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Thermostatistical properties of symmetric and asymmetric nuclear mat-
ter are studied in the framework of the relativistic mean field theory at a
finite temperature. The statistical description via the grandcanonical po-
tential produces an equation of state, which describes the nuclear liquid-gas
phase transition as first order. The transition occurs at an excitation energy
of 15-16 MeV per nucleon, and a density of 0.3-0.4 symmetric matter satu-
ration density. This result is in accordance with the results of experimental
observations of fragment distributions in heavy-ion collisions.
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1. Introduction

Intensive experimental and theoretical investigations in heavy-ion reac-
tions at energies ranging from a few tens to a few hundreds of MeV per nu-
cleon revealed that the breakup of nuclear systems into complex fragments
(Z > 3) is the most important reaction mechanism [1]. The basic feature is
the possibility of a liquid-gas phase transition in nuclear matter [2].

Considerations based on an appreciable amount of experimental data
indicate that the mechanisms responsible for the breakup of nuclear matter
into complex fragments are of statistical nature, i.e., the relative fragments
multiplicities depend only on the excitation energy of the system, being
independent on the colliding nuclei and bombarding energy [1].

In this work thermostatistical properties of symmetric and asymmetric
nuclear matter are studied in the scheme of the Relativistic Mean Field the-
ory (RMF) at a finite temperature. With a very limited number of param-
eters, RMF theory is able to give a quantitative description of ground-state
properties of spherical and deformed nuclei at and away from the stability
line [3].

(1333)
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A brief review of the relativistic mean field theory is provided in Sec-
tion 2. In section 3 the statistical description of the thermal properties of
nuclear matter via the grandcanonical potential is used to derive the Equa-
tion of State (EOS), and to describe the nuclear liquid-gas phase transition.
The main results are summarized in Section 4.

2. Relativistic mean field theory

In the relativistic mean field theory (RMF) with o, w, and p mesons [4]
the self-energy X' has the form:

¥ =5+, (1)
and is given by the sum of the contributions of the three mesons:
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p
73 = +1 for protons and —1 for neutrons. g; and m; (i = o,w, p) are the
coupling constant and the mass of the i-meson. go and g3 are the constants
of the non-linear coupling.
At a finite temperature T' (5 = 1/T) the scalar density ps and the baryon
density pp are given by [5]:
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mpy is the mass of the nucleon.
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Given the baryon density pp, the chemical potential y is determined
from Eq. (6).

The proton density p, and the neutron density p, are the positive and
the negative isospin components of the baryon density pp = pp + pp, and
the asymmetry parameter ¢ is defined by:

PB
The energy density is given by [6]:

e = py+ (my+ 255) ps + 3Z0pn
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with: o
po == [ 0 (F-0) + £ (0) (13)
0
The energy per nucleon is given by:
E e
(5) toms == 14
The entropy per particle is given by [5]:
— fﬁdp[f (D)0 (p) + 11 (p) 0 . (p)
T2pp / - - " "
+(1=f(p)In(l-f (p))
+ (1= f4(p) In(1 - f1(p))] - (15)
TABLE I

Parameter set NL3 and nuclear matter saturation properties. pg is the saturation
density, a, the saturation energy per particle (volume energy), a4 the symmetry
energy, and M the reduced mass at saturation density.

Meson o w p
m; (MeV)  508.194  782.501 763
gi 10.217 12.868 4.474
g2(fm™1)  -10.431
g3 ~28.885

po(fm™7)  a, (MeV) a4 (MeV) M/my
0.148 -16.299 37.4 0.60
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In this work, relativistic mean field calculations are carried out using the
parameter set NL3 of Ref. [3], which is given in Table I, together with the
saturation properties of nuclear matter it produces.

3. Liquid-gas phase transition in the nuclear equation of state

Figure 1 shows the change of nucleon energy with increasing temperature
for symmetric matter. The one-nucleon excitation energy is defined as the
difference between the nucleon energy at T' and its ground-state energy:

E*

FE E
X(pB,(S,T):Z(,OB,(;,T)—Z([)B,(S,T:O). (16)

It can be inferred from figure 1 that at a given temperature T, the one-
nucleon excitation energy is higher at lower densities. This is in accordance
with the non-relativistic results of Ref. [7].
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Fig. 1. Change of nucleon energy with increasing temperature for symmetric mat-
ter.

The thermodynamical properties of a system can be obtained by means
of the grandcanonical potential density:

w(T,p) =e—ppp —Topp. (17)

The last term includes ppg, since o was defined in Eq. (15) as the entropy
per particle. opp is therefor the entropy density.
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Since pressure is given by [8]:

012

= 1

p =
where 2 is the grandcanonical potential, and since at a given temperature
T the chemical potential u, the energy density e, and the entropy density
opp are all given as a function of pp and §, we receive the nuclear matter
equation of state:

p(pBa 65 T) = TpBO'(pB, 65 T) + pBM(pBa 57 T) - e(pBa 65 T) . (19)

The basic feature observed in heavy-ion reactions at energies ranging from a
few tens to a few hundreds of MeV per nucleon is the possibility of a liquid-
gas phase transition in nuclear matter [2]. A clear signal of liquid-gas phase
transition in nuclei is hinted at from the experimental caloric curve obtained
in Au + Au collisions at 600 A MeV [9]. In the excitation energy range of
4-10 MeV per particle, the temperature T is found to be almost constant at
a value of T ~ 5 MeV. The excitation energy range, over which 7' remains
constant, could be termed as the latent heat of vaporization.

