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Consistent interactions that can be added between a Chern—Simons
term and a massless complex scalar field are investigated by means of co-
homological arguments in the framework of the antibracket-antifield BRST
formalism.
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An important step in the evolution of the antibracket-antifield method
was the cohomological understanding of the Lagrangian BRST symmetry
[1,2] which provided a useful tool for analysing many interesting topics,
such as the construction of consistent interactions in gauge theories [3—6] by
means of the deformation theory applied to the solution of the master equa-
tion combined with cohomological techniques. This treatment offered an
appropriate background for inferring many models of deep interest in theo-
retical physics, like Yang—Mills theories [7], the Chapline-Manton model [§],
p-forms and chiral p-forms [9-13|, as well as nonlinear gauge theories [14].
Along the same line, Einstein’s gravity theory [15] and four- and eleven-
dimensional supergravity [16] have been approached from the point of view
of their deformations. Lately, the problem of obtaining consistent deforma-
tions has been extended also at the Hamiltonian level [17-20)].

The aim of this paper is to study the consistent Lagrangian interactions
that can be added between a Chern—Simons term and a massless complex
scalar field within the antibracket-antifield deformation setting. Our analysis
goes as follows. We start from a free theory that describes an Abelian three-
dimensional Chern—Simons term and a charged scalar field, and construct
the associated free Lagrangian BRST differential s, which simply decom-
poses as the sum between the Koszul-Tate differential 0 and the exterior
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longitudinal derivative along the gauge orbits -y, s = § + . From these ele-
ments, we construct the consistent deformations of the solution to the master
equation. In order to generate the non-integrated first-order deformation,
which belongs to H® (s|d) (H° (s|d) denotes the zeroth order cohomologi-
cal space of s modulo the exterior space-time derivative d), we perform its
expansion according to an auxiliary degree, called antighost number, and
assume that we can take the last representative of this expansion to be an-
nihilated by v. In consequence, we have to know the cohomology of 7y, H (7).
In the meantime, the computation of the before last term of this expansion
requires the knowledge of H (d|d). After the computation of these cohomolo-
gies, we appropriately solve the deformation equations, finally obtaining the
deformed Lagrangian action and its gauge transformations. The antighost
number zero piece in the first-order deformation takes the form j*A,, where
J* stands for a conserved current of the massless complex scalar field corre-
sponding to a global one-parameter invariance, while the antighost number
one component shows that in the context of the deformed theory the matter
fields will carry some gauge invariances, representing nothing but the gauge
version of the above global one-parameter symmetry. As the conserved cur-
rent j# is not invariant under the above mentioned gauge transformations
of the matter fields, there appear nontrivial second-order deformations. The
resulting model describes precisely the three-dimensional minimal coupling
between a Chern—Simons term and a massless complex scalar field.

We begin with a three-dimensional system describing an Abelian Chern—
Simons term and a massless complex scalar field

SE Ay, 5] = / @ (LM A, F,y + (0,0) (0")) (1)

where F,, = 0,A, — 0,A, and the bar operation signifies complex conjuga-
tion. This free model is invariant under the gauge transformations

0cAy =0ue, d:p=0, 0.0=0. (2)

A consistent deformation of the free action (1) and of its gauge invari-
ances (2) defines a deformation of the corresponding solution to the master
equation that preserves both the master equation and the field/antifield
spectra. So, if S§ [Au, 0, 0] +9 fd%ozo +0 (92) stands for a consistent de-
formation of the free action, with deformed gauge transformations SEAM =
ue+9Bu+0 (9%), dep = gp+0 (%), 6.2 = gA+0 (g?), then the deformed
solution to the master equation

§:S+g/d3xa+0(g2), (3)
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satisfies (5‘ , 5’) = 0, where the symbol (,) signifies the antibracket and

S =S¥ [Au 0, 7] + / PrA0,, (1)

represents the solution to the master equation for the free theory, while
a = ag+ A" B, 4¢* p+@* A+‘more’ (g is the so-called deformation parameter
or coupling constant). The terms BM, p and ) are obtained from the functions
Bu, p and A where we replace the gauge parameter € with the fermionic
ghost 7. The fields carrying a star denote the antifields of the corresponding
fields or ghosts. The Grassmann parity of an antifield is opposite to that of
the corresponding field /ghost.

The pure ghost number (pgh) and the antighost number (antigh) of the
fields, ghosts and antifields are valued like

pgh (#%°) = pgh (¥, ) =0, pgh(n) =1, pgh(n*)=0 (5)

antigh (%) = 0, antigh (&}, ) =1, antigh(n) =0, antigh (n*) =2, (6)

where we employed the notations

P = (Aﬂa ®, ()5) ) ¢ZO = (A*H’ 30*7 35*) . (7)

The BRST symmetry of the free theory se = (e,.S) simply decomposes as
the sum between the Koszul-Tate differential § and the exterior derivative
along the gauge orbits v, s = § + v, where the degree of § is the antighost
number (antigh () = —1, antigh () = 0), and that of v is the pure ghost
number (pgh(vy) = 1, pgh(§) = 0). The grading of the BRST differential
is named ghost number (gh) and is defined in the usual manner like the
difference between the pure ghost number and the antighost number, such
that gh(s) = 1. The actions of § and v on the generators from the BRST
complex can be written as

§B™ =0, on=0, A" =—c"’F,,, (8)
580* = aua“(ﬁa (5S5* = a,uaﬂﬁoa 5"7* = _a,uA*#a (9)
VAL =0un, Yo =79 =0, (10)

yn =P, =n* =0. (11)

