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ON THE LAGRANGIAN DERIVATION OF THEINTERACTIONS BETWEEN A CHERN�SIMONS TERMAND A COMPLEX SCALAR FIELDC. Bizdadea, M.T. Miaut  and S.O. SaliuFa
ulty of Physi
s, University of Craiova13 A. I. Cuza Str., Craiova RO-1100, Romaniae-mail: bizdadea�
entral.u
v.roe-mail: osaliu�
entral.u
v.ro(Re
eived January 3, 2001)Consistent intera
tions that 
an be added between a Chern�Simonsterm and a massless 
omplex s
alar �eld are investigated by means of 
o-homologi
al arguments in the framework of the antibra
ket-anti�eld BRSTformalism.PACS numbers: 11.10.EfAn important step in the evolution of the antibra
ket-anti�eld methodwas the 
ohomologi
al understanding of the Lagrangian BRST symmetry[1, 2℄ whi
h provided a useful tool for analysing many interesting topi
s,su
h as the 
onstru
tion of 
onsistent intera
tions in gauge theories [3�6℄ bymeans of the deformation theory applied to the solution of the master equa-tion 
ombined with 
ohomologi
al te
hniques. This treatment o�ered anappropriate ba
kground for inferring many models of deep interest in theo-reti
al physi
s, like Yang�Mills theories [7℄, the Chapline�Manton model [8℄,p-forms and 
hiral p-forms [9�13℄, as well as nonlinear gauge theories [14℄.Along the same line, Einstein's gravity theory [15℄ and four- and eleven-dimensional supergravity [16℄ have been approa
hed from the point of viewof their deformations. Lately, the problem of obtaining 
onsistent deforma-tions has been extended also at the Hamiltonian level [17�20℄.The aim of this paper is to study the 
onsistent Lagrangian intera
tionsthat 
an be added between a Chern�Simons term and a massless 
omplexs
alar �eld within the antibra
ket-anti�eld deformation setting. Our analysisgoes as follows. We start from a free theory that des
ribes an Abelian three-dimensional Chern�Simons term and a 
harged s
alar �eld, and 
onstru
tthe asso
iated free Lagrangian BRST di�erential s, whi
h simply de
om-poses as the sum between the Koszul�Tate di�erential Æ and the exterior(1225)
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, s = Æ + 
. From these ele-ments, we 
onstru
t the 
onsistent deformations of the solution to the masterequation. In order to generate the non-integrated �rst-order deformation,whi
h belongs to H0 (sjd) (H0 (sjd) denotes the zeroth order 
ohomologi-
al spa
e of s modulo the exterior spa
e-time derivative d), we perform itsexpansion a

ording to an auxiliary degree, 
alled antighost number, andassume that we 
an take the last representative of this expansion to be an-nihilated by 
. In 
onsequen
e, we have to know the 
ohomology of 
, H (
).In the meantime, the 
omputation of the before last term of this expansionrequires the knowledge of H (Æjd). After the 
omputation of these 
ohomolo-gies, we appropriately solve the deformation equations, �nally obtaining thedeformed Lagrangian a
tion and its gauge transformations. The antighostnumber zero pie
e in the �rst-order deformation takes the form j�A�, wherej� stands for a 
onserved 
urrent of the massless 
omplex s
alar �eld 
orre-sponding to a global one-parameter invarian
e, while the antighost numberone 
omponent shows that in the 
ontext of the deformed theory the matter�elds will 
arry some gauge invarian
es, representing nothing but the gaugeversion of the above global one-parameter symmetry. As the 
onserved 
ur-rent j� is not invariant under the above mentioned gauge transformationsof the matter �elds, there appear nontrivial se
ond-order deformations. Theresulting model des
ribes pre
isely the three-dimensional minimal 
ouplingbetween a Chern�Simons term and a massless 
omplex s
alar �eld.We begin with a three-dimensional system des
ribing an Abelian Chern�Simons term and a massless 
omplex s
alar �eldSL0 [A�; '; �'℄ = Z d3x �12"���A�F�� + (��') (�� �')� ; (1)where F�� = ��A� � ��A� and the bar operation signi�es 
omplex 
