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I discuss some aspects of recent developments in color superconduc-
tivity in high density quark matter. I calculate the Cooper pair gap and
the critical points at high density, where magnetic gluons are not screened.
The ground state of high density QCD with three light flavors is shown to
be a color-flavor locking state, which can be mapped into the low-density
hadronic phase. The meson mass at the CFL superconductor is also cal-
culated. The CFL color superconductor is bosonized, where the Fermi
sea is identified as a @-matter and the gapped quarks as topological ex-
citations, called superqualitons, of mesons. Finally, as an application of
color supercoductivity, I discuss the neutrino interactions in the CFL color
superconductor.

PACS numbers: 12.38.Mh, 74.20.—z, 11.10.Gh

1. Introduction

Matter exhibits several different phases, as shown in Fig. 1, depending on
external parameters. At temperature, higher than the deconfinement tem-
perature (T > 100 MeV), quarks confined in the nucleons get liberated and
matter becomes a quark—gluon plasma, as happened in the very early uni-
verse. Similarly, also at extremely high density, where the Fermi momentum
of nucleons in matter is larger than 1 GeV or so as in the core of compact
stars like neutron stars, the wavefunction of quarks in nucleons will overlap
with that of quarks in other nucleons due to asymptotic freedom. At such
high density, quarks are no longer confined in nucleons and thus the nuclear
matter will become a quark matter, where rather weakly interacting quarks
move around [1].
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Fig.1. A schematic phase diagram of matter.

The Fermi surface of quark matter at high density is unstable at low tem-
perature, a phenomenon called Cooper instability, against forming pairs of
quarks or holes, if attraction exists between a pair of quarks or holes with op-
posite momenta. No matter how small the attraction is, it will dominate any
repulsive forces at low energy, since the attraction between a pair of quarks
or holes with opposite momenta is a relevant operator while all repulsive
forces become irrelevant as one scales down toward the Fermi sea [2,3]. It
turns out that color anti-triplet diquark condensates are energetically most
preferred among possible pairings, including particle-hole parings or density
waves [4].

Intense study on color superconductivity [7] shows that superconducting
quark matter has two different phases, depending on density'. At intermedi-
ate density, the Cooper pair is color anti-triplet but flavor singlet, breaking
only the color symmetry down to a subgroup, SU(3). — SU(2).:

(@9, (-7) = — (@b, (7))
= g e"B3A, (1)

! New phases like the LOFF phase [5] or a chiral crystal phase [6] might exist at the
intermediate density if one includes the Fermi surface mismatch due to the difference
in quark mass.
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where 7,7 = 1,2 and a,b = 1,2,3 are flavor and color indices, respectively.
For high density where the chemical potential is larger than the strange
quark mass, p > myg, the strange quark participates in Cooper-pairing. At
such a high density, the Cooper-pair condensate is predicted to take a so-
called Color-Flavor Locking (CFL) form [8], breaking not only color sym-
metry but also flavor symmetry maximally:

(@9, (-7) = — (D), (7))
= k10880 + k20947 . (2)

At much higher density (1 > Aqcn), ki(= Ag) ~ —k2 and the color-flavor
locking phase is shown to be energetically preferred [9-11].

2. Cooper pair gap and the critical points

There are two kinds of the attractive forces that lead to Cooper insta-
bility, depending on the density. At the intermediate density, where p < my
or p ~ (5-10) x 0.17 fm ™3, the QCD interaction is approximated with four-
quark interactions,

2 — —
Len 3 Sy + -, 3)

since both electric and magnetic gluons are screened due to the medium
effect. This short-range attraction is precisely the BCS type interaction,
which is generated in metal by the exchange of massive phonons. The Cooper
pair gap is then given by [18|

AQ
A ~ ey exp [—ﬁ] , (4)
9 Pr

which is estimated to be 10 ~ 100 MeV, for A and ef are of the order of Aqcp
and g is of the order of one at the intermediate density. On the other hand,
though electric gluons are screened in quark matter, the magnetic gluons
are not screened at high density even at a nonperturbative level, as argued
convincingly by Son [12]. Thus the Cooper-pairing force at high density is
long-ranged and the gap equation is so-called the Eliashberg equation. The
(long-range) magnetic gluon exchange interaction leads to an extra (infrared)
logarithmic divergence in the gap equation, which is in hard-dense loop
(HDL) approximation given as,

I

) _
9s A(go) < A )
Alpo) = d 1 : 5
(po) 3672 / 1 /g3 + A? ! lpo — qol 8
m
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where A = 4p /7 - (u/M)5e3/% with a gauge parameter £. By solving the
gap equation (5), one finds the Cooper pair gap to be? [12-17]

Ay = 2927 4N 5/2 3§/2+1 M p( jfg ) (6)

