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� VACUUM: A MATRIX MODELRomuald A. Janika;b, Maiej A. Nowakb;, Gábor Pappdand Ismail Zahedea Servie de Physique Théorique, CEA Salay, F-91191 Gif-Sur-Yvette, Franeb Marian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland GSI, Plankstr. 1, D-64291 Darmstadt, GermanydCNR Department of Physis, KSU, Kent, Ohio 44242, USAandInstitute for Theoretial Physis, Eötvös University, Budapest, HungaryeDepartment of Physis and Astronomy, SUNYStony Brook, New York 11794, USA(Reeived January 26, 2001)We model the e�ets of a large number of zero modes for Nf speiesof quarks at �nite vauum angle �, using a matrix model with Gaussianweights onstrained by the topologial suseptibility and ompressibility.The quenhed free energy exhibits a usp at � < � that is sensitive to theauray of the numerial analysis and the maximum density of windingmodes. Our results bear muh in ommon with reent lattie simulationsby Shierholz and others. The unquenhed free energy exhibits similarsensitivities, but for small quark masses or a large density of zero modesthe results are in agreement with those derived using anomalous Wardidentities and e�etive Lagrangians.PACS numbers: 11.15.Pg, 11.30.Er, 11.15.Ha1. IntrodutionQCD with a �nite vauum angle � is subtle. Canonial quantization [1,2℄and variational alulations [3℄ suggest that the vauum state depends on �,while ovariant quantization seems to indiate otherwise [2℄. The issue ofthe � angle in QCD and the U(1) problem are intertwined [2,4,5℄. At �nite�, QCD breaks CP . Due to the U(1) anomaly, the � term may be tradedfrom the gauge �elds to the quark mass matrix. Bounds from the neutroneletri�dipole moment yield � � 10�9 [6℄.In QCD the dependene of the vauum partition funtion on the � an-gle involves an understanding of the vauum physis whih is essentially(1297)



1298 R.A. Janik et al.nonperturbative. First priniple alulations are limited and di�ult. Thereason is that most lattie QCD simulations rely on important samplingsby Monte Carlo tehniques whih require positivity of the ation on�gura-tion by on�guration. At �nite � the ation is omplex in Eulidean spae.Lattie simulations using CP n models as well as Yang�Mills theories [7�10℄have been reently arried out, with somehow opposite onlusions. A num-ber of e�etive models have been used to gain insights to this importantproblem [11�13℄, inluding reent onjetures [14℄. Unfortunately the on-ventional lore of power ounting, suh as hiral perturbation theory, beomessubtle at �nite � [2,15℄, although some exat onstraints an still be inferredfrom Ward identities [2, 4, 5℄.In this paper, we will assume that the vauum supports a � angle andproeed to analyze some related issues using a matrix model. From the onset,we aknowledge that the assumptions we will primarily make on the matrixmodel will ondition ertain aspets of our results. Although it is gratifyingthat some of these results agree with QCD results when known and underertain provisions, our real interest is to parallel a lattie omputation ofsimilar issues. The main thrust of our investigation is to try to �nd outthe onditions under whih the numerial analysis of this problem (albeit ina model) ompares to analytial or quasi-analytial solutions. The lessons wewill extrat will help us understand how to address and analyze numeriallythis undoubtedly di�ult problem. Conversely, some of the lessons we willextrat will help us reah new physis whih may be relevant for QCD.In Setions 2 and 3 we introdue the model, and disuss the quenhedase. The free energy is found to depend sensitively on the maximum densityof winding modes1 n and the auray of the numerial alulations. Ourobservations are similar (although not idential) to those reahed reentlyby Shierholz and others [7, 9, 10℄ using lattie simulations. In Setion 4,we disuss the unquenhed ase and show that under general onditions thesaddle-point results agree with the numerial alulations. Our onlusionsare in Setion 5. Some tehnial details are given in the Appendies.2. Matrix modelConsider the partition funtion desribed byZ(�;Nf ) = *NfYj=1det� imjei�=Nf WW y imje�i�=Nf �+ : (1)1 In the unquenhed ase the number of winding modes is the number of zero modes.



