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� VACUUM: A MATRIX MODELRomuald A. Janika;b, Ma
iej A. Nowakb;
, Gábor Pappdand Ismail Zahedea Servi
e de Physique Théorique, CEA Sa
lay, F-91191 Gif-Sur-Yvette, Fran
eb Marian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland
 GSI, Plan
kstr. 1, D-64291 Darmstadt, GermanydCNR Department of Physi
s, KSU, Kent, Ohio 44242, USAandInstitute for Theoreti
al Physi
s, Eötvös University, Budapest, HungaryeDepartment of Physi
s and Astronomy, SUNYStony Brook, New York 11794, USA(Re
eived January 26, 2001)We model the e�e
ts of a large number of zero modes for Nf spe
iesof quarks at �nite va
uum angle �, using a matrix model with Gaussianweights 
onstrained by the topologi
al sus
eptibility and 
ompressibility.The quen
hed free energy exhibits a 
usp at � < � that is sensitive to thea

ura
y of the numeri
al analysis and the maximum density of windingmodes. Our results bear mu
h in 
ommon with re
ent latti
e simulationsby S
hierholz and others. The unquen
hed free energy exhibits similarsensitivities, but for small quark masses or a large density of zero modesthe results are in agreement with those derived using anomalous Wardidentities and e�e
tive Lagrangians.PACS numbers: 11.15.Pg, 11.30.Er, 11.15.Ha1. Introdu
tionQCD with a �nite va
uum angle � is subtle. Canoni
al quantization [1,2℄and variational 
al
ulations [3℄ suggest that the va
uum state depends on �,while 
ovariant quantization seems to indi
ate otherwise [2℄. The issue ofthe � angle in QCD and the U(1) problem are intertwined [2,4,5℄. At �nite�, QCD breaks CP . Due to the U(1) anomaly, the � term may be tradedfrom the gauge �elds to the quark mass matrix. Bounds from the neutronele
tri
�dipole moment yield � � 10�9 [6℄.In QCD the dependen
e of the va
uum partition fun
tion on the � an-gle involves an understanding of the va
uum physi
s whi
h is essentially(1297)



1298 R.A. Janik et al.nonperturbative. First prin
iple 
al
ulations are limited and di�
ult. Thereason is that most latti
e QCD simulations rely on important samplingsby Monte Carlo te
hniques whi
h require positivity of the a
tion 
on�gura-tion by 
on�guration. At �nite � the a
tion is 
omplex in Eu
lidean spa
e.Latti
e simulations using CP n models as well as Yang�Mills theories [7�10℄have been re
ently 
arried out, with somehow opposite 
on
lusions. A num-ber of e�e
tive models have been used to gain insights to this importantproblem [11�13℄, in
luding re
ent 
onje
tures [14℄. Unfortunately the 
on-ventional lore of power 
ounting, su
h as 
hiral perturbation theory, be
omessubtle at �nite � [2,15℄, although some exa
t 
onstraints 
an still be inferredfrom Ward identities [2, 4, 5℄.In this paper, we will assume that the va
uum supports a � angle andpro
eed to analyze some related issues using a matrix model. From the onset,we a
knowledge that the assumptions we will primarily make on the matrixmodel will 
ondition 
ertain aspe
ts of our results. Although it is gratifyingthat some of these results agree with QCD results when known and under
ertain provisions, our real interest is to parallel a latti
e 
omputation ofsimilar issues. The main thrust of our investigation is to try to �nd outthe 
onditions under whi
h the numeri
al analysis of this problem (albeit ina model) 
ompares to analyti
al or quasi-analyti
al solutions. The lessons wewill extra
t will help us understand how to address and analyze numeri
allythis undoubtedly di�
ult problem. Conversely, some of the lessons we willextra
t will help us rea
h new physi
s whi
h may be relevant for QCD.In Se
tions 2 and 3 we introdu
e the model, and dis
uss the quen
hed
ase. The free energy is found to depend sensitively on the maximum densityof winding modes1 n and the a

ura
y of the numeri
al 
al
ulations. Ourobservations are similar (although not identi
al) to those rea
hed re
entlyby S
hierholz and others [7, 9, 10℄ using latti
e simulations. In Se
tion 4,we dis
uss the unquen
hed 
ase and show that under general 
onditions thesaddle-point results agree with the numeri
al 
al
ulations. Our 
on
lusionsare in Se
tion 5. Some te
hni
al details are given in the Appendi
es.2. Matrix modelConsider the partition fun
tion des
ribed byZ(�;Nf ) = *NfYj=1det� imjei�=Nf WW y imje�i�=Nf �+ : (1)1 In the unquen
hed 
ase the number of winding modes is the number of zero modes.