Though the ground state of quark matter is a color superconductor,
one needs to know its criticality to observe color superconductivity in the
laboratory or in stellar objects. The quark matter which might exist in
the core of compact stars like neutron stars will be in the superconducting
phase if the interior temperature of compact stars is lower than the critical
temperature and the density is higher than the critical density. For the
neutron stars, the inner temperature is estimated to be < 0.7MeV and
the core density is around 1.7 fm™2, which is ten times higher than the
normal nuclear matter density [23]. Since the critical temperature of BCS
superconductivity is given as [18]

1
To = —e"A ~0.57A, (7)
T

the critical temperature of color superconductivity at the intermediate den-
sity is quite large; Tc ~ 5-50 MeV. In dense QCD with unscreened mag-
netic gluons, the critical temperature turns out to take the BCS type value
[10,21,22], Tc ~ 0.57A, though the pairing force is very different from that
of the BCS superconductivity. Since the unscreened magnetic gluons give a
much bigger gap than the usual BCS type gap, the critical temperature of
color superconductivity is quite large compared to the interior temperature
of neutron stars, regardless of the form of attractive forces.

It is instructive to derive the critical temperature for the color supercon-
ductivity at high density, where the pairing is mediated by the unscreened
magnetic gluons. We start with the zero temperature Cooper-pair gap equa-
tion, Eq. (5).

Following the imaginary-time formalism developed by Matsubara [19],
the gap equation becomes at finite temperature T

2 fx 1
9 dq A(wn) A
Alon) = QWTn:z_: / 21 w2 + A%(wy,) + ¢2 In |wpr — wp| ) ®)

where w, = 7T (2n + 1) and ¢ = ¥ - ¢ We now use the constant (but
temperature-dependent) gap approximation, A(wy) ~ A(T) for all n. Tak-

2 Were we to take the UV cutoff of the effective theory to be 2y instead of p, taken
in [13], we would get the usual value, 2%, instead of 2° for N; = 2 in the prefactor.
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ing n’ = 0 and converting the logarithm into integration, we get
g g g g g

2 +o00 ) 1
A(T / / . (9)
187r 27 2+ A2 (T) + ¢* .+ (wn — wp)?

Using the contour integral [20], one can in fact sum up over all n to get

~ 361 2/ /277@7{1+e—w/T [w2—q2— A%(T ﬁ (@ —iwo)2—a]" (10)

Since the gap vanishes at the critical temperature, A(T¢) = 0, we get, after
performing the contour integration in Eq. (10),

B WTC) +z— ¢’ tanh [q/(2T¢)]
B 36 2 /dq/dx { [(7Te)? + & — ¢2)* + (27 Tcq)? 2q
(WTc) +¢*—u coth [v/z/(27¢)]
* [(7Tc)? + ¢2 — 2]* + (27Tc) % 2z } ' (1)

At high density A > Tc, the second term in the integral in Eq. (11) is
negligible, compared to the first term, and integrating over z, we get

Ac
2 2 2
gs tanhy AL Y
1 = d 1 -
367r2/ Iy [“<<w/2)2+y2)+O<Az)]

~ I5 T (eN)]?, (12)

where we have introduced y = q/(27T¢) and A\ = 4/(2T¢) and A is given as

1 oo
h h 4
A= /dytan y+/dytan y=1_ <—) toy, (13)
™
0 1

where the Euler—Mascheroni constant v ~ 0.577. Therefore, we find the

critical temperature
A
- 6
Tc = e7/1exp <——7T> . (14)
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Now, one can also solve the gap equation Eq. (5) in the same approximation
used to find the critical temperature. Taking the gap independent of the
energy, we get

A _
1 ~ gz / dqo I <£)
18n? | @+ 2 \w
2 A d
_ gs z Y o
= 18#20/ = (ln)\ lnx)
2 —_
~ 3(gi:r2 [ln (2)\)]2 , (15)

where we have introduced = = qo/A, A\ = /I/A,_and used the fact that

the gap vanishes rapidly at energy higher than A. In this constant gap
approximation, the gap is given as

A =2Aexp <—6—”> , (16)

which is about 1.75 T¢. As comparison, we note in the BCS case, which has
a contact four-Fermi interaction with strength g, the critical temperature is
given as

we

h
1:g/dztanz
z

0

e

1 o]
~ 7 /%_i_/dztanhz_/dzl—tanhz
z z z
1 0

1
= gln (eA&JC) , (17)

where wc (> 1) is determined by the Debye energy, wc = wp/(27¢). Since
the gap A = 2wpexp(—1/g) in the BCS superconductivity, the ratio be-
tween the critical temperature and the Cooper-pair gap in both the color
superconductivity at high density and the BCS superconductivity is given
as €7 /m ~ 0.57,