� Vauum: a Matrix Model 1299where the averaging is arried using the weightXn� Z dWdW ye�(1=2)n TrW yW e��2=2��V e��2=2��V : (2)Here W is a omplex hermitian asymmetri n+ � n� matrix, n = n+ + n�,and � � � = 2n� � hni. The mean number of zero modes hni is either�xed from the outside or evaluated using the Gaussian measure (2). Forsimpliity in this paper we used the quenhed measure without the fermiondeterminant to �x hni. Throughout, the value of the quark ondensate� = 1 in the hiral limit. It is readily reinstated by dimensional inspetion.For a reent review on matrix models in QCD we refer to [16℄ (andreferenes therein). In short, (1) with Gaussian weights is borrowed fromthe e�etive instanton vauum analysis [17℄ where n+ ounts the numberof right-handed zero modes, and n� the number of left-handed zero modes(restrited to zero dimension). The number of exat topologial zero modesis ommensurate with the net winding number arried by the instantonsand antiinstantons. By analogy with [17℄, �� and �� will refer to the un-quenhed topologial suseptibility and partile ompressibility, respetively.From [17℄ we have �2� = 4n�=b with b = 11N=3 and n� = hni=V the meandensity of zero modes. If the ompressibility �� is assumed small in unitsof � = 1, then typially n � hni. We note that for the anonial hoien� = 1, �� = 0:6 for N = 3. Finally, through a hiral rotation the � anglemay be removed from the determinant to generate an extra phase ei�� in themeasure (see also (11)). In this form, the 2� periodiity in � is manifest. Wereall that in the original instanton model, CP is expliitly upset at �nite �,with the exeption of � = �� (mod 2�). (Under CP � = � goes to �� whihis the same as � beause of the 2� periodiity. Multiple degeneray of statesan however take plae [5, 12, 13℄.)3. Nf = 0In this setion we will only analyze the quenhed partition funtion withNf = 0, thereby probing the nature of the measure (2). As we will show, thisis not a trivial exerise and the outome bears muh in ommon with urrentquenhed lattie simulations. First, we disuss the ase where hni =1 withno restrition on the value of n, and hene no restrition on the value of �.Seond, we disuss the ase where hni is large but �nite, so that j�j � nwith typially n � hni for a peaked distribution in n.



1300 R.A. Janik et al.3.1. In�nite sumWhen the sum is unrestrited and in�nite, we have for the quenhedpartition funtion (up to an irrelevant normalization)ZQ(�) = Z(�; 0) = 1X�=�1 ei��e��2=2V �� : (3)Using Poisson resummation formula we haveZQ(�) = +1Xk=�1 e�(1=2)V ��(��2�k)2 = �3��2 ; e��� ; (4)where the last equality involves the third ellipti �-funtion with � =1=(2V ��). The result is manifestly 2� periodi. The vauum free energy,FQ(�) = �lnZQ(�)=V as V !1 is simplyFQ(�) = min12�� (� +mod2�)2 (5)in agreement with the saddle-point approximation to (3). This simple resultis the same as the one obtained using large N arguments [12℄, and reentduality arguments [14℄. We note that (5) is di�erent from the result os(�)expeted in a free instanton gas. Indeed, in the latter the measure in (2)is Poissonian in n� as opposed to Gaussian in our ase. By assumption,the measure (2) only enfores properly the varianes in (n+ � n�), i.e. thetopologial suseptibility and ompressibility of the QCD vauum. The re-sult (5) is a diret onsequene of this assumption, whih beomes exatin the large N limit. Indeed, the higher suseptibilities are suppressed by1=N. For �nite N higher suseptibilities may be enfored by non-Gaussianweights [18, 19℄, provided that the QCD beta funtion is restrited to itsone-loop form. This alternative goes beyond the sope of this work.We observe that the usp at � = � (mod 2�) sets in for V = 1. For�nite V the sums onverge uniformly, so thatF 0Q(�) = � 2V ZQ(�) 1X�=1 � sin (��)e��2=2V �� (6)whih is always zero at � = �. As V !1, the interhange of the derivativewith the sum is not valid, hene the usps. When translated to the quenhed