� Va
uum: a Matrix Model 1299where the averaging is 
arried using the weightXn� Z dWdW ye�(1=2)n TrW yW e��2=2��V e��2=2��V : (2)Here W is a 
omplex hermitian asymmetri
 n+ � n� matrix, n = n+ + n�,and � � � = 2n� � hni. The mean number of zero modes hni is either�xed from the outside or evaluated using the Gaussian measure (2). Forsimpli
ity in this paper we used the quen
hed measure without the fermiondeterminant to �x hni. Throughout, the value of the quark 
ondensate� = 1 in the 
hiral limit. It is readily reinstated by dimensional inspe
tion.For a re
ent review on matrix models in QCD we refer to [16℄ (andreferen
es therein). In short, (1) with Gaussian weights is borrowed fromthe e�e
tive instanton va
uum analysis [17℄ where n+ 
ounts the numberof right-handed zero modes, and n� the number of left-handed zero modes(restri
ted to zero dimension). The number of exa
t topologi
al zero modesis 
ommensurate with the net winding number 
arried by the instantonsand antiinstantons. By analogy with [17℄, �� and �� will refer to the un-quen
hed topologi
al sus
eptibility and parti
le 
ompressibility, respe
tively.From [17℄ we have �2� = 4n�=b with b = 11N
=3 and n� = hni=V the meandensity of zero modes. If the 
ompressibility �� is assumed small in unitsof � = 1, then typi
ally n � hni. We note that for the 
anoni
al 
hoi
en� = 1, �� = 0:6 for N
 = 3. Finally, through a 
hiral rotation the � anglemay be removed from the determinant to generate an extra phase ei�� in themeasure (see also (11)). In this form, the 2� periodi
ity in � is manifest. Were
all that in the original instanton model, CP is expli
itly upset at �nite �,with the ex
eption of � = �� (mod 2�). (Under CP � = � goes to �� whi
his the same as � be
ause of the 2� periodi
ity. Multiple degenera
y of states
an however take pla
e [5, 12, 13℄.)3. Nf = 0In this se
tion we will only analyze the quen
hed partition fun
tion withNf = 0, thereby probing the nature of the measure (2). As we will show, thisis not a trivial exer
ise and the out
ome bears mu
h in 
ommon with 
urrentquen
hed latti
e simulations. First, we dis
uss the 
ase where hni =1 withno restri
tion on the value of n, and hen
e no restri
tion on the value of �.Se
ond, we dis
uss the 
ase where hni is large but �nite, so that j�j � nwith typi
ally n � hni for a peaked distribution in n.



1300 R.A. Janik et al.3.1. In�nite sumWhen the sum is unrestri
ted and in�nite, we have for the quen
hedpartition fun
tion (up to an irrelevant normalization)ZQ(�) = Z(�; 0) = 1X�=�1 ei��e��2=2V �� : (3)Using Poisson resummation formula we haveZQ(�) = +1Xk=�1 e�(1=2)V ��(��2�k)2 = �3��2 ; e��� ; (4)where the last equality involves the third ellipti
 �-fun
tion with � =1=(2V ��). The result is manifestly 2� periodi
. The va
uum free energy,FQ(�) = �lnZQ(�)=V as V !1 is simplyFQ(�) = min12�� (� +mod2�)2 (5)in agreement with the saddle-point approximation to (3). This simple resultis the same as the one obtained using large N
 arguments [12℄, and re
entduality arguments [14℄. We note that (5) is di�erent from the result 
os(�)expe
ted in a free instanton gas. Indeed, in the latter the measure in (2)is Poissonian in n� as opposed to Gaussian in our 
ase. By assumption,the measure (2) only enfor
es properly the varian
es in (n+ � n�), i.e. thetopologi
al sus
eptibility and 
ompressibility of the QCD va
uum. The re-sult (5) is a dire
t 
onsequen
e of this assumption, whi
h be
omes exa
tin the large N
 limit. Indeed, the higher sus
eptibilities are suppressed by1=N
. For �nite N
 higher sus
eptibilities may be enfor
ed by non-Gaussianweights [18, 19℄, provided that the QCD beta fun
tion is restri
ted to itsone-loop form. This alternative goes beyond the s
ope of this work.We observe that the 
usp at � = � (mod 2�) sets in for V = 1. For�nite V the sums 
onverge uniformly, so thatF 0Q(�) = � 2V ZQ(�) 1X�=1 � sin (��)e��2=2V �� (6)whi
h is always zero at � = �. As V !1, the inter
hange of the derivativewith the sum is not valid, hen
e the 
usps. When translated to the quen
hed



