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We model the effects of a large number of zero modes for N species
of quarks at finite vacuum angle 6, using a matrix model with Gaussian
weights constrained by the topological susceptibility and compressibility.
The quenched free energy exhibits a cusp at § < 7 that is sensitive to the
accuracy of the numerical analysis and the maximum density of winding
modes. Our results bear much in common with recent lattice simulations
by Schierholz and others. The unquenched free energy exhibits similar
sensitivities, but for small quark masses or a large density of zero modes
the results are in agreement with those derived using anomalous Ward
identities and effective Lagrangians.

PACS numbers: 11.15.Pg, 11.30.Er, 11.15.Ha

1. Introduction

QCD with a finite vacuum angle 6 is subtle. Canonical quantization [1,2]
and variational calculations |3] suggest that the vacuum state depends on 6,
while covariant quantization seems to indicate otherwise [2|. The issue of
the 0 angle in QCD and the U(1) problem are intertwined [2,4,5]. At finite
6, QCD breaks CP. Due to the U(1) anomaly, the § term may be traded
from the gauge fields to the quark mass matrix. Bounds from the neutron
electric—dipole moment yield § < 107 [6].

In QCD the dependence of the vacuum partition function on the 6 an-
gle involves an understanding of the vacuum physics which is essentially
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nonperturbative. First principle calculations are limited and difficult. The
reason is that most lattice QCD simulations rely on important samplings
by Monte Carlo techniques which require positivity of the action configura-
tion by configuration. At finite 6 the action is complex in Euclidean space.
Lattice simulations using C'P™ models as well as Yang—Mills theories [7-10]
have been recently carried out, with somehow opposite conclusions. A num-
ber of effective models have been used to gain insights to this important
problem [11-13], including recent conjectures [14]. Unfortunately the con-
ventional lore of power counting, such as chiral perturbation theory, becomes
subtle at finite 6 |2,15], although some exact constraints can still be inferred
from Ward identities [2,4, 5].

In this paper, we will assume that the vacuum supports a € angle and
proceed to analyze some related issues using a matrix model. From the onset,
we acknowledge that the assumptions we will primarily make on the matrix
model will condition certain aspects of our results. Although it is gratifying
that some of these results agree with QCD results when known and under
certain provisions, our real interest is to parallel a lattice computation of
similar issues. The main thrust of our investigation is to try to find out
the conditions under which the numerical analysis of this problem (albeit in
a model) compares to analytical or quasi-analytical solutions. The lessons we
will extract will help us understand how to address and analyze numerically
this undoubtedly difficult problem. Conversely, some of the lessons we will
extract will help us reach new physics which may be relevant for QCD.

In Sections 2 and 3 we introduce the model, and discuss the quenched
case. The free energy is found to depend sensitively on the maximum density
of winding modes' n and the accuracy of the numerical calculations. Our
observations are similar (although not identical) to those reached recently
by Schierholz and others [7,9,10] using lattice simulations. In Section 4,
we discuss the unquenched case and show that under general conditions the
saddle-point results agree with the numerical calculations. Our conclusions
are in Section 5. Some technical details are given in the Appendices.

2. Matrix model

Consider the partition function described by

i imjew/Nf w
Z(Q,Nf) = Hdet W]L z'mje*w/Nf . (1)
7=1

! In the unquenched case the number of winding modes is the number of zero modes.



60 Vacuum: a Matriz Model 1299

where the averaging is carried using the weight

> / AW dW e~ (1/2n TrWIW o —x?/2x.V o ~0% 20,V @)
n4

Here W is a complex hermitian asymmetric n4 X n_ matrix, n = n4y +n_,
and 0 £ x = 2ny — (n). The mean number of zero modes (n) is either
fixed from the outside or evaluated using the Gaussian measure (2). For
simplicity in this paper we used the quenched measure without the fermion
determinant to fix (n). Throughout, the value of the quark condensate
Y =1 in the chiral limit. It is readily reinstated by dimensional inspection.