� Vauum: a Matrix Model 1301instanton alulations, these usps indiate a new phase with spontaneousCP violation. A similar observation was made in the ontext of 1+1 ompateletromagnetism using the harater expansion [20℄. Finally, we note that(4) an also be rewritten asZQ(�) = ZE(�) + ZO(�)= 12r��  +1Xk=�1 e�(1=4� )(��k�)2 + +1Xk=�1(�1)ke�(1=4� )(��k�)2!= �3 ��; e�4��+ �2 ��; e�4�� ; (7)where ZE is � periodi and ZO is � antiperiodi. The appearane of (�1)k inthe seond sum in (7) is important for restoring the 2� periodiity in the fullsum. In the thermodynamial limit, the even and odd sums are dominatedby single Gaussians with FE = �� (� � k�)2=2 for j�=� � kj � 1=2, andFO = FE + ik�=V . 3.2. Finite sumIn the model we are onsidering the sum over � is restrited to j�j < N ,with N = max n. We will denote by n = N=V the maximum densityof winding modes. While in general n 6= n�, for a peaked distributionin n (small ompressibility ��) we expet n � n�. This will be assumedthroughout unless indiated otherwise. HeneZQ(�) = N�1X�=�(N�1) ei��e��2=2V �� : (8)Approximating the sum in (8) by an integral and evaluating it by saddlepoint we obtain ZQ � e�V ���2=2.In Fig. 1 we show the numerially generated result versus the saddle pointapproximation for the full free energy (2�-periodi) and di�erent values of n.The normalization was hosen so that FQ(0) = 0. For N = 250 and �� = 1,the double preision (16 digit) numeris (irles) breaks away from the saddlepoint approximation (solid line) at �=� � 0:2 for both n = 1 and n = 4,while the high-preision [21℄ (64 digits) alulations (dashed line) break awayat �=� � 0:3 at n = 1 but agree with the saddle point result at n = 4.



1302 R.A. Janik et al.The leveling for small values of n persists even at in�nite auray, andin our ase is aused by the �nite range of the summation over � in (8).Indeed, using the Euler�MaLaurin summation formula, we haveN�1X�=0 f(�)� NZ0 f(�)d� = �12[f(0) + f(N)℄ + 112 [f 0(N)� f 0(0)℄� 1720 [f 000(N)� f 000(0)℄ + : : : ; (9)where : : : stand for odd derivatives of f(N) = 2 os(N�)e�N2=2V �� . Thegeneri behavior of the orretion terms is a non-exponential prefator timese�N2=2��V with no dependene on � (� enters only in the prefator whihdrops when taking the logarithm and dividing out by V .). This should beompared to the leading order result, e�V ���2=2, hene, a breakdown of thesaddle-point approximation for N = V is expeted at ���2 � 1=��, thatis �=� � 1=��� � 0:3, in agreement with the high-preision alulations ofFig. 1.
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Fig. 1. Quenhed free energy �FQ(�). See text.If we were to inrease the density of winding modes to n � ���, thenfor say n = 4, the saddle-point result is reovered as indiated by the stars(Fig. 1). The breaking point notied above, now lies outside the periodof the free energy (at � � n=��). Again, the preision in the numerialalulation is important. For n = 4 the preision is upgraded from 100digits for �=� < 0:3 to 150 digits for �=� > 0:3. We have observed that forlow preision measurements (16 digits), the numerial alulations deviatefrom the saddle-point approximation for small values of �=� � 0:2 (irles)even for n = 4.



� Vauum: a Matrix Model 13033.3. Comparison to lattie simulationsThe observations of the preeding paragraph may be summarized asfollows: the leveling of the quenhed free energy of the matrix model as afuntion of � is sensitive to the numerial auray of the alulation. Theleveling stabilizes at large numerial auray, and is found to depend on themaximum density of winding modes n (typially n � n�) and its relativemagnitude to the topologial suseptibility. For the measure (2), the levelingours at �� � n=�� in agreement with analytial estimates.In an interesting series of investigations, Shierholz [7℄ analyzed numer-ially the e�ets of a �nite � angle using a CP 3 model in two-dimensions,and also Yang-Mills theory in four-dimensions. The CP 3 simulations shownin Fig. 2 (left) indiate a leveling of the free-energy for � � �=2, au-tiously interpreted as a possible evidene for a �rst order transition to aCP -symmetri state [7℄. We note the striking similarity of this �gure withFig. 1.
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Fig. 2. Unquenhed free energy obtained from a CPn model (left) [7℄ and (right) [9℄.These �ndings were reently reexamined by Plefka and Samuel [9℄ whoonluded that the apparent �rst order transition was a possible artifat ofthe auray of the numerial simulation for �xed lattie size, as shown inFig. 2 (right). Our �ndings in the matrix model on�rm this observation.The larger the volume V , the more preision is needed (exponential preisionfor in�nite V ), due to large anellations in the partition funtion ausedby the osillating phase ei��. However, we have also found that the levelingdepends quantitativaly on the maximum density of winding modes n andpersists whatever the preision for n � 1. In this sense, it would be veryuseful to understand the dependene of the results in [7, 9℄ on n, with inpartiular the ones shown in Fig. 2.