At high density, antiquarks are difficult to create due to the energy gap
provided by the Fermi sea and thus it is energetically disfavored for anti-
quarks to participate in condensation. But, as the density becomes lower,
one has to take into account the effect of antiquarks. In the high density
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effective theory, this effect is incorporated in the higher order operators [10].
First, we add the leading 1/p corrections to the gap equation Eq. (5) to see
how the formation of Cooper pair changes when the density decreases. The
leading 1/p corrections to the quark—gluon interactions are

L = —i St (@, 2) (71 - DY (e, 2)

Yl - (18)

D? ouwF*
_ D1 t T
Eﬁj[d} TR
F

In the leading order in the HDL approximation, the loop correction to the
vertex is neglected and the quark—gluon vertex is shifted by the 1/u correc-
tion as

. . L
—igsvh — —igsvh — ngﬁ, (19)

where [; is the momentum carried away from quarks by gluons. We note
that since the 1/p correction to the quark—gluon vertex does not depend
on the Fermi velocity of the quark, it generates a repulsion for quark pairs,
bound by magnetic forces. For a constant gap approximation, A(p”) ~ A,
the gap equation becomes in the leading order, as pj — 0,

2 rodl A 3 1 2 A A
_g [y [ (AN 3 =% (MY (4 -
=5 [ o [ (i) 2]13+A2 o (3) [n(3) -

(20)
When A < e3A, the gap due to the long-range color magnetic interaction
disappears. Since the phase transition for color superconducting phase is
believed to be of first order [24,25], we may assume that the gap has the
same dependence on the chemical potential y as the leading order. Then,
the critical density for the color superconducting phase transition is given
by

1=edexp [—%] . (21)

Therefore, if the strong interaction coupling is too strong at the scale of the
chemical potential, the gap does not form. In other words, the chemical
potential has to be bigger than a critical value, 0.13 GeV < u. < 0.31 GeV,
which is about the same as the one estimated in the literature [24-26].
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3. The Color—Flavor-Locking phase

When Ny = 3, the spin-zero component of the condensate becomes (fla-
vor) anti-triplet,

(1t @, @) 5 (=T, 2) ) = = (T, 2)mls (~Te,2) ) (22)
= e, €03, K] (pF), (23)

where 9(vp,z) is the quark near the Fermi surface with Fermi velocity
op [10,13]. Using the global color and flavor symmetry, one can always
diagonalize the spin-zero condensate as K/ = §/ K. To determine the pa-
rameters, K,, K4, and K, we need to minimize the vacuum energy for the
condensate. By the Cornwall-Jackiw-Tomboulis formalism [27], the vacuum
energy in the HDL approximation is given as

V(A) = —Tr InS™' +Tr In @+ Tr (S~ (2PI diagrams)
l
[

7S +
_ @l LAy
- Z/ [ ( +A2(||)>+2lﬁ+A§(l”)

where h.o. are the higher order terms in the HDL approximation, con-
taining more powers of coupling gs, and A;’s are the eigenvalues of color
anti-symmetric and flavor anti-symmetric 9 x 9 gap, A;”B. The 2PT dia-
grams are two-particle-irreducible vacuum diagrams. There is only one such
diagram (see Fig. 2) in the leading order HDL approximation.

+ h.o.,(24)

Fig.2. The 2PI vacuum energy diagram.
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Since the gap depends only on energy in the leading order, one can easily
perform the momentum integration in (24) to get?,

[ee]
s /dl A LA
2y | - 1
ar= ) \/l_§+w/l§+AZ? 4.2+ A2

u
~ 0435 2Zm (25)

V(A) =

where in the second line we used an approximation that
Az(lo) ~ {Az(O) if |lo| < |Az(0)| , (26)
0 otherwise.

Were A; independent of each other, the global minimum should occur at
A;(0) = const. for all i = 1,---,9. But, due to the global color and flavor
symmetry, only three of them are independent. Similarly to the condensate,
the gap can be also diagonalized by the color and flavor symmetry as

A% = e, 5,6 AL67 (27)

Without loss of generality, we can take |A,| > |Ag4| > |As|. Let Ay/A, = =
and Ag/A, =y. Then, the vacuum energy becomes

V(4) ~ 0. 43—|A * f(z,y) (28)

where f(xz,y) is a complicated function of —1 < z,y < 1 that has a maximum
at x = 1 =y, f(z,y) < 13.4. Therefore, the vacuum energy has a global
minimum when A, = Ay = Ag, or in terms of the eigenvalues of the gap

A=A, (1,1,1,-1,1,-1,1,-1,-2) . (29)

Among nine quarks, ¥¢, eight of them have (Majorana) mass 4A,, forming
an octet under SU(3), and one of them, a singlet under SU(3), has 24,,.

