon oinide with the anti-quark distributions in the antinuleon.From the pratial point of view the results presented in this paper allowus to onlude that for the alulation of the singlet polarized quark andantiquark distributions no Pauli�Villars subtration is needed. Additionallythe numerial hek of the anellation of the anomalies is a powerful toolto ontrol the auray of the numeris.We have omputed the singlet polarized quark and antiquark distribu-tions whih arise in the subleading order of 1=N expansion. We found thequark distribution �u(x) + �d(x) to be in a reasonable agreement withGRSV [22℄ parametrization of parton distributions at low normalizationpoint.Conerning the omparison of the parton distributions omputed in theurrent model with the �ts to experimental data it is often asked whetherthe model deals with urrent or onstituent quarks. Atually one should berather areful with the term �onstituent quark� sine the objet is stritlyspeaking absent in QCD and appears only in the ontext of various modelsand heuristi approximations. The hiral quark soliton model used in thepresent paper an be derived from QCD by assuming the QCD vauum tobe dominated by a gas of instantons. Thus in the present model the nuleonparton distributions are omputed starting from QCD expressions. Certainapproximations are used, in partiular, the funtional integral over the gluon�elds is approximated by the statistial average over the instanton medium,large N limit is taken et. However, whatever approximations are used,we always deal with the quark �elds inherited from the QCD ation andin this sense our quark distributions are usual urrent quark distributions.The struture of the model alulation also �xes the sale at whih the



1222 K. Goeke et al.parton distributions are omputed � it is determined by the inverse averageinstanton size whih is of order of 600 MeV. In this sense the omparisonof our alulations with the phenomenologial �ts is quite justi�ed (witha ertain are about the auray of the model and the region of x wherethe model makes sense as well as about the assumptions made in the �ts toexperimental data).A remarkable predition of our model is that the polarized distribu-tions of u and d antiquarks are essentially di�erent, see Fig. 4. Usually,in parametrizations of polarized parton distributions, it was assumed that��u(x) = ��d(x), whih is not on�rmed by our model alulations (seeFig. 4). It would be extremely interesting to inlude into the �ts of the datathe �avor deomposition pattern for polarized antiquarks obtained in ourmodel alulations. Future experiments at HERA and RHIC investigatingDrell�Yan lepton pair prodution in polarized nuleon�nuleon ollisions willlarify the situation. For a disussion see [23,24℄. Let us note that in the sin-glet polarized hannel under the evolution the quark distributions mix withpolarized gluon distribution. Analysis of Refs. [8,27℄ in the framework of theinstanton model of the QCD vauum shows that the gluon distribution isparametrially smaller (suppressed by M2=M2PV) than quark and antiquarkdistributions. In order to obtain a non-zero result one has to go beyond thezero-mode approximation of Ref. [27℄ and/or onsider ontributions of manyinstantons. Both ways would lead to extra powers of the paking frationof instantons. This means that gluons at low normalization point inside thenuleons appear only at the level of M2=M2PV.We are grateful to N.-Y. Lee, V.Yu. Petrov, T. Watabe and C. Weissfor numerous interesting disussions. P.V.P. and M.V.P. have been partiallysupported by RFBR grant 96-15-96764. D.U. aknowledges the �nanialsupport from PRAXIS XXI/BD/9300/96 and PRAXIS PCEX/C/FIS/6/96.The work has been partialy supported by DFG and BMFB.REFERENCES[1℄ J. Shwinger, Phys. Rev. 82, 664 (1951); S. Adler, Phys. Rev. 177, 2426 (1969);J.S. Bell, R. Jakiw, Nuov. Cimento 60A, 47 (1969); W.A. Bardeen, Phys.Rev. 184, 1848 (1969).[2℄ E. Witten, Nul. Phys. B160, 57 (1979).[3℄ K. Fujikawa, Phys. Rev. Lett. 44, 1733 (1980); Phys. Rev. D21, 2848 (1980).[4℄ D.I. Diakonov, V.Yu. Petrov, P.V. Pobylitsa, Nul. Phys. B306, 809 (1988);For a review of foundations of this model see: D.I. Diakonov, Letures givenat Advaned Summer Shool on Nonperturbative Quantum Field Physis,
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