onjuga-tion. This free model is invariant under the gauge transformationsÆ"A� = ��" ; Æ"' = 0 ; Æ" �' = 0 : (2)A 
onsistent deformation of the free a
tion (1) and of its gauge invari-an
es (2) de�nes a deformation of the 
orresponding solution to the masterequation that preserves both the master equation and the �eld/anti�eldspe
tra. So, if SL0 [A�; '; �'℄ + g R d3x�0 +O �g2� stands for a 
onsistent de-formation of the free a
tion, with deformed gauge transformations ~Æ"A� =��"+g��+O �g2�, ~Æ"' = g�+O �g2�, ~Æ" �' = g�+O �g2�, then the deformedsolution to the master equation~S = S + g Z d3x�+O �g2� ; (3)
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alar Field 1227satis�es � ~S; ~S� = 0, where the symbol (; ) signi�es the antibra
ket andS = SL0 [A�; '; �'℄ + Z d3xA�����; (4)represents the solution to the master equation for the free theory, while� = �0+A�� ~��+'�~�+�'�~�+`more' (g is the so-
alled deformation parameteror 
oupling 
onstant). The terms ~��, ~� and ~� are obtained from the fun
tions��, � and � where we repla
e the gauge parameter " with the fermioni
ghost �. The �elds 
arrying a star denote the anti�elds of the 
orresponding�elds or ghosts. The Grassmann parity of an anti�eld is opposite to that ofthe 
orresponding �eld/ghost.The pure ghost number (pgh) and the antighost number (antigh) of the�elds, ghosts and anti�elds are valued likepgh (��0) = pgh ����0� = 0 ; pgh (�) = 1 ; pgh (��) = 0 (5)antigh (��0) = 0 ; antigh ����0� = 1 ; antigh (�) = 0 ; antigh (��) = 2 ; (6)where we employed the notations��0 = (A�; '; �') ; ���0 = (A��; '�; �'�) : (7)The BRST symmetry of the free theory s� = (�; S) simply de
omposes asthe sum between the Koszul�Tate di�erential Æ and the exterior derivativealong the gauge orbits 
, s = Æ + 
, where the degree of Æ is the antighostnumber (antigh (Æ) = �1, antigh (
) = 0), and that of 
 is the pure ghostnumber (pgh (
) = 1, pgh (Æ) = 0). The grading of the BRST di�erentialis named ghost number (gh) and is de�ned in the usual manner like thedi�eren
e between the pure ghost number and the antighost number, su
hthat gh (s) = 1. The a
tions of Æ and 
 on the generators from the BRST
omplex 
an be written asÆ��0 = 0; Æ� = 0; ÆA�� = �"���F�� ; (8)Æ'� = ���� �'; Æ �'� = ����' ; Æ�� = ���A�� ; (9)
A� = ��� ; 
' = 
 �' = 0 ; (10)
� = 
���0 = 
�� = 0 : (11)The master equation � ~S; ~S� = 0 holds to order g if and only ifs� = ��k�; (12)
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al k�. This means that the nontrivial �rst-order 
onsistentintera
tions belong to H0 (sjd). In the 
ase where � is a 
oboundary modulod (� = sb + ��
�), then the deformation is trivial (it 
an be eliminated bya rede�nition of the �elds). In order to investigate the solution of (12), wedevelop � a

ording to the antighost number� = �0 + �1 + : : : �J ; antigh (�k) = k ; (13)where the last term 
an be assumed to be annihilated by 
, 
�J = 0. Thus,we need to know the 
ohomology of 
, H (
), in order to determine theterms of highest antighost number in �. From (10),(11) it is easy to seethat the 
ohomology of 
 is generated by F�� = �[�A�℄, ', �', the anti�eldstogether with their derivatives, as well as by the undi�erentiated ghost �. Ifwe denote by eM (�) a basis in the spa
e of the polynomials in the ghosts,it follows that the general solution to the equation 
a = 0 takes the forma = aM �[F�� ℄ ; ['℄ ; [ �'℄ ; ����0� ; [��℄� eM (�) ; (14)where the notation f [q℄ signi�es that f depends on q and its derivativesup to a �nite order. As there is a single ghost �eld, whi
h in addition isfermioni
, it follows that the only nontrivial element of the basis eM (�) is �itself, hen
e we �nd thata = a1 �[F�� ℄ ; ['℄ ; [ �'℄ ; ����0�� � : (15)In this way, the expansion (13) stops after the �rst two terms, � = �0 +�1,where �1 = ~�1 �[F�� ℄ ; ['℄ ; [ �'℄ ; ����0�� � : (16)The equation (12) proje
ted on antighost number zero be
omes Æ�1+
�0 =��n�. For the last equation to possess solution, it is ne