1304 R.A. Janik et al.4. Nf > 0To assess the e�ets of light quarks on the partition funtion of the matrixmodel, we will onsider in this setion the general ase withNf > 0. We will evaluate the free energy of the matrix model in the saddle-point approximation after bozonization, and ompare the outome to diretnumerial alulations using large ensemble of asymmetri matries or quasi-analytial methods. 4.1. BosonizationIn (1) the fermion determinant an be rewritten as an integral overNfn-omponent Grassmanians  = ( R;  L) with dimensions (n+; n�),that is detF = Z d d ye yRmei�=Nf  R+ yRiW L+L$R : (10)The � angle an then be removed from the ation by a U(1) transformation ! ei5�=2NF q with 5 = diag(1n+ ;�1n�). The Jaobian of this transfor-mation is just detF ei5�=Nf = ei�(n+�n�) (11)whih is the well known trade-o� through the U(1) anomaly. As a result,we have the following Ward identityhn+ � n�i� = mDqyi5qE� : (12)Assuming that the range of resummation over � = n+ � n� is in�nite, thatthe distribution in n = n++n� is peaked (n! hni) and trading the �-sumby an integral in (1), we have,Z(�;Nf ) = Z dPdP y exp(hni"�12Tr jP j2 + 12Tr log jz + P j2+ ��2n�  log�det z + Pz + P y�1=2!2#); (13)where z = diagmjei�=Nf . The logarithm in (13) is multivalued and its 2�determination will be assumed. In analogy to the quenhed ase, the approx-imation of the sum by an integral should be valid for n�n�>��top, wherewe substituted the quenhed topologial suseptibiliy ��, by the unquenhedone �top � ��. For small masses �top gets sreened (see Appendix C).



� Vauum: a Matrix Model 1305To keep a tab on the validity of trading the �-sum by an integral, weobserve that for Nf = 1 and z = mei�, an exat form an be reahed forZ(�; 1) = D(z + P )n+(�z + P y)n�E (14)followed by the substitution P !W in the measure (2). Here P is a omplexvariable. Beause of (11), the same partition funtion an be written asZ(�; 1) = 1X�=�1 ei��e��2=2V ��Z� ; (15)where Z� is the partition funtion for �xed asymmetry �. Again for a peakeddistribution N � hni, so thatZ� = � 2N�N��+22 �m�e�Nm2=2� �N+�+22 �� (�+ 1) 1F1�N + �+ 22 ; �+ 1; Nm22 � ;(16)where 1F1 is Kummer's (on�uent hypergeometri) funtion. For even �,it redues to an assoiated Laguerre polynomial in Nm2. We note thatfor N ! 1 with Nm and � �xed, Z� � I�(Nm) whih is the expetedgenerating funtion for the mirosopi sum rules [22℄.4.2. Saddle-point approximationWithout loss of generality, we an set P = diag pjei(�=Nf��j), so thatthe unsubtrated free energy assoiated to (13) readsF = n�2 NfXj=1 hp2j � log (p2j + 2mjpj os�j +m2j)i+��2 0B�� + arg0�NfYj=1�mj + pje�i�jmj + pjei�j �1A1=2 +mod2�1CA2 : (17)We note that for Nf = 0 (17) redues to (5). For small massesmj � �� � pj � 1and (17) simpli�es to



1306 R.A. Janik et al.
F = n�2 NfXj=1�p2j � log p2j � 2mjpj os�j�+12��0�0�� � NfXj=1 �j +mod2�1A+ NfXj=1 mjpj sin�j1A2 (18)to order O(m2). The saddle point in the p's deouples and gives pj =1�mj=2 os � +O(m2). To the same order, the saddle point in the �'s is� = NfXj=1 �j +O(m) and m1sin�1 = ::: = mNf sin�Nf : (19)These equations were derived using large N arguments [12,13℄ and anoma-lous Ward-identities [5℄.For Nf = 1, we have� = � +m�n��� � 1� sin � +O(m2) (20)for whih the subtrated free energy is �F = n�m(1� os �).For Nf = 2, we havesin�1;2 = � m2;1sin �pm21 +m22 + 2m1m2os � (21)and the subtrated free energy now reads1n��F (�) = jm1 +m2j �qm21 +m22 + 2m1m2 os � : (22)For m1 = m2 a usp develops at � = �, sine �F (�) = n�jmj(1�j os �=2j).In this ase both numerator and denominator vanish in (21), hene anyvalue of �1 and �2 is allowed provided that �1+�2 = �. A similar behaviorwas noted by many [5, 12, 13, 23, 24℄, following the spontaneous breaking ofstrong CP .For Nf = 3, the expliit solutions to (19) are in general involved, therebymaking an analytial form for the free energy involved. At � = �, however,the analysis simpli�es. Using (19) we obtain a trivial solution with one ofthe �'s being � and the others zero, and a non-trivial one,os�3 = m23m21 +m23m22 �m21m222m23m1m2 (23)