For a recent review on matrix models in QCD we refer to [16] (and
references therein). In short, (1) with Gaussian weights is borrowed from
the effective instanton vacuum analysis [17] where n4 counts the number
of right-handed zero modes, and n_ the number of left-handed zero modes
(restricted to zero dimension). The number of exact topological zero modes
is commensurate with the net winding number carried by the instantons
and antiinstantons. By analogy with [17], x. and o, will refer to the un-
quenched topological susceptibility and particle compressibility, respectively.
From [17] we have 02 = 4n, /b with b = 11N,/3 and n, = (n)/V the mean
density of zero modes. If the compressibility o, is assumed small in units
of X = 1, then typically n ~ (n). We note that for the canonical choice
n, =1, 0, = 0.6 for N, = 3. Finally, through a chiral rotation the 6 angle
may be removed from the determinant to generate an extra phase eX? in the
measure (see also (11)). In this form, the 27 periodicity in 6 is manifest. We
recall that in the original instanton model, C'P is explicitly upset at finite 6,
with the exception of # = £7 (mod 27). (Under CP § = 7 goes to —m which
is the same as m because of the 27 periodicity. Multiple degeneracy of states
can however take place [5,12,13].)

3. Ny =0

In this section we will only analyze the quenched partition function with
Ny = 0, thereby probing the nature of the measure (2). As we will show, this
is not a trivial exercise and the outcome bears much in common with current
quenched lattice simulations. First, we discuss the case where (n) = oo with
no restriction on the value of n, and hence no restriction on the value of x.
Second, we discuss the case where (n) is large but finite, so that x| < n
with typically n ~ (n) for a peaked distribution in n.
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3.1. Infinite sum

When the sum is unrestricted and infinite, we have for the quenched
partition function (up to an irrelevant normalization)

Zo(0) = Z(0,0) = Y eXlemx*/2V (3)

X=—00

Using Poisson resummation formula we have

= ) 0
Zo(O)= Y e A0 _ g, (5) (1)
k=—o00

where the last equality involves the third elliptic -function with 7 =
1/(2V xx). The result is manifestly 27 periodic. The vacuum free energy,
Fq(0) = —InZg(0)/V as V — oo is simply

Fq(0) = min%x* (0 + mod 2r)? (5)

in agreement with the saddle-point approximation to (3). This simple result
is the same as the one obtained using large N, arguments [12], and recent
duality arguments [14]. We note that (5) is different from the result cos(6)
expected in a free instanton gas. Indeed, in the latter the measure in (2)
is Poissonian in ny as opposed to Gaussian in our case. By assumption,
the measure (2) only enforces properly the variances in (ny £mn_), i.e. the
topological susceptibility and compressibility of the QCD vacuum. The re-
sult (5) is a direct consequence of this assumption, which becomes exact
in the large N, limit. Indeed, the higher susceptibilities are suppressed by
1/N,. For finite N, higher susceptibilities may be enforced by non-Gaussian
weights [18,19], provided that the QCD beta function is restricted to its
one-loop form. This alternative goes beyond the scope of this work.

We observe that the cusp at & = m (mod 2m) sets in for V = oo. For
finite V' the sums converge uniformly, so that

L) — 2 S ; —X*/2V x«

which is always zero at § = w. As V' — o0, the interchange of the derivative
with the sum is not valid, hence the cusps. When translated to the quenched
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instanton calculations, these cusps indicate a new phase with spontaneous
CP violation. A similar observation was made in the context of 14+1 compact
electromagnetism using the character expansion [20]. Finally, we note that
(4) can also be rewritten as

Zq(0) = Zp(9) + Zo(0)

— \/7(26 (1/47)(0—km)? +Z k1/47')(0k7r)>

k=—o00

= 03(0,e ') + 62 (0,e'7), (7)

where Zp is 7 periodic and Zo is 7 antiperiodic. The appearance of (—1)¥ in
the second sum in (7) is important for restoring the 27 periodicity in the full
sum. In the thermodynamical limit, the even and odd sums are dominated
by single Gaussians with Fg = x. (0 — kn)?/2 for |§/m — k| < 1/2, and
Fo = Fg +ikm/V.