� Va
uum: a Matrix Model 1301instanton 
al
ulations, these 
usps indi
ate a new phase with spontaneousCP violation. A similar observation was made in the 
ontext of 1+1 
ompa
tele
tromagnetism using the 
hara
ter expansion [20℄. Finally, we note that(4) 
an also be rewritten asZQ(�) = ZE(�) + ZO(�)= 12r��  +1Xk=�1 e�(1=4� )(��k�)2 + +1Xk=�1(�1)ke�(1=4� )(��k�)2!= �3 ��; e�4��+ �2 ��; e�4�� ; (7)where ZE is � periodi
 and ZO is � antiperiodi
. The appearan
e of (�1)k inthe se
ond sum in (7) is important for restoring the 2� periodi
ity in the fullsum. In the thermodynami
al limit, the even and odd sums are dominatedby single Gaussians with FE = �� (� � k�)2=2 for j�=� � kj � 1=2, andFO = FE + ik�=V . 3.2. Finite sumIn the model we are 
onsidering the sum over � is restri
ted to j�j < N ,with N = max n. We will denote by n = N=V the maximum densityof winding modes. While in general n 6= n�, for a peaked distributionin n (small 
ompressibility ��) we expe
t n � n�. This will be assumedthroughout unless indi
ated otherwise. Hen
eZQ(�) = N�1X�=�(N�1) ei��e��2=2V �� : (8)Approximating the sum in (8) by an integral and evaluating it by saddlepoint we obtain ZQ � e�V ���2=2.In Fig. 1 we show the numeri
ally generated result versus the saddle pointapproximation for the full free energy (2�-periodi
) and di�erent values of n.The normalization was 
hosen so that FQ(0) = 0. For N = 250 and �� = 1,the double pre
ision (16 digit) numeri
s (
ir
les) breaks away from the saddlepoint approximation (solid line) at �=� � 0:2 for both n = 1 and n = 4,while the high-pre
ision [21℄ (64 digits) 
al
ulations (dashed line) break awayat �=� � 0:3 at n = 1 but agree with the saddle point result at n = 4.



1302 R.A. Janik et al.The leveling for small values of n persists even at in�nite a

ura
y, andin our 
ase is 
aused by the �nite range of the summation over � in (8).Indeed, using the Euler�Ma
Laurin summation formula, we haveN�1X�=0 f(�)� NZ0 f(�)d� = �12[f(0) + f(N)℄ + 112 [f 0(N)� f 0(0)℄� 1720 [f 000(N)� f 000(0)℄ + : : : ; (9)where : : : stand for odd derivatives of f(N) = 2 
os(N�)e�N2=2V �� . Thegeneri
 behavior of the 
orre
tion terms is a non-exponential prefa
tor timese�N2=2��V with no dependen
e on � (� enters only in the prefa
tor whi
hdrops when taking the logarithm and dividing out by V .). This should be
ompared to the leading order result, e�V ���2=2, hen
e, a breakdown of thesaddle-point approximation for N = V is expe
ted at ���2 � 1=��, thatis �=� � 1=��� � 0:3, in agreement with the high-pre
ision 
al
ulations ofFig. 1.
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Fig. 1. Quen
hed free energy �FQ(�). See text.If we were to in
rease the density of winding modes to n � ���, thenfor say n = 4, the saddle-point result is re
overed as indi
ated by the stars(Fig. 1). The breaking point noti
ed above, now lies outside the periodof the free energy (at � � n=��). Again, the pre
ision in the numeri
al
al
ulation is important. For n = 4 the pre
ision is upgraded from 100digits for �=� < 0:3 to 150 digits for �=� > 0:3. We have observed that forlow pre
ision measurements (16 digits), the numeri
al 
al
ulations deviatefrom the saddle-point approximation for small values of �=� � 0:2 (
ir
les)even for n = 4.