Since the condensate is related to the off-diagonal component of the
quark propagator at high momentum as, suppressing the color and flavor
indices,

- - : d*l il-(z—y) A(l”)
(P (Tr, )Y (=VF, x)) ~ l}l_{fglg (zﬁ)4e lﬁ _A2(l|\)
. L A(0)
_ 2 _ TN .
B 2}1335 [5 (IL yL)47T2|IH —Z/|\|7m " ’ (30)

3 If the condensate forms, the vacuum energy due to the gluons also depends on the
gap due to the Meisner effect. But, it turns out to be subleading, compared to the
quark vacuum energy; V,(A) ~ M2A%In(A/p) ~ gsp® A? [9].
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where 7, is the anomalous dimension of the condensate and the ellipsis
are less singular terms. Being proportional to the gap, the condensate is
diagonalized in the basis where the gap is diagonalized. Thus, we have shown
that in the HDL approximation the true ground state of QCD with three
massless flavors at high density is the color-flavor locking phase, K, = K
for all v = u,d, s. The condensate takes

(1t e, ) s (<0, 2) ) = = (T, @) (e, ) )
= & eapr K (pr), (31)

breaking the color symmetry, U(1)em, the chiral symmetry, and the baryon
number symmetry. The symmetry breaking pattern of the CFL phase is
therefore

SU(3)e x SUB)L X SU(3)r X U(L)em x U(L)p = SU(3)y x U(1) 5 x Z2, (32)

where SU(3)y is the diagonal subgroup of three SU(3) groups and the gen-
erator of U(1) is a linear combination of the color hypercharge and U(1)em
generator,

Q = cos 0Qem + sin Y3, (33)

where tan 6§ = e/gs.

4. Meson mass

In the CFL phase of color superconductors, there are 8 pseudo Nambu—
Goldstone (NG) bosons and one genuine NG boson. Since the (pseudo) NG
bosons are very light, they constitute the low-lying excitations of the CFL
phase, together with the modified photon, which are relevant in the low
energy phenomena like the cooling process of color superconductors.

The pseudo NG bosons will get mass due to interactions, that break
SU(3) chiral symmetry, such as Dirac mass terms [28-32] electromagnetic
interactions [33, 34|, and instantons [31]. It is important to note that Dirac
mass term and instanton effects are suppressed by powers of 1/p at high
density since they involve anti-quarks, while the electromagnetic interaction
is not. In this section we derive the meson mass due to the Dirac mass term
and the electromagnetic interaction, by matching the vacuum energy shift
in microscopic theory (QCD) and the effective theory of mesons, which was
used in [28,29]. But, we present the calculation, using the effective theory
constructed in [10,13], as was done by Beane et al. [32]. As in [10,13], if
we introduce the charge conjugated field . = CyT with C' = i7%y? and
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decompose the quark field into states (14 ) near the Fermi surface and the
states (1_) deep in the Dirac sea, the Dirac mass term can be rewritten as

mqqqu} = %mq (7Z+¢f + 1Z,1ﬁ+) + %qu (7Z0+¢c7 + 7Z07¢c+) > (34)
which becomes, if one integrates out the antiquarks (¢_ or 9._),

mqem

2

- m2 _ T L
meph = 2—:¢+¢—¢—¢+ + L tpe—ther + -+, (35)

where 1_1_ and ¢_1)._ are the antiquark propagators, propagating into
the antiquark field itself or its charge-conjugated field, respectively. Anti-
quark fields propagate into their charge conjugated fields only if they have
a Majorana mass and thus the meson mass due to Dirac mass is zero if the
antiquark Majorana mass is zero.

At first one may think that the Majorana mass of antiquarks is zero, since
it is energetically not preferred for them to develop a condensate due to the
gap (~ p) to create an antiquark. But, it is shown [33] that the antiquark
fields get a radiative Majorana mass, which is equal to the Cooper-pair gap
of quarks near the Fermi surface, since all the symmetries that forbid the
Majorana mass term for antiquarks are broken once the Cooper gap is open
for the quarks near the Fermi surface.

Having shown that the antiquarks have same Majorana mass as quarks
near the Fermi surface, we may write the inverse propagator of the Nambu-—
Gorkov antiquark field, (1_,4._)T, as

— 1—a-vp (poyo— P+ 2pv0 —Af )
St = —fg— L. 36
e (P) T < -A PoYo + D7 — 20 (36)
1 —a-vp L-V+2u —Af
= —1 9 ’YO< —A ZV—Q/J« ) (37)

where the projector (1 — @ - ¥)/2 is to project out the states in the Dirac
sea, V¥ = (1,%r), V = (1, —9r), and we decompose p* = pov* +I* with v# =
(0,7r) in the second line. Since the states in the Dirac sea can propagate
into their charge conjugated states via the radiatively generated Majorana
mass term, Eq. (35) becomes

mgm
42

T
q

. ; 0.V
mqptp = T;—:Tﬂ <1 . ) Yy + Pl Ay +--, (38)

