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We discuss the implementations of the Bose—FEinstein effect from asym-
metric sources in Monte Carlo generators. A comparison of LEP data with
results from the PYTHIA /JETSET code with the standard procedure imi-
tating the effect and with the results from the weight method (with weights
depending in various ways on components of momenta differences) is pre-
sented. We show that in this last method one can reproduce the experi-
mental hierarchy of the source radii.

PACS numbers: 13.65.+i, 13.90.+1i

1. Introductory remarks

Recently one observes a renewal of interest in analysing the space—time
structure of sources in multiparticle production by means of Bose—Finstein
(BE) interference [1]. Such analysis followed the example of astrophysical
investigations of Hanbury-Brown and Twiss [2]. The main motivation of
this renewal was the analysis of the eTe™ — W W~ process which became
available at the LEP2. It was suggested [3,4] that the BE interference
(and/or colour reconnection effects) between the strings from two W decays
may shift the W mass value fitted from the two jet mass distributions by
as much as a few hundred MeV, thus making this channel useless for pre-
cise tests of the standard model. However, other investigations suggested
that such a big shift is unlikely [5-7|. Experimentally, the existence of
interference effects between strings is still debatable [8].

Investigating such subtle effects became possible when instead of the
standard approach [9] one started to model this effect in Monte Carlo gener-
ators. There are several methods of modelling: as the “afterburner” for which
the original MC provides a source [10,11], by shifting the momenta [12] or
by adding weights to generated events [13,14]. Another approach was set
forward by Andersson and collaborators who used the symmetrisation inside
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fragmenting string [15] to model the effect for a single string [16]. Here we
consider the most widely used methods of shifting momenta and weighting
events.

Another reason to analyse the BE effect were the efforts to estimate size
and shape of source of particle production in various processes (in particular
for coming RHIC data). The analysis of BE effect in 3 dimensions is sup-
posed to reflect the spatial source asymmetry. Such analysis was done for
the LEP data at the Z° peak [17] which have very high statistics and good
accuracy.

In this paper we compare the 3-dimensional data for BE effect from
LEP with the results of the standard momentum shifting procedure and of
the weight method. In the next section we present the data discussing in
detail the definitions and the procedures used by the experimental groups.
In the third section we compare them with the results obtained from the
PYTHIA /JETSET MC generator using the original procedure modelling the
effect by momentum shifting and with the results from the weight method
with weights independent on spatial orientation of momenta. Fourth section
contains the results for asymmetric weights. Our conclusions are presented
in the last section.

2. Experimental data

Although the discussion of the shape of asymmetric sources in the frame-
work of BE interference concerned most often the heavy ion collisions, the
best experimental data with highest statistics exist for the eTe™ annihi-
lation at the Z° peak. In the following we concentrate our attention on
the L3 data [18] which discuss the ratios using “uncorrelated background”
and three different radii to parametrise the data. The DELPHI data [19] are
parametrised with only two radii, and the OPAL data [20] use the like/unlike
ratio which requires a cut off of the resonance affected regions even in double
ratios.

As in the L3 paper [18] we use for each pair of identical pions three
components of the invariant Q% = —(p1 — p2)* Q%, Q2 Q%4 defined in
the LCMS (Longitudinal Centre-of-Mass System), where the sum of three
— vector momenta is perpendicular to the thrust axis. The oyt component
is measured along this sum, the @, along the thrust axis, and Qgge is the
projection of @ on the axis perpendicular to these two directions [18,21].
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We define a “double ratio” in the same way as in the L3 paper using a
reference sample from mixed events:

2>
pénlx 1
i )
mix,MC

P2

Ry(p1,p2) =

This “double ratio” is parametrised by

R?(QL, Qout Qside) = ’7[1 + 5QL + eQout + CQside]
X [1 =+ AGXP(—R%Q% - R(Q)thgut - Rzideinde - 2PL,outRLRothLQ0ut)] :
(2)

The first bracket reflects possible traces of long-distance correlations; the
last term in the second bracket seems to be negligible when fitting data and
will be omitted in the following.

By fitting the parameters Ry, and Rgige We get some information on the
geometric radii in the longitudinal and transverse directions (respective to
the thrust axis). Roy¢ reflects both the spatial extension and time duration
of the emission process.