� Va
uum: a Matrix Model 13033.3. Comparison to latti
e simulationsThe observations of the pre
eding paragraph may be summarized asfollows: the leveling of the quen
hed free energy of the matrix model as afun
tion of � is sensitive to the numeri
al a

ura
y of the 
al
ulation. Theleveling stabilizes at large numeri
al a

ura
y, and is found to depend on themaximum density of winding modes n (typi
ally n � n�) and its relativemagnitude to the topologi
al sus
eptibility. For the measure (2), the levelingo

urs at �� � n=�� in agreement with analyti
al estimates.In an interesting series of investigations, S
hierholz [7℄ analyzed numer-i
ally the e�e
ts of a �nite � angle using a CP 3 model in two-dimensions,and also Yang-Mills theory in four-dimensions. The CP 3 simulations shownin Fig. 2 (left) indi
ate a leveling of the free-energy for � � �=2, 
au-tiously interpreted as a possible eviden
e for a �rst order transition to aCP -symmetri
 state [7℄. We note the striking similarity of this �gure withFig. 1.
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Fig. 2. Unquen
hed free energy obtained from a CPn model (left) [7℄ and (right) [9℄.These �ndings were re
ently reexamined by Plefka and Samuel [9℄ who
on
luded that the apparent �rst order transition was a possible artifa
t ofthe a

ura
y of the numeri
al simulation for �xed latti
e size, as shown inFig. 2 (right). Our �ndings in the matrix model 
on�rm this observation.The larger the volume V , the more pre
ision is needed (exponential pre
isionfor in�nite V ), due to large 
an
ellations in the partition fun
tion 
ausedby the os
illating phase ei��. However, we have also found that the levelingdepends quantitativaly on the maximum density of winding modes n andpersists whatever the pre
ision for n � 1. In this sense, it would be veryuseful to understand the dependen
e of the results in [7, 9℄ on n, with inparti
ular the ones shown in Fig. 2.



1304 R.A. Janik et al.4. Nf > 0To assess the e�e
ts of light quarks on the partition fun
tion of the matrixmodel, we will 
onsider in this se
tion the general 
ase withNf > 0. We will evaluate the free energy of the matrix model in the saddle-point approximation after bozonization, and 
ompare the out
ome to dire
tnumeri
al 
al
ulations using large ensemble of asymmetri
 matri
es or quasi-analyti
al methods. 4.1. BosonizationIn (1) the fermion determinant 
an be rewritten as an integral overNfn-
omponent Grassmanians  = ( R;  L) with dimensions (n+; n�),that is detF = Z d d ye yRmei�=Nf  R+ yRiW L+L$R : (10)The � angle 
an then be removed from the a
tion by a U(1) transformation ! ei
5�=2NF q with 
5 = diag(1n+ ;�1n�). The Ja
obian of this transfor-mation is just detF ei
5�=Nf = ei�(n+�n�) (11)whi
h is the well known trade-o� through the U(1) anomaly. As a result,we have the following Ward identityhn+ � n�i� = mDqyi
5qE� : (12)Assuming that the range of resummation over � = n+ � n� is in�nite, thatthe distribution in n = n++n� is peaked (n! hni) and trading the �-sumby an integral in (1), we have,Z(�;Nf ) = Z dPdP y exp(hni"�12Tr jP j2 + 12Tr log jz + P j2+ ��2n�  log�det z + Pz + P y�1=2!2#); (13)where z = diagmjei�=Nf . The logarithm in (13) is multivalued and its 2�determination will be assumed. In analogy to the quen
hed 
ase, the approx-imation of the sum by an integral should be valid for n�n�>��top, wherewe substituted the quen
hed topologi
al sus
eptibiliy ��, by the unquen
hedone �top � ��. For small masses �top gets s
reened (see Appendix C).



