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ON THE LAGRANGIAN DERIVATION OF THEINTERACTIONS BETWEEN A CHERN�SIMONS TERMAND A COMPLEX SCALAR FIELDC. Bizdadea, M.T. Miaut  and S.O. SaliuFaulty of Physis, University of Craiova13 A. I. Cuza Str., Craiova RO-1100, Romaniae-mail: bizdadea�entral.uv.roe-mail: osaliu�entral.uv.ro(Reeived January 3, 2001)Consistent interations that an be added between a Chern�Simonsterm and a massless omplex salar �eld are investigated by means of o-homologial arguments in the framework of the antibraket-anti�eld BRSTformalism.PACS numbers: 11.10.EfAn important step in the evolution of the antibraket-anti�eld methodwas the ohomologial understanding of the Lagrangian BRST symmetry[1, 2℄ whih provided a useful tool for analysing many interesting topis,suh as the onstrution of onsistent interations in gauge theories [3�6℄ bymeans of the deformation theory applied to the solution of the master equa-tion ombined with ohomologial tehniques. This treatment o�ered anappropriate bakground for inferring many models of deep interest in theo-retial physis, like Yang�Mills theories [7℄, the Chapline�Manton model [8℄,p-forms and hiral p-forms [9�13℄, as well as nonlinear gauge theories [14℄.Along the same line, Einstein's gravity theory [15℄ and four- and eleven-dimensional supergravity [16℄ have been approahed from the point of viewof their deformations. Lately, the problem of obtaining onsistent deforma-tions has been extended also at the Hamiltonian level [17�20℄.The aim of this paper is to study the onsistent Lagrangian interationsthat an be added between a Chern�Simons term and a massless omplexsalar �eld within the antibraket-anti�eld deformation setting. Our analysisgoes as follows. We start from a free theory that desribes an Abelian three-dimensional Chern�Simons term and a harged salar �eld, and onstrutthe assoiated free Lagrangian BRST di�erential s, whih simply deom-poses as the sum between the Koszul�Tate di�erential Æ and the exterior(1225)



1226 C. Bizdadea, M.T. Miaut , S.O. Saliulongitudinal derivative along the gauge orbits , s = Æ + . From these ele-ments, we onstrut the onsistent deformations of the solution to the masterequation. In order to generate the non-integrated �rst-order deformation,whih belongs to H0 (sjd) (H0 (sjd) denotes the zeroth order ohomologi-al spae of s modulo the exterior spae-time derivative d), we perform itsexpansion aording to an auxiliary degree, alled antighost number, andassume that we an take the last representative of this expansion to be an-nihilated by . In onsequene, we have to know the ohomology of , H ().In the meantime, the omputation of the before last term of this expansionrequires the knowledge of H (Æjd). After the omputation of these ohomolo-gies, we appropriately solve the deformation equations, �nally obtaining thedeformed Lagrangian ation and its gauge transformations. The antighostnumber zero piee in the �rst-order deformation takes the form j�A�, wherej� stands for a onserved urrent of the massless omplex salar �eld orre-sponding to a global one-parameter invariane, while the antighost numberone omponent shows that in the ontext of the deformed theory the matter�elds will arry some gauge invarianes, representing nothing but the gaugeversion of the above global one-parameter symmetry. As the onserved ur-rent j� is not invariant under the above mentioned gauge transformationsof the matter �elds, there appear nontrivial seond-order deformations. Theresulting model desribes preisely the three-dimensional minimal ouplingbetween a Chern�Simons term and a massless omplex salar �eld.We begin with a three-dimensional system desribing an Abelian Chern�Simons term and a massless omplex salar �eldSL0 [A�; '; �'℄ = Z d3x �12"���A�F�� + (��') (�� �')� ; (1)where F�� = ��A� � ��A� and the bar operation signi�es omplex onjuga-tion. This free model is invariant under the gauge transformationsÆ"A� = ��" ; Æ"' = 0 ; Æ" �' = 0 : (2)A onsistent deformation of the free ation (1) and of its gauge invari-anes (2) de�nes a deformation of the orresponding solution to the masterequation that preserves both the master equation and the �eld/anti�eldspetra. So, if SL0 [A�; '; �'℄ + g R d3x�0 +O �g2� stands for a onsistent de-formation of the free ation, with deformed gauge transformations ~Æ"A� =��"+g��+O �g2�, ~Æ"' = g�+O �g2�, ~Æ" �' = g�+O �g2�, then the deformedsolution to the master equation~S = S + g Z d3x�+O �g2� ; (3)