2

where V#=(1, vr) and the ellipsis denotes the terms higher order in 1/u. Then,
the vacuum energy shift due to the Dirac mass term is ~m2A® In(u?/A?) in
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the leading order, which has to be matched with the vacuum energy in the
meson Lagrangian, m2 F2 with the pion decay constant F' ~ u [28]. There-
fore, one finds the meson mass due to the Dirac mass m2 ~ mgAQ/pﬂ .
In(u?/A?) [28-32]. The electromagnetic interaction also contributes to the
meson mass, since it breaks the SU(3) flavor symmetry. Among 8 pseudo

Nambu-Goldstone bosons, four of them have the unbroken U(1) charge

and receive a correction, [33,34] dm, ~ 12.7sinfA [ln(;ﬂ/AQ)]l/?, where
6 = tan™! (e/gs)*.

Finally, the instanton breaks the chiral symmetry and contributes to the
meson mass. But, its effect at high density is suppressed by p~'# for three
flavors [11] and thus negligible.

5. Bosonization of the CFL dense QCD

In this CFL phase, the particle spectrum can be precisely mapped into
that of the hadronic phase at low density. Observing this map, Schéfer and
Wilczek [35,36] further conjectured that two phases are in fact continuously
connected to each other. The CFL phase at high density is complementary
to the hadronic phase at low density. This conjecture was subsequently
supported [37,38] by showing that quarks in the CFL phase are realized as
Skyrmions, called superqualitons, just like baryons are realized as Skyrmions
in the hadronic phase.

This phase continuity can be explained heuristically in the following
thought experiment. Suppose we inject a hydrogen atom into a CFL color
superconductor as in Fig. 3. In the color superconductor, being bombarded
by energetic (gapped) quarks, the atom will be ionized and the quarks in
the proton will get deconfined to form, for example, a Cooper pair of u
and d, leaving the up quark alone. From this thought experiment we find
two things: The baryon number of up quark is same as that of proton,
since the CFL vacuum provides the missing two thirds. As the hydrogen
atom is neutral in the vacuum, the charge of up quark has to be opposite
to that of electron with respect to whatever unbroken charges in the color
superconductor. Thereby, the gapped quarks in the CFL phase correspond
to baryons in the hadronic phase.

Furthermore, it is possible to bosonize the CFL color superconductor [38],
realizing Skyrme’s original motivation for the Skyrmion [39]. We introduce
a bosonic variable,

— |
ULgi(z) = lim ]

- = .. bj _ ck /-
Yy—x A(pF) 6ab05zjk1/)L( UF’x)¢L (UFay)a (39)

* In [34], the result is a little different from the one obtained in [33].
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Fig.3. The phase continuity.

=]

where 74, (~ ag) is the anomalous dimension of the diquark field. Simi-
larly, we define Ur in terms of right-handed quarks to describe the small
fluctuations of the condensate of right-handed quarks. Since the bosonic
fields, Ur, R, are colored, they will interact with gluons. In fact, the colored
massless excitations will constitute the longitudinal components of gluons
through Higgs mechanism. Among the small fluctuations of condensates, the
colorless excitations correspond to genuine Nambu-Goldstone (NG) bosons,
which can be described by a color singlet combination of Uy, g [29,40]|, given
as

5 = ULy U™, (40)
The NG bosons transform under the SU(3)r, x SU(3)r chiral symmetry as

X gLEglg, with JLR € SU(3)L7R. (41)

Since the chiral symmetry is explicitly broken by the current quark mass,
the instanton effects, and the electromagnetic interaction, the NG bosons
will get mass, which has been calculated by various groups [28-30,33]. Here
we focus on the meson mass due to the current strange quark mass (my),
since it will be dominant for the intermediate density. Then, the meson mass
term is simplified as

L = Ctr(MT D) tr(M*5T) + O(M?), (42)

where M = diag(0,0,m;,) and C ~ A*/u? In(u?/A?). (Note that in general
there will be two more mass terms quadratic in M. But, they all vanish
if we neglect the current mass of up and down quarks and also the small
color-sextet component of the Cooper pair [29].)