3.2. Finite sum

In the model we are considering the sum over x is restricted to |x| < N,
with N = max n. We will denote by n = N/V the maximum density
of winding modes. While in general n # n,, for a peaked distribution
in n (small compressibility o,) we expect n ~ n,. This will be assumed
throughout unless indicated otherwise. Hence

N-1

Zo@) = > M /2Vx (8)
x=—(N-1)

Approximating the sum in (8) by an integral and evaluating it by saddle
point we obtain Zg ~ e Vx:0%/2

In Fig. 1 we show the numerically generated result versus the saddle point
approximation for the full free energy (2m-periodic) and different values of n.
The normalization was chosen so that Fg(0) = 0. For N = 250 and x, =1,
the double precision (16 digit) numerics (circles) breaks away from the saddle
point approximation (solid line) at 8/m ~ 0.2 for both n = 1 and n = 4,
while the high-precision [21] (64 digits) calculations (dashed line) break away
at 0/m ~ 0.3 at n =1 but agree with the saddle point result at n = 4.
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The leveling for small values of n persists even at infinite accuracy, and
in our case is caused by the finite range of the summation over y in (8).
Indeed, using the Euler-MacLaurin summation formula, we have

N-1 N ] 1
> 00 0/ Fdx = —5[0) + FN)] + S (N) ~ (0]
]‘ n m
s [N~ O 9

where ... stand for odd derivatives of f(N) = 2cos(N@)e N*/2Vx+ The
generic behavior of the correction terms is a non-exponential prefactor times
e N?/2:V with no dependence on 6 (6 enters only in the prefactor which
drops when taking the logarithm and dividing out by V.). This should be
compared to the leading order result, e~ Vx-0%/ 2 hence, a breakdown of the
saddle-point approximation for N = V is expected at x.0% ~ 1/x., that
is /7 ~ 1/x.m = 0.3, in agreement with the high-precision calculations of
Fig. 1.

1.2
n= *
n=1 --—--—---
08+
T X1
N
04+t
0 S : : :
0 0.1 0.2 0.3 0.4 0.5

e/m
Fig. 1. Quenched free energy AFq(6). See text.

If we were to increase the density of winding modes to n > my,, then
for say m = 4, the saddle-point result is recovered as indicated by the stars
(Fig. 1). The breaking point noticed above, now lies outside the period
of the free energy (at  ~ n/x.). Again, the precision in the numerical
calculation is important. For n = 4 the precision is upgraded from 100
digits for 0/ < 0.3 to 150 digits for /7 > 0.3. We have observed that for
low precision measurements (16 digits), the numerical calculations deviate
from the saddle-point approximation for small values of 8/7 ~ 0.2 (circles)
even for n = 4.
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3.3. Comparison to lattice simulations

The observations of the preceding paragraph may be summarized as
follows: the leveling of the quenched free energy of the matrix model as a
function of @ is sensitive to the numerical accuracy of the calculation. The
leveling stabilizes at large numerical accuracy, and is found to depend on the
maximum density of winding modes n (typically n ~ n,) and its relative
magnitude to the topological susceptibility. For the measure (2), the leveling
occurs at 0, ~ n/x, in agreement with analytical estimates.

In an interesting series of investigations, Schierholz [7] analyzed numer-
ically the effects of a finite § angle using a C'P? model in two-dimensions,
and also Yang-Mills theory in four-dimensions. The C'P? simulations shown
in Fig. 2 (left) indicate a leveling of the free-energy for 6 < m/2, cau-
tiously interpreted as a possible evidence for a first order transition to a
C P-symmetric state |[7]. We note the striking similarity of this figure with
Fig. 1.