� Vauum: a Matrix Model 1307whih is doubly degenerate form1m2 > m3jm1 �m2j : (24)The trivial solution orresponds to no usp at � = �, while the non-trivialone yields a usp at � = � beause of the double degeneray. Again similarobservations were made using e�etive Lagrangians [12, 23, 24℄ and anoma-lous Ward identities [5℄, where (24) is known as Dashen's ondition [25℄. Forsu�ient �avor breaking (24) is not ful�lled and strong CP is not sponta-neously broken. This is the ase in nature where m3 � m1;m2.4.3. Numerial analysis for Nf = 1In Fig. 3 (left) we ompare the �xed size results for the free energy withhni = 14 (irle) and hni = 100 (plus) over one period2, using single preision(16 digits) numerial alulations for m = 0:5; �� = 1. The saddle pointsolution is indiated by the solid line. Inreasing the size of the matriesworsen the agreement with the saddle-point result (solid line). The reasonis that for �=2 the integrand in the sum develops alternating signs withlarge numerial anellations. The breakdown of the numerial alulationtakes plae at �� � �(ln ")=(hni��) with " the numerial preision. Theseobservations are new as they pertain to the unquenhed free energy.
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Fig. 3. Unquenhed free energy for �xed size matries (left) and varying size ma-tries (right) at intermediate mass.In Fig. 3 (right) we show the same results after averaging over the sizeof the matries (with ��=1), restoring the 2� periodiity. Changing theGaussian measure in n to a uniform one with jn � hnij � 6 does not makea notieable hange on the �gure. We ompare the low (16 digits, ir-les) and high (64 digits, boxes) preision alulations for an averaged sizehni = 14 using an ensemble of 500000 matries. Large size samplings at2 Sine hni is �xed even, the periodiity is � and not 2� as noted in Setion 3.1.



1308 R.A. Janik et al.large � requires exponentially larger preision. Muh like the quenhed asewe observe the same dependene on n � n�, ausing a departure from thesaddle point results at � � 0:6� for n = 1.Sine the n > 1 region is unaessible by diret use of random matries,we will use the partition funtion for �xed asymmetry Z� in (15) in thesaddle point approximation and perform the �nal sum in (15) numerially.We have heked that the saddle-point result agrees with the result obtainedby averaging over large ensembles of matries with �xed � for n = 1. Werefer to this analysis as quasi-analytial and the results are shown in Fig. 3(right) for n = 1 (dotted line) and n = 4 (dashed line).For small masses and � < �=2 the free energy in the saddle-point ap-proximation is F (�) � n�m(1 � os �) with no usp whatever �. For largem a usp at � = � develops, following the deoupling of the �avor (roughlym � Nf��). In Fig. 3 the ourene of a usp for m = 0:5 and n = 4 isan artifat of the quasi-analytial analysis where only the saddle-point in �is retained (see above). Indeed, the numerial results from this proedureare ompared with the standard saddle-point approximation (see previoussetion) in Fig. 4 for m = 0:001 (small mass) and n� = n = 1 (hni = N).
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Fig. 4. Unquenhed free energy �F (�) for Nf = 1. See text.Wemay now ask if a levelling in the free energy ours for small massesm.As we wrote in Setion 4.1 this takes plae for n < ��top. However, dueto the sreening of the topologial harge by the fermion determinant forsmall masses we expet �top � m (see Appendix C) so that the levelling isruled out for reasonable values of n. We note that the marosopi limit isreahed only for Nm large. For N = 200 (Nm < 1) many modes are stillmissing in the sum (15) (dotted line). For N = 104 (Nm� 1) and � < �=2,the quasi-analytial proedure (solid) and the saddle-point approximation(dashed) are in agreement.Finally, we now ask whether the standard saddle point method fails for� > �=2, leading possibly to a usp at � � �, ontrary to expetations. ForNf = 1 we an alulate the �xed asymmetry partition funtion exatly (16)