Thus, the low-energy effective Lagrangian density for the bosonic fields
in the CFL phase can be written as

1
Leg = ﬁg + ZFQtr(auUEa“UL) + nr,Lwzw + (L > R)
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L + g G T - (43)

where L, is the Lagrangian of Higgsed gluons, Gf}, and the ellipsis denotes
the higher order terms in the derivative expansion, including mixing terms
between U, and Ug. The gluons couple to the bosonic fields through a
minimal coupling with a conserved current, given as

; 1
JA = %FQTr Up ' DA, + S Te TAUL 0, U5 ' 9,0 U 9, U,

FLoR) +-, (44)

where the ellipsis denotes the currents from the higher order derivative terms
in Eq. (43). F is a quantity analogous to the pion decay constant, calculated
to be F' ~ p in the CFL color superconductor [28]. The Wess—Zumino—
Witten (WZW) term [41,42] is described by the action

)
24072

Pyzw = / d*z Lywow = / et P (1,1, 10l50,) (45)

M

where [, = UgauUL and the integration is defined on a five-dimensional
manifold M = V ® S' ® I with the three dimensional space V, the compact-
ified time S', and a unit interval I needed for the local form of WZW term.
The coefficients of the WZW terms in the effective Lagrangian (43) have
been shown to be ny, g = 1 by matching the flavor anomalies [37], which is
later confirmed by an explicit calculation [43].

Now, let us try to describe the CFL color superconductor in terms of the
bosonic variables. We start with the effective Lagrangian (43), which is good
at low energy, without putting in the quark fields. As in the Skyrme model
of baryons, we anticipate the gaped quarks come out as solitons, made of
the bosonic degrees of freedom. That the Skyrme picture can be realized in
the CFL color superconductor is already shown in [37], but there the mass
of the soliton is not properly calculated. Here, by identifying the correct
ground state of the CFL superconductor in the bosonic description, we find
the superqualitons have same quantum numbers as quarks with mass of the
order of gap, showing that they are really the gaped quarks in the CFL
color superconductor. Furthermore, upon quantizing the zero modes of the
soliton, we find that high spin excitations of the soliton have energy of order
of u, way beyond the scale where the effective bosonic description is appli-
cable, which we interpret as the absence of high-spin quarks, in agreement
with the fermionic description. It is interesting to note that, as we will see
below, by calculating the soliton mass in the bosonic description, one finds
the coupling and the chemical potential dependence of the Cooper-pair gap,
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at least numerically, which gives us a complementary way, if not better, of
estimating the gap.

As the baryon number (or the quark number) is conserved, though spon-
taneously broken, the ground state in the bosonic description should have
the same baryon (or quark) number as the ground state in the fermionic
description. Under the U(1)g quark number symmetry, the bosonic fields

transform as _ _ _
UL,R — erU]ﬁRewa = teeUL,R, (46)

where @ is the quark number operator, given in the bosonic description as

F2
Q=i foT%@@%—@werLHRﬂa (47)

neglecting the quark number coming from the WZW term, since the ground
state has no nontrivial topology. The energy in the bosonic description is
5 F? 2l 1P

E:/dmzn¢@m|+Wm‘+@HR)+EVME, (48)
where Ep, is the energy due to meson mass and JF is the energy coming from
the higher derivative terms. Assuming the meson mass energy is positive
and E,, + 0E > 0, which is reasonable because A/F < 1, we can take,
dropping the positive terms due to the spatial derivative,

F2
B> /d%TTr 100 + (L & R)] (= Bo). (49)
Since for any number «
/d% ™ [0, + 0id U2 + (L 5 B)| > 0, (50)

we get a following Schwartz inequality,
Q* <IEq, (51)

where we defined

2

EJ}/ﬁﬂﬂm@+@HRﬁ (52)

Note that the lower bound in Eq. (51) is saturated for Eg = w(@ or

Unr =e“" with w:%. (53)
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The ground state of the color superconductor, which has the lowest energy
for a given quark number @), is nothing but a so-called @Q-matter, or the
interior of a very large Q-ball [44,45]. Since in the fermionic description the
system has the quark number Q = p?/n? [d3z = p3/7? - I/F?, we find,
using F' ~ 0.2094 [28],

L (2Y F =230 1
w=g(5) F~23m (54)
In passing, we note that w is numerically very close to 4nF. The ground
state of the system in the bosonic description is a Q-matter whose energy per
unit quark number is w. Now, let us suppose we consider creating a Q) = 1
state out of the ground state. In the fermionic description, this corresponds
that we excite a gaped quark in the Fermi sea into a free state, which costs
energy at least 2A. In the bosonic description, this amounts to creating a
superqualiton out of the ()-matter, while reducing the quark number of the
@-matter by one. Therefore, since we gain energy w by reducing the quark
number of the )-matter by one, the energy cost to create a gapped quark
from the ground state is
0 =Mg —w, (55)

where Mg is the energy of the superqualiton configuration. Since Mg~ 4nF,
we see that the energy of the superqualiton configuration is almost canceled
out by w to give the gap much smaller than 47 F or . Varing the strange
quark mass, we find numerically that the twice of u- and s-superqualiton
masses are given as

A, =0.079 x 4xF, Ay =0.081 x 47F,  for ™& = 0.1
A, =0.079 x 4wF,  Ag=0.089 x 47F,  for ™K = 0.3 (56)
A, =0.079 x 4xF,  Ag=0.109 x 47F,  for MK = 0.8.