0.005

0.1

+ Binning-Method —
B 0.08L Naive-Method -

0.003

0.06

AF(B)

0.002 O30000000000000635
§§§ 008 0.041L

0.001

0.02}

0.0

o/m 0 05 1 159 2 25 3

Fig. 2. Unquenched free energy obtained from a C' P™ model (left) [7] and (right) [9].

These findings were recently reexamined by Plefka and Samuel [9] who
concluded that the apparent first order transition was a possible artifact of
the accuracy of the numerical simulation for fixed lattice size, as shown in
Fig. 2 (right). Our findings in the matrix model confirm this observation.
The larger the volume V', the more precision is needed (exponential precision
for infinite V'), due to large cancellations in the partition function caused
by the oscillating phase eX?. However, we have also found that the leveling
depends quantitativaly on the maximum density of winding modes n and
persists whatever the precision for n ~ 1. In this sense, it would be very
useful to understand the dependence of the results in [7,9] on n, with in
particular the ones shown in Fig. 2.
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4. Ny >0

To assess the effects of light quarks on the partition function of the matrix
model, we will consider in this section the general case with
Ny > 0. We will evaluate the free energy of the matrix model in the saddle-
point approximation after bozonization, and compare the outcome to direct
numerical calculations using large ensemble of asymmetric matrices or quasi-
analytical methods.

4.1. Bosonization

In (1) the fermion determinant can be rewritten as an integral over
Nyn-component Grassmanians 1 = (¢r,41,) with dimensions (ny,n_),
that is

detp = / dl/,dwe%mem/zvfwR+¢giwwL+LHR. (10)

The 6 angle can then be removed from the action by a U(1) transformation
¢ — e59/2NF g with v5 = diag(1,,, —1,_). The Jacobian of this transfor-
mation is just

N4

detp 130/ N5 = if(n4—n-) (11)

which is the well known trade-off through the U(1) anomaly. As a result,
we have the following Ward identity

(ns —n_)y = m (q'ivsq) - (12)

Assuming that the range of resummation over y = ny — n_ is infinite, that
the distribution in n = ny +n_ is peaked (n — (n)) and trading the x-sum
by an integral in (1), we have,

1 1
Z(0,Ny) = /dpdpfexp{m) —§Tr|P|2+§Tr log |z + P|?

Y LS4 P\ /2 2

where z = diagm;e?/Ns. The logarithm in (13) is multivalued and its 27
determination will be assumed. In analogy to the quenched case, the approx-
imation of the sum by an integral should be valid for n~mn, >mXxip, where
we substituted the quenched topological susceptibiliy x., by the unquenched
one Xiop < X«- For small masses xiop gets screened (see Appendix C).




60 Vacuum: a Matriz Model 1305

To keep a tab on the validity of trading the y-sum by an integral, we
observe that for Ny =1 and z = me', an exact form can be reached for

2(0,1) = ((z+ P)™ (2 + P1)"- ) (14)
followed by the substitution P — W in the measure (2). Here P is a complex

variable. Because of (11), the same partition function can be written as

o0
Z0,1)= Y exle X /Vx7, (15)

X=—00

where Z, is the partition function for fixed asymmetry x. Again for a peaked
distribution N ~ (n), so that

o\ Y2 I <N+x+2> Ntyt2 N2
‘ _ 2 X m
7o Xa—Nm?2/2 F 1:
< ) mmXe T+ 1) 1k 2 X+ 1 9 )
(16)

where 1 F; is Kummer’s (confluent hypergeometric) function. For even Yy,
it reduces to an associated Laguerre polynomial in Nm?. We note that
for N — oo with Nm and x fixed, Z, ~ I,(Nm) which is the expected
generating function for the microscopic sum rules [22].