Chern�Simons Term Coupled to Complex Salar Field 1227satis�es � ~S; ~S� = 0, where the symbol (; ) signi�es the antibraket andS = SL0 [A�; '; �'℄ + Z d3xA�����; (4)represents the solution to the master equation for the free theory, while� = �0+A�� ~��+'�~�+�'�~�+`more' (g is the so-alled deformation parameteror oupling onstant). The terms ~��, ~� and ~� are obtained from the funtions��, � and � where we replae the gauge parameter " with the fermionighost �. The �elds arrying a star denote the anti�elds of the orresponding�elds or ghosts. The Grassmann parity of an anti�eld is opposite to that ofthe orresponding �eld/ghost.The pure ghost number (pgh) and the antighost number (antigh) of the�elds, ghosts and anti�elds are valued likepgh (��0) = pgh ����0� = 0 ; pgh (�) = 1 ; pgh (��) = 0 (5)antigh (��0) = 0 ; antigh ����0� = 1 ; antigh (�) = 0 ; antigh (��) = 2 ; (6)where we employed the notations��0 = (A�; '; �') ; ���0 = (A��; '�; �'�) : (7)The BRST symmetry of the free theory s� = (�; S) simply deomposes asthe sum between the Koszul�Tate di�erential Æ and the exterior derivativealong the gauge orbits , s = Æ + , where the degree of Æ is the antighostnumber (antigh (Æ) = �1, antigh () = 0), and that of  is the pure ghostnumber (pgh () = 1, pgh (Æ) = 0). The grading of the BRST di�erentialis named ghost number (gh) and is de�ned in the usual manner like thedi�erene between the pure ghost number and the antighost number, suhthat gh (s) = 1. The ations of Æ and  on the generators from the BRSTomplex an be written asÆ��0 = 0; Æ� = 0; ÆA�� = �"���F�� ; (8)Æ'� = ���� �'; Æ �'� = ����' ; Æ�� = ���A�� ; (9)A� = ��� ; ' =  �' = 0 ; (10)� = ���0 = �� = 0 : (11)The master equation � ~S; ~S� = 0 holds to order g if and only ifs� = ��k�; (12)



1228 C. Bizdadea, M.T. Miaut , S.O. Saliufor some loal k�. This means that the nontrivial �rst-order onsistentinterations belong to H0 (sjd). In the ase where � is a oboundary modulod (� = sb + ���), then the deformation is trivial (it an be eliminated bya rede�nition of the �elds). In order to investigate the solution of (12), wedevelop � aording to the antighost number� = �0 + �1 + : : : �J ; antigh (�k) = k ; (13)where the last term an be assumed to be annihilated by , �J = 0. Thus,we need to know the ohomology of , H (), in order to determine theterms of highest antighost number in �. From (10),(11) it is easy to seethat the ohomology of  is generated by F�� = �[�A�℄, ', �', the anti�eldstogether with their derivatives, as well as by the undi�erentiated ghost �. Ifwe denote by eM (�) a basis in the spae of the polynomials in the ghosts,it follows that the general solution to the equation a = 0 takes the forma = aM �[F�� ℄ ; ['℄ ; [ �'℄ ; ����0� ; [��℄� eM (�) ; (14)where the notation f [q℄ signi�es that f depends on q and its derivativesup to a �nite order. As there is a single ghost �eld, whih in addition isfermioni, it follows that the only nontrivial element of the basis eM (�) is �itself, hene we �nd thata = a1 �[F�� ℄ ; ['℄ ; [ �'℄ ; ����0�� � : (15)In this way, the expansion (13) stops after the �rst two terms, � = �0 +�1,where �1 = ~�1 �[F�� ℄ ; ['℄ ; [ �'℄ ; ����0�� � : (16)The equation (12) projeted on antighost number zero beomes Æ�1+�0 =��n�. For the last equation to possess solution, it is neessary that ~�1belongs to H1 (Æjd), hene Æ~�1 = ��m� : (17)Using (9) we obtainÆ [i ( �'� �'� '�')℄ = �� [i ( �'��'� '�� �')℄ : (18)If we ompare (18) with (17), we infer that ~�1 = i ( �'� �'� '�'), whihfurther yields �1 = i ( �'� �'� '�') � : (19)On the other hand, the equation (18) expresses nothing but the ohomolog-ial formulation of Noether's theorem, whih provides the onservation ofthe urrent j� = i ( �'��'� '�� �') ; (20)