From the relation that 2A = Mg — w, we can estimate numerically the
coupling and the chemical potential dependence of the Cooper gap [38|.
This gives an alternative way of calculating the Cooper gap, if not better.

6. Neutrino interaction in CFL

To discuss the interaction of neutrinos in color superconductors [46],
we first note that gluons mix with weak gauge bosons, since the diquark
condensates in color superconductors carry not only a color but also a weak
charge.

Consider the color-gluon annihilation into the lepton pair, I, as an ex-
ample of weak neutral current interactions:

vVt o+ — Z =1, (57)

-‘77
VYt + VT sVl (58)
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The coupling at the V'V Z vertex in the process mediated by Z, Eq. (57), is
given by

feos?s —— 99 o5 4 eos o (MY (59)
coS coS ~ ——g Cos —
f 3P +g? Y Y\ My
which gives a suppression factor
My \?
N <_MW) (60)

compared to the conventional v production. The suppression factor in the
process mediated by Vg, Eq. (58), due to the vertex Vp Il is given by

. g
~sinf ~ =. 61
0" (61)

The propagator in the low energy limit Q? < M is greater than in Eq. (57),
1.€.,
1 1
-y

(62)

However the amplitude for fusion is enhanced at the strong interaction ver-

tex, VV'Vy, by a factor of f, and we get the factor for the amplitude
g2

= QfM—‘Q/ (63)

1

~ Qfg_ M2 gs =
with the modified electric charge Q. One can now see that the gluon fusion
into the charged flavor [l pair is greater than the weak neutral current by
a factor of ~ (My/My)~2 ~ 105 and hence comparable to photon medi-
ated processes [47]. However this enhancement does not apply to gluon-
mediated v processes because @)y is zero for neutrino. In general, for the
neutral current with neutrinos, the contribution from color-gluon mediated
processes in the broken phase vanishes since the amplitude is proportional
to @ s(neutrino) which is = 0. We arrive at the same conclusion for ¢gg — vD.

The charged current weak interaction in the process mediated by Vj is
also comparable to the ordinary weak interaction strength for the neutrino-
quark interaction in the low-energy limit. Consider the following processes
in matter,

g+l = ¢ +v(v), (64)
q — ¢ +1+vD). (65)
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As in the gluon annihilation processes, there are two amplitudes that can be
decomposed into three parts: quark gauge boson vertex, propagator, gauge
boson-lepton—neutrino vertex,
Wt = Wt S wwt, (66)
@VE = VE S wvE. (67)
In the low energy limit, Eq. (66) gives the ordinary weak amplitude
g2

~ 68

It is easy to see that the contribution of the color gauge-boson-mediated
process, Eq. (67), also gives an amplitude comparable to that of the W+

mediated process,
2 2
g [ My 1 g
~ _ ~ . 69
9 <MW) M@,gs M2, (69)

It should be noted however that the quark decay mediated by Vo in
Eq. (65) cannot take place because of the energy conservation: the quarks
with different colors but with same flavor have the same mass. Therefore the
neutrino production mediated by the color-changing weak current is limited
to the process in Eq. (64)

o +e — qtv, (70)
@wtet = g +7. (71)

To keep the system in a color-singlet state in the cooling process, these pro-
cesses should occur equally to compensate the color change in each process.
It implies that these processes depend on the abundance of positrons in the
system. At finite temperature in the cooling period, it is expected that there
will be a substantial amount of positrons as well as electrons as long as the
temperature is not far below ~ MeV. Of course the additional enhancement
of the neutrino production due to the CFL phase depends on the abundance
of positrons in the system which depends mainly on the temperature. If
confined colored gluons are present in the matter in the CFL phase, the
same amplitude can be obtained in Eq. (67) when ¢¢' is replaced with VV'.

The result obtained above can be summarized as predicting an enhance-
ment of the effective four-point coupling constant for the neutrino production
process in the low energy limit. The enhancement due to the neutrino-color
interaction is suppressed by factors of e 2/T or e Mv/T since it depends on
the unpaired excitations above gap which can participate into neutrino-color
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interaction. Hence for the cooling process at low temperatures as ~ 10°K
it is not so effective. However during the early stage of proto-neutron star
the temperature is expected to be high enough ~ 20-50 MeV [48] to see the
effect of the enhancement due to color excitations.