4.2. Saddle-point approzimation

Without loss of generality, we can set P = diag pjei(‘g/Nf*@), so that
the unsubtracted free energy associated to (13) reads

Ny
U
F = > [p? — log (p? + 2mpj cos ¢p; + m?)}
=1
N, , 1/2 2
X my +pje d2 1
+2 0 + arg H(mj+pjei¢j) +mod27 | . (17)

j=1
We note that for Ny = 0 (17) reduces to (5). For small masses
m; K xx ~pj~1

and (17) simplifies to
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Ny
F = el <p?—logp?—2ﬁcos¢j>
2 — Dj
]_
1 Ny Ny 2
s
+§x* 0—Z¢j+mod27r —i-zp—‘]sinq%' (18)
=1 i=1

to order O(m?). The saddle point in the p’s decouples and gives p; =
1 —mj/2cosf + O(m?). To the same order, the saddle point in the ¢’s is
Ny
0= Z¢j +O(m) and mysing; = ... = my,singy, . (19)
7=1

These equations were derived using large N, arguments [12,13] and anoma-
lous Ward-identities [5].
For Ny = 1, we have

¢:9+m<%—1) sin§ 4+ O(m?) (20)

for which the subtracted free energy is AF = n,m(1 — cos6).
For Ny = 2, we have

in6
singy p = %+ 2151 (21)
V/m? +m3 + 2mymacos 0
and the subtracted free energy now reads
1
—AF(0) = |m1 + ma| — \/m% +m2 + 2myma cos @ . (22)

Ny

For my = my a cusp develops at 8 = 7, since AF () = n.|m|(1 —|cos6/2|).
In this case both numerator and denominator vanish in (21), hence any
value of ¢1 and ¢9 is allowed provided that ¢1 + ¢2 = 7. A similar behavior
was noted by many [5,12,13,23,24], following the spontaneous breaking of
strong C'P.

For Ny = 3, the explicit solutions to (19) are in general involved, thereby
making an analytical form for the free energy involved. At 6 = &, however,
the analysis simplifies. Using (19) we obtain a trivial solution with one of
the ¢’s being m and the others zero, and a non-trivial one,

2.2 2.2 2.2
mami + mizms — mims;

oS ¢p3 = (23)

2m§m1mg
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which is doubly degenerate for
mime > m3|m1 — m2| . (24)

The trivial solution corresponds to no cusp at # = m, while the non-trivial
one yields a cusp at 8 = m because of the double degeneracy. Again similar
observations were made using effective Lagrangians [12,23,24] and anoma-
lous Ward identities [5], where (24) is known as Dashen’s condition [25]. For
sufficient flavor breaking (24) is not fulfilled and strong C'P is not sponta-
neously broken. This is the case in nature where ms > mq, ma.

4.8. Numerical analysis for Ny =1

In Fig. 3 (left) we compare the fixed size results for the free energy with
(n) = 14 (circle) and (n) = 100 (plus) over one period?, using single precision
(16 digits) numerical calculations for m = 0.5, x. = 1. The saddle point
solution is indicated by the solid line. Increasing the size of the matrices
worsen the agreement with the saddle-point result (solid line). The reason
is that for m/2 the integrand in the sum develops alternating signs with
large numerical cancellations. The breakdown of the numerical calculation
takes place at 6, ~ —(In €)/((n)x*) with ¢ the numerical precision. These
observations are new as they pertain to the unquenched free energy.

0.8

0.6

0.4

Fig.3. Unquenched free energy for fixed size matrices (left) and varying size ma-
trices (right) at intermediate mass.

In Fig. 3 (right) we show the same results after averaging over the size
of the matrices (with o,=1), restoring the 27 periodicity. Changing the
Gaussian measure in n to a uniform one with |n — (n)| < 6 does not make
a noticeable change on the figure. We compare the low (16 digits, cir-
cles) and high (64 digits, boxes) precision calculations for an averaged size
(n) = 14 using an ensemble of 500000 matrices. Large size samplings at

2 Since (n) is fixed even, the periodicity is 7 and not 27 as noted in Section 3.1.
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large 0 requires ezponentially larger precision. Much like the quenched case
we observe the same dependence on n ~ n,, causing a departure from the
saddle point results at 8 ~ 0.67 for n = 1.