� Vauum: a Matrix Model 1309and use it for a omparison with the quasi-analytial proedure (see above).The outome on�rms the standard saddle point result with no usp at� = �, and rules out the quasi-analytial result for large values of �. We on-lude that the saddle-point approximation arried prior to the �-resumma-tion is only valid for � small (the 1=N terms at large � are important), whilethe one arried after the �-resummation is valid whatever �.We have numerially heked, that most of the present observations arryto Nf > 1. In partiular, a usp may form in the latter for su�iently degen-erate quark masses, in agreement with the saddle point analysis disussedabove. 5. ConlusionsWe have analyzed the e�ets of a �nite vauum angle � on the vauumpartition funtion desribed by a matrix model, both in the quenhed andunquenhed approximation.The numerial lessons are:1. In the quenhed ase, we have found that the free energy exhibits ausp at �nite � that is sensitive to the preision of the numerialanalysis. For � > � we observe that the free energy does not dependon �. On this point, we are in agreement with the lattie analysis [9℄.However, we have further notied that the results are also sensitive tothe maximum density of winding modes n (for a small ompressibilityor a peaked distribution in n, n is similar to n�, the mean windingdensity). In partiular the �attening out of the free energy oursat � = � and remains stable one high enough numerial preisionis reahed. It is only for large enough n > ��� that the position ofthe usp is moved to � = � for high enough preision (and only thenthe saddle point result (5) is reovered). This observation may beof relevane to the lattie results [7, 9℄. In this ontext, it would beinteresting to ompare the lattie distributions for n� in [7, 9℄ to theGaussian ones we have used in our work.2. In the unquenhed ase, a similar dependene on n is found, wheren is also interpreted as the maximum density of zero modes. Forsu�iently large n and large masses the quenhed results are reovered.Eah mass deouples at m � ��, although for large and degeneratemasses m � Nf�� (in units where the quark ondensate is one). ForNf = 1 and small masses withmV > 1, the sreening of the topologialharge takes plae, and the saddle point solution holds without anyusp. For Nf = 2; 3, the numerial results are found to agree witha saddle-point analysis, and results from anomalous Ward identitiesand e�etive Lagrangians. A usp at � = � ours for su�ientlydegenerate quark masses.



1310 R.A. Janik et al.The physis lesson is:It appears that the density n� of winding modes for Yang-Mills theory,or the density n of zero modes for QCD play a fundamental role in the � va-uum. Indeed, in the matrix model the vauum energy beomes independentof � > � for su�iently low densities for both the quenhed and unquenhedalulations, in disagreement with the saddle-point results. The existeneof a �nite � in QCD depends ruially on how low are these densities, aquestion that an only be settled dynamially. If � happens to be zero inQCD, then QCD solves its strong CP problem dynamially.We would like to thank G. Shierholtz and A. Zhitnitsky for disussions,R. Crewther for omments, and W. Bietenholz for bringing Ref. [8℄ to ourattention. I.Z. thanks U. Wiese for an early disussion. This work wassupported in part by the US DOE grants DE-FG-88ER40388 and DE-FG02-86ER40251, by the Polish State Committee for Sienti� Researh (KBN)grant 2P03B00814 and by the Hungarian grant OTKA-F026622.Appendix AAlternative saddle-point with Nf = 1An alternative saddle-point analysis an be diretly performed for �xed� using representation (15). For that, we de�ne� = �iny : (A.1)The solution for the saddle point equations givesPsp = �m2 �pm4 + 4(m2 � y2)2�z + iy�z ;P ysp = �m2 �pm4 + 4(m2 � y2)2z � iyz : (A.2)For a peaked distribution in n we expet n � hni. The Psp's are related tothe ondensate by�ihqyqi = 1V �m logZ = n�2 �P yspei� + Pspe�i�� : (A.3)The value of y is �xed by requiring the vanishing of the term proportionalto �. Hene, the onsisteny ondition readslog D + iyD � iy + 2i� + 2iyn��� = 0 or artan yD + � + yn��� = 0 ; (A.4)