In the L3 data the fit region in all three variables extends to 1.04 GeV
and is divided into 13 bins, which gives 2197 points fitted with 8 parameters.
The fit parameters d,c and ¢ are rather small; this means that the observed
BE enhancement is rather well approximated with a Gaussian. The value
of the parameter A is fitted as 0.41 + 0.01.

The fitted values of radii (in fm) are as follows:

R, =0.74 £0.027093 | Rou=0.53 £ 0.02700%,  Rgqe=0.59 £0.017393.

We see clear evidence for source elongation: Rgqe/Ry, is smaller than one
by more than four standard deviations.

It is instructive to inspect the projections of the double ratio on the three
axes Qr, Qout and Qgige. This is done by restricting the values of two other
variables to less than 0.24 GeV, plotting the histograms in the third variable
in bins of width 0.08 GeV and constructing the double ratio in this variable.
The results are shown in Fig. 1 as presented by the L3 collaboration [18].
The values of double ratios fall down smoothly from the maxima of about
1.25 at (); close to zero to the plateau at 1. It is rather difficult to see the
differences between three plots, but superposing them one may note that
the fall is fastest for @1, as expected from the fact that the fitted value of
parameter Ry, is bigger than the values of Rqyt and Rgige quoted above.
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Fig. 1. Projections of the double ratio (1) from the data of the L3 collaboration on
the three axes QL7 Qout and Qside-

3. Asymmetric effects from symmetric models

The geometric interpretation of data requires a comparison with the
results from the standard MC procedures modelling the BE effect. In the
L3 paper such an analysis is given for the standard LUBOEI procedure built
into the JETSET Monte Carlo generator. This procedure modifies the final
state by a shift of momenta for each pair of identical pions. The shift is
calculated to enhance low values of @2 and to reproduce the experimental
ratio in this variable. The function defining this shift is

F(Q%) =14 Mpexp (-R2Q?) . (3)

The superposition of the procedure for all the pairs and subsequent
rescaling (restoring the energy conservation) makes the connection between
the parameters of the shift Aj,, Ro and the parameters describing the re-
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sulting double ratio in (?

P2
mix

Ry (@) = — i (4)

2

(which may be parametrised analogously to (3)) rather indirect.

Using the JETSET parameters adjusted to all the L3 data and the
LUBOEI parameters fitted to describe the BE ratio in Q? the authors of
the L3 paper calculated the same quantities as measured in the experiment.
The projections of Ry are qualitatively very similar to the experimental
ones. However, the fit to the 3-dimensional distribution gives results differ-
ent from data. The ratio Rgige/ Ry is not smaller but greater than one; the
fitted values (in fm) are:

Ry, =0.71+£0.01, Rou =0.58£0.01, Rgqge=0.75£0.01.

We confirmed these numbers in our calculations. We found also that the
results are sensitive to the JETSET parameters. Using the default values
instead of the L3 values we obtained a significantly smaller value of Ryt
(below 0.5) and significantly smaller A. Other values are less affected and
Rgiqe/ Ry, is still bigger than 1.

We have also checked how the results depend on the source radius Ry and
on the incoherence parameter Aj, assumed in the LUBOEI input function
(3). In all cases we get Rgige > RI, > Rout, although the input function was
obviously symmetric. The values of Rgge and Ry, are proportional to Ry,
whereas Ry changes much less; the dependence on i, is very weak. The
output value of A decreases quite strongly with increasing Ry and increases
with Ajn. No choice of input parameters gives the values of R; compatible
with data. This is shown in Fig. 2(a).

Another interesting observation is that to fit the L3 data one needs
A = 1.5, which is beyond the physically acceptable value of 1. This supports
our doubts about usefulness of the LUBOEI procedure in understanding the
experimental results (although certainly it is the most practical description
of data).

In fact, there is one more degree of freedom in the prescription for mod-
elling the BE effect: the definition of direct pions. Since the decay products
of long-living resonances and of particles decaying by electroweak interac-
tions are born far from the original collision point, their effective source size
is much bigger than that for direct pions. Thus they contribute to the BE
effect for momentum differences much below the experimental resolution and
should not be taken into account.

In the LUBOEI procedure this distinction is made by the decay width
of unstable particles: only pions from the decay of particles with the width
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Fig.2. Fit parameters A and R; as functions of the input parameters (a) for the
LUBOEI procedure, (b) for the weight method. Experimental values are shown on
a separate vertical axis.

above 20 MeV and the direct ones are included in the momentum shift-
ing procedure. Obviously, this is just a rough prescription which may be
changed, and the values of fit parameters may change then quite strongly.
The user of the procedure should be aware that (according to author’s warn-
ing) it works properly only when called from LUEXEC; if LUBOEI is called
directly from the master program, all pions are regarded as the direct ones.