Since the n > 1 region is unaccessible by direct use of random matrices,
we will use the partition function for fixed asymmetry Z, in (15) in the
saddle point approximation and perform the final sum in (15) numerically.
We have checked that the saddle-point result agrees with the result obtained
by averaging over large ensembles of matrices with fixed x for n = 1. We
refer to this analysis as quasi-analytical and the results are shown in Fig. 3
(right) for n = 1 (dotted line) and n = 4 (dashed line).

For small masses and 6 < 7/2 the free energy in the saddle-point ap-
proximation is F(0) ~ n,m(1 — cos@) with no cusp whatever 6. For large
m a cusp at 8 = w develops, following the decoupling of the flavor (roughly
m ~ Nfxs). In Fig. 3 the occurence of a cusp for m = 0.5 and n = 4 is
an artifact of the quasi-analytical analysis where only the saddle-point in x
is retained (see above). Indeed, the numerical results from this procedure
are compared with the standard saddle-point approximation (see previous
section) in Fig. 4 for m = 0.001 (small mass) and n, =n =1 ((n) = N).

0.005

—-AF(B)

0 4 T2 32 n
Fig. 4. Unquenched free energy AF () for Ny = 1. See text.

We may now ask if a levelling in the free energy occurs for small masses m.
As we wrote in Section 4.1 this takes place for n < mxiop. However, due
to the screening of the topological charge by the fermion determinant for
small masses we expect xiop ~ m (see Appendix C) so that the levelling is
ruled out for reasonable values of n. We note that the macroscopic limit is
reached only for Nm large. For N = 200 (Nm < 1) many modes are still
missing in the sum (15) (dotted line). For N = 10* (Nm > 1) and 0 < 7/2,
the quasi-analytical procedure (solid) and the saddle-point approximation
(dashed) are in agreement.

Finally, we now ask whether the standard saddle point method fails for
6 > /2, leading possibly to a cusp at § < =, contrary to expectations. For
Ny =1 we can calculate the fixed asymmetry partition function exactly (16)
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and use it for a comparison with the quasi-analytical procedure (see above).
The outcome confirms the standard saddle point result with no cusp at
0 = m, and rules out the quasi-analytical result for large values of 8. We con-
clude that the saddle-point approximation carried prior to the y-resumma-
tion is only valid for # small (the 1/N terms at large 6 are important), while
the one carried after the y-resummation is valid whatever 6.

We have numerically checked, that most of the present observations carry
to Ny > 1. In particular, a cusp may form in the latter for sufficiently degen-
erate quark masses, in agreement with the saddle point analysis discussed
above.

5. Conclusions

We have analyzed the effects of a finite vacuum angle 6 on the vacuum
partition function described by a matrix model, both in the quenched and
unquenched approximation.

The numerical lessons are:

1. In the quenched case, we have found that the free energy exhibits a
cusp at finite 6. that is sensitive to the precision of the numerical
analysis. For 8 > 6. we observe that the free energy does not depend
on #. On this point, we are in agreement with the lattice analysis [9].
However, we have further noticed that the results are also sensitive to
the maximum density of winding modes n (for a small compressibility
or a peaked distribution in n, n is similar to n,, the mean winding
density). In particular the flattening out of the free energy occurs
at @ = 0, and remains stable once high enough numerical precision
is reached. It is only for large enough m > myx, that the position of
the cusp is moved to # = 7 for high enough precision (and only then
the saddle point result (5) is recovered). This observation may be
of relevance to the lattice results [7,9]. In this context, it would be
interesting to compare the lattice distributions for ny in [7,9] to the
Gaussian ones we have used in our work.