Chern�Simons Term Coupled to Complex Salar Field 1229orresponding to the global one-parameter invariane �' = �i'�, ��' =i �'� of the omplex salar �eld ation. With the help of (19), (10) and (11)we dedue that �0 = �i ( �'��'� '�� �')A� ; (21)whih further leads toÆ�1 + �0 = �� [�i ( �'��'� '�� �') �℄ : (22)In this way, we onstruted the �rst-order deformation of the solution to themaster equation likeS1 = iZ d3x (( �'� �'� '�') � � ( �'��'� '�� �')A�) : (23)The seond-order deformation equation takes the forms� + 12� = ��p�; (24)where S2 = R d3x� and (S1; S1) = R d3x�. After some omputation we �ndthat (S1; S1) is non-vanishing(S1; S1) = Z d3x4��� (' �'A�) = Z d3x� ; (25)due to the fat that the urrent j� is not invariant under the gauge version ofthe rigid transformations of the omplex salar �eld (the antibraket (S1; S1)redues to the antibraket between the �rst and seond terms in the right-hand side of (23), that is proportional with the gauge variation of j�). Thus,we have to solve the seond-order deformation equation (24), whih requiresthat � given in (25) is an s-oboundary modulo d. This is indeed the asebeause � = s (�2' �'A�A�) + �� (4' �'A��) ; (26)suh that S2 = Z d3x' �'A�A� : (27)If we examine the third-order deformation equation, we observe that (S1; S2)is vanishing, hene we an safely take S3 = 0. The higher-order equationsare then satis�ed with the hoie S4 = S5 = � � � = 0.Putting together the above results, we infer that~S = Z d3x �12"���A�F�� +D�'D�'+ig ( �'� �'� '�') � +A������ ; (28)



1230 C. Bizdadea, M.T. Miaut , S.O. Saliurepresents the full onsistent solution to the master equation of our deformedproblem, where the ovariant derivative is de�ned throughD� = �� + igA� : (29)The anti�eld-independent piee in (28)~S0 = Z d3x�12"���A�F�� +D�'D�'� ; (30)desribes nothing but the Lagrangian interation between a Chern�Simonsterm and a harged salar �eld in three dimensions, while the terms linear inthe anti�elds of the matter �elds emphasize that the gauge transformationof the omplex salar �eld reads as~Æ"' = �ig'"; ~Æ" �' = ig �'" ; (31)while that assoiated with the vetor �eld is kept unhanged. Thus, theadded interation results in gauging the initial rigid symmetry of the mat-ter �elds at the level of the gauge transformations, although there appearoupling terms of order two in the deformation parameter.To onlude with, in this paper we have investigated the onsistent inter-ations that an be introdued between a three-dimensional Chern�Simonsterm and a massless omplex salar �eld. Our analysis is based on ohomo-logial arguments. The �rst-order deformation belongs to H0 (sjd) and takesthe form j�A�, where j� is the onserved urrent of the matter theory or-responding to a global one-parameter symmetry. This urrent is orrelatedwith H1 (Æjd) by means of Noether's theorem. As the onserved urrentj� is not invariant under the gauge version of the rigid transformations ofthe matter �eld, seond-order interation terms are present. As a onse-quene, we obtain the three-dimensional interation verties orrespondingto the minimal oupling between the Chern�Simons term and a hargedsalar �eld. Meanwhile, the salar �eld beomes endowed with some gaugetransformations, whih are nothing but the gauge version of the initial rigidones.This work has been supported by the Romanian National Counil forAademi Sienti� Researh (CNCSIS) grant.
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