� Vauum: a Matrix Model 1311where D = (m2 �pm4 + 4(m2 � y2))=2, with y satisfyinghn+ � n�i = n�V m2 (P yspei� � Pspe�i�) = n� y : (A.5)In the onsisteny ondition, the prinipal branh of the logarithm is re-tained, making the saddle-point result manifestly 2� periodi in �. We notethat the present derivation is equivalent to performing the saddle-point al-ulation for y without substituting the form (A.2) for Psp's. The assoiatedfree energy isF = � 1V logZ(�) = �n�2 �log �D2+y2m2 �� 1+y2D2+y2m2�n��� y2� : (A.6)The subtrated free energy is V�F (�) = �ln Z(�)=Z(0).Appendix BTopologial densityThe topologial density hn+ � n�i measures the di�erene between thenumber of zero modes with plus and minus harges, in the volume V �xedby the width of the quenhed topologial suseptibility ��. This is also theamount of U(1) harge in the vauum state thanks to (12). At the saddlepoint (Nf = 1)hn+ � n�i = 1V i�� lnZ(�) = n�V m2 �P yspei� � Pspe�i�� = n� y : (B.1)We see that y measures diretly the topologial density at the saddle point.For a large mass my = � �1D + n��� � � 1n�����1� ��n�m2� (B.2)while for a small mass m�y = �m tan �j os �j �m2�� � 2n�4�� sin 2� +O(m3) : (B.3)The � solutions orrespond to the transformation � $ ��, whereas theabsolute value orresponds to the hange of the branh in the solution of theonsisteny equation.



1312 R.A. Janik et al.Appendix CTopologial suseptibilityThe topologial suseptibility measures the variane of (n+�n�) in thevauum state at �nite �. It is simply �top = ��y=�� n�. In the large masslimit �top = ���1� ��n�m2�+O(m�3) ; (C.1)giving �top = �� in the quenhed ase (m = 1). In the small mass limitand j�j < �=2,�top = n�m j os �j+ n�m2�� � 2n�2�� os 2� +O(m3) : (C.2)For � > �=2 we have 
(n+ � n�)2� < 0, whih is possible sine the measureis not semi-de�nite.The quark ondensate for large masses is�ihqyqi = n�m �1� �2�n2�m2 �2� (C.3)and for small masses is�ihqyqi = n� os� � n�m�12 + �� � 2n�2�� sin2 ��+O(m2) : (C.4)The anomalous U(1) Ward identity is given by�top = �imhqyqi �m2 hqy5q qy5qi| {z }�ps : (C.5)For small masses, the insertion of (C.2)�(C.4) into (C.5) yield�ps = �n��12 + �� � 2n�2�� os2 �� (C.6)for the pseudosalar orrelator (rightmost term in (C.5)). It is �nite in thehiral limit. For � = 0 we reover the result [26℄. For large enough n� > ��at ertain �nite angles the pseudosalar orrelator beomes zero. For largemasses we have �ps = (n����)=m2. The present relations generalize readilyto Nf > 1.



� Vauum: a Matrix Model 1313Appendix DResolvent for �xed �The resolvent for the matrix model onsidered here readsG(z) = * 12N Tr 1z � � imei� WW y ime�i� �+ : (D.1)Sine the overlap matrix elements do not mix di�erent �avors the resolventsplits into a sum of 1-�avor resolvents and we get e�etively Nf opies ofthe appropriate 1-�avor eigenvalue distributions.Sine the matrix is nonhermitian it turns out that the eigenvalues lie ona urve (more preisely on two intervals � see below). This omes from thedeomposition (Nf = 1)� imei� WW y ime�i� � = im os � 1+� �m sin � WW y m sin � � : (D.2)So the eigenvalues are just the eigenvalues of the two-level Hermitian hiralsystem displaed by im os �. We will write z0 = z � im os � and introduethe self energies de�ned by* 1z � � imei� WW y ime�i� �+ = � 1z��1 00 1z��2 � : (D.3)Taking into aount the fat that the random matries are asymmetri, weobtain the following equation for the self-energies�1 = 1� x2z0 �m sin � ��2 ; (D.4)�2 = 1 + x2z0 +m sin � ��1 (D.5)with x = �=N . The trae of the resolvent is just (�1 +�2)=2. HeneG(z) = z0 1�q1� 4� + x2�22 � m sin �2� x ; (D.6)where � = z02 �m2 sin2 �. The eigenvalues lie on two intervals determinedby z02ut �m2 sin2 � = x22�p4� x2 (D.7)
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