� Va
uum: a Matrix Model 1305To keep a tab on the validity of trading the �-sum by an integral, weobserve that for Nf = 1 and z = mei�, an exa
t form 
an be rea
hed forZ(�; 1) = D(z + P )n+(�z + P y)n�E (14)followed by the substitution P !W in the measure (2). Here P is a 
omplexvariable. Be
ause of (11), the same partition fun
tion 
an be written asZ(�; 1) = 1X�=�1 ei��e��2=2V ��Z� ; (15)where Z� is the partition fun
tion for �xed asymmetry �. Again for a peakeddistribution N � hni, so thatZ� = � 2N�N��+22 �m�e�Nm2=2� �N+�+22 �� (�+ 1) 1F1�N + �+ 22 ; �+ 1; Nm22 � ;(16)where 1F1 is Kummer's (
on�uent hypergeometri
) fun
tion. For even �,it redu
es to an asso
iated Laguerre polynomial in Nm2. We note thatfor N ! 1 with Nm and � �xed, Z� � I�(Nm) whi
h is the expe
tedgenerating fun
tion for the mi
ros
opi
 sum rules [22℄.4.2. Saddle-point approximationWithout loss of generality, we 
an set P = diag pjei(�=Nf��j), so thatthe unsubtra
ted free energy asso
iated to (13) readsF = n�2 NfXj=1 hp2j � log (p2j + 2mjpj 
os�j +m2j)i+��2 0B�� + arg0�NfYj=1�mj + pje�i�jmj + pjei�j �1A1=2 +mod2�1CA2 : (17)We note that for Nf = 0 (17) redu
es to (5). For small massesmj � �� � pj � 1and (17) simpli�es to
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F = n�2 NfXj=1�p2j � log p2j � 2mjpj 
os�j�+12��0�0�� � NfXj=1 �j +mod2�1A+ NfXj=1 mjpj sin�j1A2 (18)to order O(m2). The saddle point in the p's de
ouples and gives pj =1�mj=2 
os � +O(m2). To the same order, the saddle point in the �'s is� = NfXj=1 �j +O(m) and m1sin�1 = ::: = mNf sin�Nf : (19)These equations were derived using large N
 arguments [12,13℄ and anoma-lous Ward-identities [5℄.For Nf = 1, we have� = � +m�n��� � 1� sin � +O(m2) (20)for whi
h the subtra
ted free energy is �F = n�m(1� 
os �).For Nf = 2, we havesin�1;2 = � m2;1sin �pm21 +m22 + 2m1m2
os � (21)and the subtra
ted free energy now reads1n��F (�) = jm1 +m2j �qm21 +m22 + 2m1m2 
os � : (22)For m1 = m2 a 
usp develops at � = �, sin
e �F (�) = n�jmj(1�j 
os �=2j).In this 
ase both numerator and denominator vanish in (21), hen
e anyvalue of �1 and �2 is allowed provided that �1+�2 = �. A similar behaviorwas noted by many [5, 12, 13, 23, 24℄, following the spontaneous breaking ofstrong CP .For Nf = 3, the expli
it solutions to (19) are in general involved, therebymaking an analyti
al form for the free energy involved. At � = �, however,the analysis simpli�es. Using (19) we obtain a trivial solution with one ofthe �'s being � and the others zero, and a non-trivial one,
os�3 = m23m21 +m23m22 �m21m222m23m1m2 (23)



� Va
uum: a Matrix Model 1307whi
h is doubly degenerate form1m2 > m3jm1 �m2j : (24)The trivial solution 
orresponds to no 
usp at � = �, while the non-trivialone yields a 
usp at � = � be
ause of the double degenera
y. Again similarobservations were made using e�e
tive Lagrangians [12, 23, 24℄ and anoma-lous Ward identities [5℄, where (24) is known as Dashen's 
ondition [25℄. Forsu�
ient �avor breaking (24) is not ful�lled and strong CP is not sponta-neously broken. This is the 
ase in nature where m3 � m1;m2.4.3. Numeri
al analysis for Nf = 1In Fig. 3 (left) we 
ompare the �xed size results for the free energy withhni = 14 (
ir
le) and hni = 100 (plus) over one period2, using single pre
ision(16 digits) numeri
al 
al
ulations for m = 0:5; �� = 1. The saddle pointsolution is indi
ated by the solid line. In
reasing the size of the matri
esworsen the agreement with the saddle-point result (solid line). The reasonis that for �=2 the integrand in the sum develops alternating signs withlarge numeri
al 
an
ellations. The breakdown of the numeri
al 
al
ulationtakes pla
e at �� � �(ln ")=(hni��) with " the numeri
al pre
ision. Theseobservations are new as they pertain to the unquen
hed free energy.
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Fig. 3. Unquen
hed free energy for �xed size matri
es (left) and varying size ma-tri
es (right) at intermediate mass.In Fig. 3 (right) we show the same results after averaging over the sizeof the matri
es (with ��=1), restoring the 2� periodi
ity. Changing theGaussian measure in n to a uniform one with jn � hnij � 6 does not makea noti
eable 
hange on the �gure. We 
ompare the low (16 digits, 
ir-
les) and high (64 digits, boxes) pre
ision 
al
ulations for an averaged sizehni = 14 using an ensemble of 500000 matri
es. Large size samplings at2 Sin
e hni is �xed even, the periodi
ity is � and not 2� as noted in Se
tion 3.1.