The problems of LUBOEI procedure in describing the asymmetry of
experimental distributions are not the first ones noted in applications to
describe various data. It has been already indicated that the procedure
with parameters fitted to the two-particle data fails to reproduce the three-
particle spectra [22] and the semi-inclusive data [23]. Moreover, as already
noted, the fitted values of parameters needed in the input function (3) are
quite different from the values one would get fitting the resulting double
ratio (4) to the same form [24,25]. Thus, it seems to be difficult to learn
something reliable on the space-time structure of the source from the values
of the fit parameters in this procedure.
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All this led to a revival of weight methods, known for quite a long
time [26], but plagued also with many practical problems. The method
is clearly justified with in the formalism of the Wigner functions, which al-
lows one to represent (after some simplifying assumptions) any distribution
with the BE effect built in as a product of the original distribution and the
weight factor, depending on the final state momenta [13]. With an extra
assumption on factorisation in momentum space we may write the weight
factor for a final state with n identical bosons as

W(p1,...pn) = 3 [[wa(pirprg) (5)
i=1

where the sum extends over all permutations P, (i) of n elements, and
wo (pi, i) 18 a two-particle weight factor reflecting the effective source size.
Problems with an enormous number of possible terms in this sum may be
cured by a proper clustering procedure [14]. A reasonable description of the
effect in Q? is obtained with a simple Gaussian form of the weight factor

2
wa(p1,p2) = exp [—(pl —p2)2%] : (6)
or, even simpler, a step function form with wy = 1 for some range of
—(p1 — p2)? < 1/R% and wq = 0 outside [27].

In this method we may repeat the same calculation as done for the
LUBOEI procedure. Obviously the weights may be calculated for the events
generated by any MC generator, but here we restrict ourselves to the results
from the same PYTHIA/JETSET code which was used above. The result-
ing double ratios are not that smooth and monotonically decreasing as in
the data or from the LUBOEI procedure (which is the usual drawback of
the weight methods). However, the major features are surprisingly similar:
with weight factors depending only on Q? we get different values of fitted
R; parameters. Moreover, the hierarchy of parameters is the same:
Rgqe > Ry > Rout- This suggests that the asymmetry is generated by
the jet-like structure of final states and not by any specific features of the
procedure modelling the BE effect. In Fig. 2(b) we show the values of the
fit parameters as functions of Ry for a Gaussian as well as the 6-like weight
factors. Again, no choice of the input parameters allows to describe the
data.

The comparison of two methods is not straightforward. In particular,
one should make sure that the same definition of “direct” pions is used.
The weights are calculated after the event was fully generated (and all the
decays of unstable particles occurred). Therefore, one should define the
pions which are counted as direct ones. We did it by enumerating particles
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which contribute significantly to the pion production and live too long for
their decay products to produce a visible BE effect (using the same limit for
decay width as in LUBOEI). If one enumerates the short-living resonances
and adds their decay products to the direct pions, one should remember
that this list is different in various options of JETSET (e.g. the option used
by the L3 collaboration takes into account mesons built from quarks with
non-zero orbital momentum, which are neglected in the default version).

The results presented in this section suggest that one should be careful
with the geometric interpretation of the data. If one gets asymmetric dis-
tributions from the generator without assuming explicitly space asymmetry
of the source, it is not clear how the assumed asymmetry will be reflected
in the results.

4. Asymmetric weights

One may get more information on the problem of asymmetric BE effect
in MC generators using the asymmetric weight method, i.e. introducing
weight factors which depend in a different way on Qr, = |pi1. — par|, Qside =
|P1side — P2side] and Qout = |[P1out —P20ut |, Where the indices denote the compo-
nents defined in the previous section. We have used two such generalisations
of a Gaussian weight factor (6)

b —Q%(R)? — Q% ( ngm)? — Q% (RE)? (7)

MQ(QLa Qouta Qside) = eXx

and

w2 (QL, Qouts Qside) = €xp —QF(R")? = (1-5%) Q3 (R )* — Q2ge (Rife)”

2 7
(8)
where (8 is defined as
Pout1 + Pout?2
= o fomE 9
p By + Ey )
~ The weight factor (8) reduces to the symmetric weight factor (6) when
0= Ry, = Ry, = Ro. The formula (8) gives nearly the same results

as the formula (7) when R, is multiplied by 2. We have used both forms
finding no definite preference for any of them.