Let us now consider the weak decay of light quasi-quarks, described by
the four-Fermi interaction:

L¥ermi = Z?ﬁL up, 2)y" P (0F, 2) v (2) Y (z) (72)

= ZwL e, @)L (T, ), () o (x) (73)

where Gp = 1.166 x 107° GeV 2 is the Fermi constant and 1) denotes the
quasi-quark near the Fermi surface, projected from the quark field ¥ as
in [10],
14+ -Up . =
P(i,0) = — S T () (74)
Since the four-Fermi interaction of quarks with opposite momenta are
marginally relevant and gets substantially enhanced at low energy, it may
have significant corrections to the couplings to quarks of those weakly inter-
acting particles [10]:

5Lry = %u{@v, ), (i, 2)i () f 1 (2)

><%&ims/[1/_%(1719,y)vows(ﬁﬁayﬁ/_}v(—ﬁw Y)Y u(=55, )]

)

— TR e, e )i )5 ). (75)

where Ur and ¥ are summed over and g3 is the value of the marginal four-
quark coupling at the screening mass scale M. In terms of the renormaliza-
tion group (RG) equation at a scale F

deFt(t) _ % gzg) Gr(t), (76)

where ¢ = In E. The scale dependence of the marginal four-quark coupling
in the color anti-triplet channel is calculated in [10,13]. At £ <

g3(t) = ——as(t). (77)
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Since ay(t) = 2w /(11t), we get

167

Gr(B) ~ Gr(n) (£) ™ - (78)
Since the RG evolution stops at scales lower than the gap, the low energy
effective Fermi coupling in dense matter is therefore

167

aelf — oy (%) w3 (79)

We emphasize that this enhancement applies equally to the 8 decay of quarks
and other neutrino production processes described in the previous section.

At asymptotic density and low temperature (T # 0), the relevant excita-
tions are quasi-quarks that are not Cooper-paired, and 17 Nambu—Goldstone
bosons. All other massive particles, Higgsed gluons and other massive exci-
tations are expected to be out of thermal equilibrium and decoupled. Thus
the main cooling processes must be the emission of weakly interacting light
particles like neutrinos or other (weakly interacting) exotic light particles
(e.g. axions) from the quasi-quarks and Nambu—Goldstone bosons in the
thermal bath.

For the neutrino emissivity from quasi quarks, the so-called Urca process
is relevant. The neutrino emissivity by the direct Urca process in quark
matter, which is possible for most cases in quark matter, was calculated by
Iwamoto [49]. For the CFL superconductor, we expect the calculation goes
in parallel and the neutrino emissivity is

Edirect X Ofspyvel/iaTﬁa (80)

where p is the density, T is the temperature of the quark matter, and Y, is the
ratio between the electron and baryon density. On the other hand, the neu-
trino emissivity by the modified Urca process, which is the dominant Erocess
in the standard cooling of neutron stars [50], is suppressed by (A/u)", since
the pion coupling to quarks is given by gggr ~ A/ [29]. Thus, the neutrino
emissivity by the modified Urca process in the CFL quark matter is greatly
suppressed in the CFL quark matter, compared to normal quark matter.
Furthermore, since the pion-pion interaction in the CFL quark matter are
also suppressed by A/u [28,30], we note that all the low energy excitations
in the CFL quark matter are extremely weakly coupled. But, since most
excitations in the CFL quark matter are gapped and frozen out, the CFL
quark matter has a quite small heat capacity and cools down very rapidly
at temperatures lower than the gap [51].
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Together with the general enhancement of the effective four-point cou-
pling constant in RG analysis, the enhancement of the neutrino production
implies that the cooling process speeds up as the CFL phase sets in dense
hadronic matter near the critical temperature. But, at temperature much
below the critical temperature, the interaction of quasi-quarks and pions
and kaons is extremely weak, suppressed by A/u, and the CFL quark mat-
ter cools down extremely rapidly.

For a realistic calculation of the cooling rate of compact stars, we need to
also consider the neutrino propagation in the CFL matter before the neutri-
nos come out of the system. A recent study [52] suggests that the presence of
the CFL phase can accelerate the cooling process because neutrino interac-
tions with matter are reduced in the presence of a superconducting gap A.
However this result is subject to modification by the effect of additional
interactions — not taken into account in this work — mediated by the col-
ored gluons on the quark polarization. It would be interesting to see how
the enhancement of the neutrino production correlates with the neutrino-
medium interaction. This is one of the physically relevant questions on how
the enhanced neutrino interaction could affect neutron-star(neutron-proto
star) cooling following supernova explosion. This issue is currently under
investigation.

7. Conclusion

I have discussed some aspects of the exciting recent developments in
color superconductivity in high density quark matter. I have calculated the
Cooper pair gap and the critical points at high density where magnetic glu-
ons are not screened. The ground state of high density QCD with three light
flavors is shown to be a color-flavor locking state, which can be mapped into
the low-density hadronic phase. The meson mass at the CFL superconduc-
tor is also calculated. The CFL color superconductor is bosonized, where
the Fermi sea is identified as a Q-matter and the gapped quarks as topolog-
ical excitations, called superqualitons, of mesons. Finally, as an application
of color supercoductivity, I have discussed the neutrino interactions in the
CFL color superconductor.
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