1308 R.A. Janik et al.large � requires exponentially larger pre
ision. Mu
h like the quen
hed 
asewe observe the same dependen
e on n � n�, 
ausing a departure from thesaddle point results at � � 0:6� for n = 1.Sin
e the n > 1 region is una

essible by dire
t use of random matri
es,we will use the partition fun
tion for �xed asymmetry Z� in (15) in thesaddle point approximation and perform the �nal sum in (15) numeri
ally.We have 
he
ked that the saddle-point result agrees with the result obtainedby averaging over large ensembles of matri
es with �xed � for n = 1. Werefer to this analysis as quasi-analyti
al and the results are shown in Fig. 3(right) for n = 1 (dotted line) and n = 4 (dashed line).For small masses and � < �=2 the free energy in the saddle-point ap-proximation is F (�) � n�m(1 � 
os �) with no 
usp whatever �. For largem a 
usp at � = � develops, following the de
oupling of the �avor (roughlym � Nf��). In Fig. 3 the o

uren
e of a 
usp for m = 0:5 and n = 4 isan artifa
t of the quasi-analyti
al analysis where only the saddle-point in �is retained (see above). Indeed, the numeri
al results from this pro
edureare 
ompared with the standard saddle-point approximation (see previousse
tion) in Fig. 4 for m = 0:001 (small mass) and n� = n = 1 (hni = N).
0

0.005

0 π/4 π/2 3π/2 π

−∆
F(

θ)

m=0.001, χ∗ =1

N=104

N=200

Fig. 4. Unquen
hed free energy �F (�) for Nf = 1. See text.Wemay now ask if a levelling in the free energy o

urs for small massesm.As we wrote in Se
tion 4.1 this takes pla
e for n < ��top. However, dueto the s
reening of the topologi
al 
harge by the fermion determinant forsmall masses we expe
t �top � m (see Appendix C) so that the levelling isruled out for reasonable values of n. We note that the ma
ros
opi
 limit isrea
hed only for Nm large. For N = 200 (Nm < 1) many modes are stillmissing in the sum (15) (dotted line). For N = 104 (Nm� 1) and � < �=2,the quasi-analyti
al pro
edure (solid) and the saddle-point approximation(dashed) are in agreement.Finally, we now ask whether the standard saddle point method fails for� > �=2, leading possibly to a 
usp at � � �, 
ontrary to expe
tations. ForNf = 1 we 
an 
al
ulate the �xed asymmetry partition fun
tion exa
tly (16)
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uum: a Matrix Model 1309and use it for a 
omparison with the quasi-analyti
al pro
edure (see above).The out
ome 
on�rms the standard saddle point result with no 
usp at� = �, and rules out the quasi-analyti
al result for large values of �. We 
on-
lude that the saddle-point approximation 
arried prior to the �-resumma-tion is only valid for � small (the 1=N terms at large � are important), whilethe one 
arried after the �-resummation is valid whatever �.We have numeri
ally 
he
ked, that most of the present observations 
arryto Nf > 1. In parti
ular, a 
usp may form in the latter for su�
iently degen-erate quark masses, in agreement with the saddle point analysis dis
ussedabove. 5. Con
lusionsWe have analyzed the e�e
ts of a �nite va
uum angle � on the va
uumpartition fun
tion des
ribed by a matrix model, both in the quen
hed andunquen
hed approximation.The numeri
al lessons are:1. In the quen
hed 
ase, we have found that the free energy exhibits a
usp at �nite �
 that is sensitive to the pre
ision of the numeri
alanalysis. For � > �
 we observe that the free energy does not dependon �. On this point, we are in agreement with the latti
e analysis [9℄.However, we have further noti
ed that the results are also sensitive tothe maximum density of winding modes n (for a small 
ompressibilityor a peaked distribution in n, n is similar to n�, the mean windingdensity). In parti
ular the �attening out of the free energy o