The master equation (5’ .S ) = 0 holds to order g if and only if

s = 0 k", (12)
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for some local k#. This means that the nontrivial first-order consistent
interactions belong to H® (s|d). In the case where « is a coboundary modulo
d (o = sb+ 9,c"), then the deformation is trivial (it can be eliminated by
a redefinition of the fields). In order to investigate the solution of (12), we
develop « according to the antighost number

a=ay+ay+...ay, antigh(ag)==~%, (13)

where the last term can be assumed to be annihilated by «y, ya; = 0. Thus,
we need to know the cohomology of v, H (), in order to determine the
terms of highest antighost number in @. From (10),(11) it is easy to see
that the cohomology of v is generated by Fj,, = 0, A,, ¢, ¢, the antifields
together with their derivatives, as well as by the undifferentiated ghost 7. If
we denote by eM (n) a basis in the space of the polynomials in the ghosts,
it follows that the general solution to the equation ya = 0 takes the form

a = anr ([F;W] s [(P] ) [95] ) [QSZO] ) [77*]) eM (77) ) (14)

where the notation f[g| signifies that f depends on ¢ and its derivatives
up to a finite order. As there is a single ghost field, which in addition is
fermionic, it follows that the only nontrivial element of the basis e (1) is 7
itself, hence we find that

a=ar ([Fw].[e], (9], [®5,]) - (15)

In this way, the expansion (13) stops after the first two terms, a = ap + o,
where

ar = a1 ([Fuls o], (2], [@5,]) n- (16)

The equation (12) projected on antighost number zero becomes day +yay =
Ount. For the last equation to possess solution, it is necessary that g
belongs to Hj (d]d), hence

(5551 == Bﬂm“. (17)

Using (9) we obtain
0[i (P°¢ — " @)l = O [i (p0"¢ — 0" P)]. (18)

If we compare (18) with (17), we infer that &; = i(¢*¢ — ¢*¢), which
further yields

o =i(¢"p— ¥ o). (19)
On the other hand, the equation (18) expresses nothing but the cohomolog-
ical formulation of Noether’s theorem, which provides the conservation of
the current

gt =i (ot — d'p) , (20)
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corresponding to the global one-parameter invariance Ay = —ipf, Ag =
i@¢ of the complex scalar field action. With the help of (19), (10) and (11
we deduce that

ag = —i (@t — pd"'p) Ay, (21)
which further leads to

day +yog = 0 [—i (PO — ' @) ] . (22)

In this way, we constructed the first-order deformation of the solution to the
master equation like

S = i/d3x ((8"6 — ¢ o) — (§0"p — 00"P) Ay). (23)
The second-order deformation equation takes the form
50+ 5x = up', (24)

where Sy = [d*zo and (S, 1) = [d3zx. After some computation we find
that (S1,.51) is non-vanishing

(S1,51) = / deand), (ppA) = / dax. (25)

due to the fact that the current j# is not invariant under the gauge version of
the rigid transformations of the complex scalar field (the antibracket (S1, S1)
reduces to the antibracket between the first and second terms in the right-
hand side of (23), that is proportional with the gauge variation of j#). Thus,
we have to solve the second-order deformation equation (24), which requires
that x given in (25) is an s-coboundary modulo d. This is indeed the case
because

X =5 (=20pA"A,) + 0 (4ppA¥'n) (26)

such that
Sy = /d?’mgo(pA“A#. (27)

If we examine the third-order deformation equation, we observe that (S, S2)
is vanishing, hence we can safely take S3 = 0. The higher-order equations
are then satisfied with the choice Sy = S5 =--- = 0.

Putting together the above results, we infer that

S = / d*z (3" A,F,, + D,pDbg

+ig (p*@ — ¥ ) n + A;,0"n) | (28)
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represents the full consistent solution to the master equation of our deformed
problem, where the covariant derivative is defined through

The antifield-independent piece in (28)

- 1 —_
SO = /d3.’L' <§€HV'DA“pr + D“QDDNQD) ) (30)

describes nothing but the Lagrangian interaction between a Chern—Simons
term and a charged scalar field in three dimensions, while the terms linear in
the antifields of the matter fields emphasize that the gauge transformation
of the complex scalar field reads as

SE(P = —ig(p&, SE@ = ig@‘ga (31)

while that associated with the vector field is kept unchanged. Thus, the
added interaction results in gauging the initial rigid symmetry of the mat-
ter fields at the level of the gauge transformations, although there appear
coupling terms of order two in the deformation parameter.

To conclude with, in this paper we have investigated the consistent inter-
actions that can be introduced between a three-dimensional Chern—Simons
term and a massless complex scalar field. Our analysis is based on cohomo-
logical arguments. The first-order deformation belongs to H? (s|d) and takes
the form j#A,, where j# is the conserved current of the matter theory cor-
responding to a global one-parameter symmetry. This current is correlated
with Hy (§|d) by means of Noether’s theorem. As the conserved current
j* is not invariant under the gauge version of the rigid transformations of
the matter field, second-order interaction terms are present. As a conse-
quence, we obtain the three-dimensional interaction vertices corresponding
to the minimal coupling between the Chern—Simons term and a charged
scalar field. Meanwhile, the scalar field becomes endowed with some gauge
transformations, which are nothing but the gauge version of the initial rigid
ones.

This work has been supported by the Romanian National Council for
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