2. In the unquenched case, a similar dependence on n is found, where
n is also interpreted as the maximum density of zero modes. For
sufficiently large n and large masses the quenched results are recovered.
Each mass decouples at m ~ x, although for large and degenerate
masses m ~ Nyx, (in units where the quark condensate is one). For
Ny =1 and small masses with mV > 1, the screening of the topological
charge takes place, and the saddle point solution holds without any
cusp. For Ny = 2,3, the numerical results are found to agree with
a saddle-point analysis, and results from anomalous Ward identities
and effective Lagrangians. A cusp at 6 = 7 occurs for sufficiently
degenerate quark masses.
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The physics lesson is:

It appears that the density m. of winding modes for Yang-Mills theory,
or the density n of zero modes for QCD play a fundamental role in the 6 vac-
uum. Indeed, in the matrix model the vacuum energy becomes independent
of 8 > 6, for sufficiently low densities for both the quenched and unquenched
calculations, in disagreement with the saddle-point results. The existence
of a finite 6, in QCD depends crucially on how low are these densities, a
question that can only be settled dynamically. If 6. happens to be zero in
QCD, then QCD solves its strong C'P problem dynamically.

We would like to thank G. Shierholtz and A. Zhitnitsky for discussions,
R. Crewther for comments, and W. Bietenholz for bringing Ref. 8] to our
attention. I.Z. thanks U. Wiese for an early discussion. This work was
supported in part by the US DOE grants DE-FG-88ER40388 and DE-FG02-
86ER40251, by the Polish State Committee for Scientific Research (KBN)
grant 2P03B00814 and by the Hungarian grant OTKA-F026622.

Appendix A
Alternative saddle-point with Ny =1

An alternative saddle-point analysis can be directly performed for fixed
X using representation (15). For that, we define

X = —iny. (A1)

The solution for the saddle point equations gives

—m? £ /mt+4(m? —y2) iy

P, = Y
°p 2z +z’
—m2+ 41 A(m2 — 12 :
p = Tl Vml At o) iy (A2)
2z z

For a peaked distribution in n we expect n ~ (n). The Py,’s are related to
the condensate by

. 1 U ; —i

~ilq'q) = —-0mlog Z = = (nge“‘) + Pye 19) : (A.3)
The value of y is fixed by requiring the vanishing of the term proportional
to x. Hence, the consistency condition reads

1 D+ 1y
)

+2i0+ 22 =0 or arctan% 1o+ 0 0, (A4

-y X X
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where D = (m? & y/m?* + 4(m? — y2))/2, with y satisfying
m+—nJ:MMV%%ﬂfw—f@€w):ndp (A.5)

In the consistency condition, the principal branch of the logarithm is re-
tained, making the saddle-point result manifestly 27 periodic in §. We note
that the present derivation is equivalent to performing the saddle-point cal-
culation for y without substituting the form (A.2) for Ps,’s. The associated
free energy is

1 . D2 2 1 2 .
F:—vlogZ(O):—%Oog[ +y] Y 2_Tx o

m——y).mm

m?2 | D24y?2 X+

The subtracted free energy is VAF(0) = —In Z(0)/Z(0).

Appendix B
Topological density

The topological density (n, —n_) measures the difference between the
number of zero modes with plus and minus charges, in the volume V fixed
by the width of the quenched topological susceptibility x,. This is also the
amount of U(1) charge in the vacuum state thanks to (12). At the saddle
point (Ny =1)

m

1.
(ny —n_)= vzag InZ(#) =n,V 5

(PSTpew - Pspe*i") —n.y. (B.1)

We see that y measures directly the topological density at the saddle point.
For a large mass m