essary that ~�1belongs to H1 (Æjd), hen
e Æ~�1 = ��m� : (17)Using (9) we obtainÆ [i ( �'� �'� '�')℄ = �� [i ( �'��'� '�� �')℄ : (18)If we 
ompare (18) with (17), we infer that ~�1 = i ( �'� �'� '�'), whi
hfurther yields �1 = i ( �'� �'� '�') � : (19)On the other hand, the equation (18) expresses nothing but the 
ohomolog-i
al formulation of Noether's theorem, whi
h provides the 
onservation ofthe 
urrent j� = i ( �'��'� '�� �') ; (20)
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orresponding to the global one-parameter invarian
e �' = �i'�, ��' =i �'� of the 
omplex s
alar �eld a
tion. With the help of (19), (10) and (11)we dedu
e that �0 = �i ( �'��'� '�� �')A� ; (21)whi
h further leads toÆ�1 + 
�0 = �� [�i ( �'��'� '�� �') �℄ : (22)In this way, we 
onstru
ted the �rst-order deformation of the solution to themaster equation likeS1 = iZ d3x (( �'� �'� '�') � � ( �'��'� '�� �')A�) : (23)The se
ond-order deformation equation takes the forms� + 12� = ��p�; (24)where S2 = R d3x� and (S1; S1) = R d3x�. After some 
omputation we �ndthat (S1; S1) is non-vanishing(S1; S1) = Z d3x4��� (' �'A�) = Z d3x� ; (25)due to the fa
t that the 
urrent j� is not invariant under the gauge version ofthe rigid transformations of the 
omplex s
alar �eld (the antibra
ket (S1; S1)redu
es to the antibra
ket between the �rst and se
ond terms in the right-hand side of (23), that is proportional with the gauge variation of j�). Thus,we have to solve the se
ond-order deformation equation (24), whi
h requiresthat � given in (25) is an s-
oboundary modulo d. This is indeed the 
asebe
ause � = s (�2' �'A�A�) + �� (4' �'A��) ; (26)su
h that S2 = Z d3x' �'A�A� : (27)If we examine the third-order deformation equation, we observe that (S1; S2)is vanishing, hen
e we 
an safely take S3 = 0. The higher-order equationsare then satis�ed with the 
hoi
e S4 = S5 = � � � = 0.Putting together the above results, we infer that~S = Z d3x �12"���A�F�� +D�'D�'+ig ( �'� �'� '�') � +A������ ; (28)
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onsistent solution to the master equation of our deformedproblem, where the 
ovariant derivative is de�ned throughD� = �� + igA� : (29)The anti�eld-independent pie
e in (28)~S0 = Z d3x�12"���A�F�� +D�'D�'� ; (30)des
ribes nothing but the Lagrangian intera
tion between a Chern�Simonsterm and a 
harged s
alar �eld in three dimensions, while the terms linear inthe anti�elds of the matter �elds emphasize that the gauge transformationof the 
omplex s
alar �eld reads as~Æ"' = �ig'"; ~Æ" �' = ig �'" ; (31)while that asso
iated with the ve
tor �eld is kept un
hanged. Thus, theadded intera
tion results in gauging the initial rigid symmetry of the mat-ter �elds at the level of the gauge transformations, although there appear
oupling terms of order two in the deformation parameter.To 
on
lude with, in this paper we have investigated the 
onsistent inter-a
tions that 
an be introdu
ed between a three-dimensional Chern�Simonsterm and a massless 
omplex s
alar �eld. Our analysis is based on 
ohomo-logi
al arguments. The �rst-order deformation belongs to H0 (sjd) and takesthe form j�A�, where j� is the 
onserved 
urrent of the matter theory 
or-responding to a global one-parameter symmetry. This 
urrent is 
orrelatedwith H1 (Æjd) by means of Noether's theorem. As the 
onserved 
urrentj� is not invariant under the gauge version of the rigid transformations ofthe matter �eld, se
ond-order intera
tion terms are present. As a 
onse-quen
e, we obtain the three-dimensional intera
tion verti
es 
orrespondingto the minimal 
oupling between the Chern�Simons term and a 
hargeds
alar �eld. Meanwhile, the s
alar �eld be
omes endowed with some gaugetransformations, whi
h are nothing but the gauge version of the initial rigidones.This work has been supported by the Romanian National Coun
il forA
ademi
 S
ienti�
 Resear
h (CNCSIS) grant.
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