Fluctuations in the weight values are large and the resulting fluctuations
in the values of double ratios describing the BE effect are bigger than for
the momentum shifting method. Therefore, it is necessary to use large
samples of generated events. We found that for the samples of 5 million
events, the fluctuations visible in the plots of projections of double ratios on
components of ) are comparable with those seen in the experimental data
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shown in Fig. 1. In fact, the plots obtained for the weight method with the
input radii around 0.5 fm are visually similar to those of experimental data.
However, the fitted values of the parameters from formula (2) are different.

Since for the symmetric weights the resulting fitted values of Rgge are
bigger than the values of Ry, (contrary to the inequality seen in the data),
it seemed natural to take the input value of RiSIilde smaller than Rin. Indeed
decreasing R, one reduces the resulting.ﬁtted value of Rgqe but this de-
pendence is not linear and saturates for Ry, around 0.3 fm. Moreover, the
fitted values of other parameters change as well although their input values
were not changed. Therefore, looking for the best set of input parameters
in the formula for weights is a rather involved procedure.

Let us add two more remarks. A replacement of the products of Gaus-
sians by the proper products of step functions in the formulae for weights
(7), (8) leads to even bigger fluctuations in the resulting distributions and
we do not advocate such parametrisations. Finally, there is some ambigu-
ity concerning the use of weights for the calculations of double ratio (1).
If we use the weights only for the two-particle distributions, the two de-
nominators cancel and we calculate effectively just the ratio of two-particle
distributions with- and without weights. It seems, however, that the justifi-
cation for the weight method [13] requires using weights both for the single-
and two-particle distributions. We have looked for the best set of param-
eters with this prescription, using a Gaussian form without the “g-factor”
(7). The best set we found is

R"=09fm, R" =03fm, RI_ =0.4fm. (10)

The resulting projections of the double ratios are shown in Fig. 3. The

fitted values of parameter we get in formula (2) are

R.,=0.73fm, Rgy =0.54fm, Reqe=0.65fm. (11)

Obviously, it is now possible to reproduce the experimental hierarchy
of the radii. The fitted value of X is smaller than in data (0.35 instead of
0.41), but the difference is well within the systematic errors of the fit to the
experimental data. Note that we are not showing the errors in Fig. 3 (nor
quoting them in the values of parameters listed above), since these errors
result mainly from the fluctuations in weights. Some estimate is obtained
by comparing the results for 1 and 5 million events samples; in Fig. 3 the
differences are of the order of size of the points.

There is a striking difference between the input values of the radii (10)
assumed in the weight factors and the resulting best fit values (11) from
the double ratio calculated with these weights. Although the hierarchy
Rr, > Rgige > Rous is the same in both cases, the fitted values differ by
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Fig.3. Projections of the double ratio (1) from the PYTHIA/JETSET MC gen-
erator with the asymmetric weight method for parameters (11) on the three axes

Qr, Qout and Qside-

less than 25 %, whereas there is a difference by more than a factor of two
between the input values.

Moreover, further decrease of the values of R%, and R, hardly affects
the resulting double ratio and fitted values of R;. This seems to be the
inherent property of the JETSET generator, which yields a rather strong
suppression of large values of Q; and Q? even without any procedure imi-
tating the BE effect. Apparently this suppression dominates over the weak
enhancement of low values of @); induced by the weight factors with small
values of R;. For small Rin there is no simple correspondence between the
input and output values of radii. This looks analogous to the effect noted
already for a symmetric BE effect described by the LUBOEI procedure [25].
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Therefore, any direct interpretation of the fit values for BE double ratios
in terms of the different radii of the asymmetric source is a rather delicate
matter.

5. Conclusions

In this note we present the results of our investigation concerning the
asymmetry of the BE effect in two procedures imitating this effect in the
Monte Carlo generators. A comparison with the data at Z° peak is pre-
sented. We found that both the momentum shifting method and the weight
method with weights depending on @Q? only give different distributions in
different components of Q?. However, the hierarchy of the radii parametris-
ing these distributions is different from the experimental one. Introducing
weights which depend in different ways on different components of Q? we
are able to reproduce the experimental data.
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