ursat � = �
 and remains stable on
e high enough numeri
al pre
isionis rea
hed. It is only for large enough n > ��� that the position ofthe 
usp is moved to � = � for high enough pre
ision (and only thenthe saddle point result (5) is re
overed). This observation may beof relevan
e to the latti
e results [7, 9℄. In this 
ontext, it would beinteresting to 
ompare the latti
e distributions for n� in [7, 9℄ to theGaussian ones we have used in our work.2. In the unquen
hed 
ase, a similar dependen
e on n is found, wheren is also interpreted as the maximum density of zero modes. Forsu�
iently large n and large masses the quen
hed results are re
overed.Ea
h mass de
ouples at m � ��, although for large and degeneratemasses m � Nf�� (in units where the quark 
ondensate is one). ForNf = 1 and small masses withmV > 1, the s
reening of the topologi
al
harge takes pla
e, and the saddle point solution holds without any
usp. For Nf = 2; 3, the numeri
al results are found to agree witha saddle-point analysis, and results from anomalous Ward identitiesand e�e
tive Lagrangians. A 
usp at � = � o

urs for su�
ientlydegenerate quark masses.



1310 R.A. Janik et al.The physi
s lesson is:It appears that the density n� of winding modes for Yang-Mills theory,or the density n of zero modes for QCD play a fundamental role in the � va
-uum. Indeed, in the matrix model the va
uum energy be
omes independentof � > �
 for su�
iently low densities for both the quen
hed and unquen
hed
al
ulations, in disagreement with the saddle-point results. The existen
eof a �nite �
 in QCD depends 
ru
ially on how low are these densities, aquestion that 
an only be settled dynami
ally. If �
 happens to be zero inQCD, then QCD solves its strong CP problem dynami
ally.We would like to thank G. Shierholtz and A. Zhitnitsky for dis
ussions,R. Crewther for 
omments, and W. Bietenholz for bringing Ref. [8℄ to ourattention. I.Z. thanks U. Wiese for an early dis
ussion. This work wassupported in part by the US DOE grants DE-FG-88ER40388 and DE-FG02-86ER40251, by the Polish State Committee for S
ienti�
 Resear
h (KBN)grant 2P03B00814 and by the Hungarian grant OTKA-F026622.Appendix AAlternative saddle-point with Nf = 1An alternative saddle-point analysis 
an be dire
tly performed for �xed� using representation (15). For that, we de�ne� = �iny : (A.1)The solution for the saddle point equations givesPsp = �m2 �pm4 + 4(m2 � y2)2�z + iy�z ;P ysp = �m2 �pm4 + 4(m2 � y2)2z � iyz : (A.2)For a peaked distribution in n we expe
t n � hni. The Psp's are related tothe 
ondensate by�ihqyqi = 1V �m logZ = n�2 �P yspei� + Pspe�i�� : (A.3)The value of y is �xed by requiring the vanishing of the term proportionalto �. Hen
e, the 
onsisten
y 
ondition readslog D + iyD � iy + 2i� + 2iyn��� = 0 or ar
tan yD + � + yn��� = 0 ; (A.4)
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uum: a Matrix Model 1311where D = (m2 �pm4 + 4(m2 � y2))=2, with y satisfyinghn+ � n�i = n�V m2 (P yspei� � Pspe�i�) = n� y : (A.5)In the 
onsisten
y 
ondition, the prin
ipal bran
h of the logarithm is re-tained, making the saddle-point result manifestly 2� periodi
 in �. We notethat the present derivation is equivalent to performing the saddle-point 
al-
ulation for y without substituting the form (A.2) for Psp's. The asso
iatedfree energy isF = � 1V logZ(�) = �n�2 �log �D2+y2m2 �� 1+y2D2+y2m2�n��� y2� : (A.6)The subtra
ted free energy is V�F (�) = �ln Z(�)=Z(0).Appendix BTopologi
al densityThe topologi
al density hn+ � n�i measures the di�eren
e between thenumber of zero modes with plus and minus 
harges, in the volume V �xedby the width of the quen
hed topologi
al sus
eptibility ��. This is also theamount of U(1) 
harge in the va
uum state thanks to (12). At the saddlepoint (Nf = 1)hn+ � n�i = 1V i�� lnZ(�) = n�V m2 �P yspei� � Pspe�i�� = n� y : (B.1)We see that y measures dire
tly the topologi
al density at the saddle point.For a large mass my = � �1D + n��� � � 1n�����1� ��n�m2� (B.2)while for a small mass m�y = �m tan �j 
os �j �m2�� � 2n�4�� sin 2� +O(m3) : (B.3)The � solutions 
orrespond to the transformation � $ ��, whereas theabsolute value 
orresponds to the 
hange of the bran
h in the solution of the
onsisten
y equation.
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al sus
eptibilityThe topologi
al sus
eptibility measures the varian
e of (n+�n�) in theva
uum state at �nite �. It is simply �top = ��y=�� n�. In the large masslimit �top = ���1� ��n�m2�+O(m�3) ; (C.1)giving �top = �� in the quen
hed 
ase (m = 1). In the small mass limitand j�j < �=2,�top = n�m j 
os �j+ n�m2�� � 2n�2�� 
os 2� +O(m3) : (C.2)For � > �=2 we have 
(n+ � n�)2� < 0, whi
h is possible sin
e the measureis not semi-de�nite.The quark 
ondensate for large masses is�ihqyqi = n�m �1� �2�n2�m2 �2� (C.3)and for small masses is�ihqyqi = n� 
os� � n�m�12 + �� � 2n�2�� sin2 ��+O(m2) : (C.4)The anomalous U(1) Ward identity is given by�top = �imhqyqi �m2 hqy
5q qy
5qi| {z }�ps : (C.5)For small masses, the insertion of (C.2)�(C.4) into (C.5) yield�ps = �n��12 + �� � 2n�2�� 
os2 �� (C.6)for the pseudos
alar 
orrelator (rightmost term in (C.5)). It is �nite in the
hiral limit. For � = 0 we re
over the result [26℄. For large enough n� > ��at 
ertain �nite angles the pseudos
alar 
orrelator be
omes zero. For largemasses we have �ps = (n����)=m2. The present relations generalize readilyto Nf > 1.
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uum: a Matrix Model 1313Appendix DResolvent for �xed �The resolvent for the matrix model 
onsidered here readsG(z) = * 12N Tr 1z � � imei� WW y ime�i� �+ : (D.1)Sin
e the overlap matrix elements do not mix di�erent �avors the resolventsplits into a sum of 1-�avor resolvents and we get e�e
tively Nf 
opies ofthe appropriate 1-�avor eigenvalue distributions.Sin
e the matrix is nonhermitian it turns out that the eigenvalues lie ona 
urve (more pre
isely on two intervals � see below). This 
omes from thede
omposition (Nf = 1)� imei� WW y ime�i� � = im 
os � 1+� �m sin � WW y m sin � � : (D.2)So the eigenvalues are just the eigenvalues of the two-level Hermitian 
hiralsystem displa
ed by im 
os �. We will write z0 = z � im 
os � and introdu
ethe self energies de�ned by* 1z � � imei� WW y ime�i� �+ = � 1z��1 00 1z��2 � : (D.3)Taking into a