0 1 «
Y="1T ", X*0<1_ x 2) (B-2)
while for a small mass m

* -2 * .
+y = —mtan 6| cos 6| — m2X4712 sin260 + O(m?). (B.3)
X

*

The + solutions correspond to the transformation 6 < —@, whereas the
absolute value corresponds to the change of the branch in the solution of the
consistency equation.
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Appendix C
Topological susceptibility

The topological susceptibility measures the variance of (n; —n_) in the

vacuum state at finite 6. It is simply xtop = —0y/00 n.. In the large mass
limit
Xiop = X (1 = =2 ) + O(m ) (C.1)
P n,m?2 ’

giving Xtop = X+ in the quenched case (m = oo0). In the small mass limit
and |0| < /2,

* 2 *
Xtop = Msm | cos O] + n*m2X27n cos 20 + O(m?). (C.2)

*

For 6 > m/2 we have ((n4 —n_)?) < 0, which is possible since the measure
is not semi-definite.
The quark condensate for large masses is

—mwzﬁ@—xzﬂ (C.3)

m n2m?

and for small masses is
ot 1 Xx — 2Ny . o 2
—1{q"q) = n, cosd — n.m 5 + T 0]+ 0(m). (C.4)
X+

The anomalous U(1) Ward identity is given by

Xiop = —im{q'q) = m* (q'5q ¢'759) - (C.5)
N—

Xps

For small masses, the insertion of (C.2)-(C.4) into (C.5) yield

1 X — 27 9
Xps = —MNy <§ + T COSs 9) (CG)

for the pseudoscalar correlator (rightmost term in (C.5)). It is finite in the
chiral limit. For 6 = 0 we recover the result [26]. For large enough n, > x.
at certain finite angles the pseudoscalar correlator becomes zero. For large
masses we have xps = (1. —Xs)/m?. The present relations generalize readily
to Ny > 1.
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Appendix D
Resolvent for fized x
The resolvent for the matrix model considered here reads
1 1

wt  ime i

Since the overlap matrix elements do not mix different flavors the resolvent
splits into a sum of 1-flavor resolvents and we get effectively N; copies of
the appropriate 1-flavor eigenvalue distributions.

Since the matrix is nonhermitian it turns out that the eigenvalues lie on
a curve (more precisely on two intervals — see below). This comes from the
decomposition (Ny = 1)

. 10 .
ime w . —msinf w
< Wt ime—if ) =4mcosf 1+ < W i sin 0 ) . (D.2)

So the eigenvalues are just the eigenvalues of the two-level Hermitian chiral
system displaced by im cosf. We will write 2/ = 2 — 9m cos 6 and introduce
the self energies defined by

<Z_<imei‘1 W_w>>:< % % ) (D.3)

wt ime

Taking into account the fact that the random matrices are asymmetric, we
obtain the following equation for the self-energies

1_¢
X = 2 D.4
! 2zl —msinf — Xy’ (D4)
1+ 3
X = ) D.5
2 z' + msinf — X (D5)
with = x/N. The trace of the resolvent is just (X; + X9)/2. Hence
Ly 1-2+% m sin 6
G(z) =7 7z 7 x, (D.6)
2 20
where 0 = 2/> — m?sin? . The eigenvalues lie on two intervals determined
by
2
22— m?sin®0 = 2 (D.7)

cut 2+ /4 — 12
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and, for asymmetric matrices, there are additional Dirac delta spikes at
z = msinf when y is negative and at z = —msinf when Y is positive.
Explicitly the eigenvalue distribution reads (A = Ag + iAf)

v(A) = 0(Ar — mcos0)

o2

1 4 2
x{xé(AR+msin0)+2—()\R—msin0) 1__+x_} (D.8)
™ o

for x positive and
v(\) = 6(Ar —mcos@)

. 1 . 4 z?
x{|x|5()\R — msinf) + %(AR —msinf)4/1 — - + ;} (D.9)

for x negative. The structure of these distributions is not universal, but may
be useful for understanding the 6 structure from the bulk QCD spectrum
using cooled lattice gauge configurations.
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