ount the fa
t that the random matri
es are asymmetri
, weobtain the following equation for the self-energies�1 = 1� x2z0 �m sin � ��2 ; (D.4)�2 = 1 + x2z0 +m sin � ��1 (D.5)with x = �=N . The tra
e of the resolvent is just (�1 +�2)=2. Hen
eG(z) = z0 1�q1� 4� + x2�22 � m sin �2� x ; (D.6)where � = z02 �m2 sin2 �. The eigenvalues lie on two intervals determinedby z02
ut �m2 sin2 � = x22�p4� x2 (D.7)



1314 R.A. Janik et al.and, for asymmetri
 matri
es, there are additional Dira
 delta spikes atz = m sin � when � is negative and at z = �m sin � when � is positive.Expli
itly the eigenvalue distribution reads (� = �R + i�I)�(�) = Æ(�I �m 
os �)���Æ(�R +m sin �) + 12� (�R �m sin �)r1� 4� + x2�2� (D.8)for � positive and�(�) = Æ(�I �m 
os �)��j�jÆ(�R �m sin �) + 12� (�R �m sin �)r1� 4� + x2�2� (D.9)for � negative. The stru
ture of these distributions is not universal, but maybe useful for understanding the � stru
ture from the bulk QCD spe
trumusing 
ooled latti
e gauge 
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