Investigations of the nuclear liquid-gas phase transition through heavy-
ion reactions are based on three assumptions, which are not confirmed. The
first assumption is that equilibrium thermodynamics is applicable for such
a small system of a few hundred nucleons. The second is that a thermalized
uniform system is formed before multifragmentation takes place. And the
third is that the fragment distribution is directly related to the state of the
thermalized uniform system before it breaks up.

Based on these assumptions, canonical ensemble models may be used in
order to describe nuclear multifragmentation phenomena [10]. The main in-
gredient in the present analysis is the nuclear equation of state, based on the
relativistic mean field theory. The mean field approximation is thermody-
namically consistent, 4.e., it satisfies the relevant thermodynamic identities
and the virial theorem [2]|, and a possible relation of the liquid-gas phase
transition in the nuclear equation of state to the actual phase transition
observed in heavy-ion reactions may be assumed. Although such analysis
oversimplifies the problem, it provides a concrete description of the phase
transition process in terms of a critical point, at which the transition oc-
curs [2,10,11].

Two remarks should be added at this stage. The first concerns the use of
more advanced approaches than the RMF for the study of the nuclear liquid-
gas phase transition. For example, the use of the Relativistic Brueckner—
Hartree-Fock approach [11]. Calculating RBHF at a finite temperature is
numerically not an easy task. Furthermore, correlation effects disappear
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beyond T ~ 3 MeV. There is no need to do RBHF calculations in order
to study the liquid-gas phase transition, which occurs at a much higher
temperature. RMF is suitable for the study of phase transitions in nuclear
matter.

The second remark concerns relativistic dynamical calculations, where
the transition is described as two-dimensional in the case of asymmetric
nuclear matter [2]. Ref. [2] assigns each phase a different asymmetry due
to different dynamics, adding an extra degree of freedom. In the statistical
calculations presented, the asymmetry is fixed, 7.e., has the same value for
both phases. The effects of allowing gas and liquid phases to have different
asymmetry values on the transition will be discussed at the end of this
section.

Figure 2 shows the pressure as a function of baryon density at different
temperatures for symmetric matter. Figure 2 indicates the occurrence of a
phase transition at a temperature close to 15 MeV.
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Fig.2. Pressure as a function of density at different temperatures for symmetric
matter.

The critical temperature T, of the nuclear liquid-gas phase transition is
determined within 0.5 MeV. The critical density p. is the density, where the
function p(pg, T, ) has its turning point, and is determined within £0.01fm 3.
The critical pressure p. is the pressure at p. and T, and is determined within
+0.05MeV/ fm?®. The one-nucleon critical excitation energy E} /A is the one-
nucleon excitation energy at the critical point, and is determined within
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+0.5 MeV. Table II lists the critical properties observed for different values
of the asymmetry parameter. Notice the decrease of all critical quantities
with increasing asymmetry. This is in accordance with non-relativistic [7]
and relativistic dynamical [2] results.

TABLE 11

Critical properties observed using the parameter set NL3 of Table I for different
values of the asymmetry parameter §. T, is the critical temperature, p. the critical
density, p. the critical pressure, and E* /A the critical excitation energy per particle.

0=00 6=02 6=05

T. (MeV) 15.0 14.0 11.5
pe(1/fm?) 0.05 0.05 0.04
pe(MeV/fm®)  0.20 0.20 0.15
E*/A (MeV) 155 14.5 11.0

The phase transition occurs at an excitation energy of 15-16 MeV per
nucleon for symmetric matter, and a density of 0.3-0.4 nuclear matter sat-
uration density. To compare this results with the experimental values of
Ref. 9], i.e., excitation energy of 10 MeV per nucleon and a density of
0.15-0.30 normal nuclear density, one should notice that finite nuclei are
composed of a limited number of nucleons. This has a broadening effect on
the phase transition, which results in a reduction of the critical temperature.
Furthermore, finite nuclei are not surrounded by an external pressure field,
and will expand prior to their disassembly. This results in a reduction of
critical density.

Beyond the critical temperature, nucleon—nucleon forces are no more
able to affect the thermal behavior of the nucleons. The pressure grows
monotonically with density. For neutron matter this is the case even at
T = 0. The liquid-gas phase transition cannot be observed in the case of
neutron matter, i.e., neutron matter is stable against the transition. This
result is identical with the result of the dynamical calculations of Ref. [2].
A maximum value of the asymmetry parameter dpax exists, ca. 0.9, beyond
which nuclear matter is stable against the transition.

Figure 3 shows the one-nucleon entropy as a function of temperature un-
der constant pressure. To clarify the results, /T is depicted. The transition
is first order. Amount of latent heat:

QL =T. Ao (20)

has to be transferred to the system during the transition, where Ao is the
entropy change at the critical temperature. Figures 4 and 5 show that the
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transition is first order in the case of asymmetric matter too. Allowing gas
and liquid phases to have different asymmetry values, as done in Ref. [2],
smears the S-shaped curves seen in figures 4 and 5, leading to a second order
transition in the case of asymmetric nuclear matter.
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Fig.3. Specific entropy as a function of temperature under constant pressure for
symmetric matter. To clarify the results, o /T is depicted.
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Fig. 4. Similar to figure 5, but for § = 0.2.
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Fig. 5. Similar to figure 5, but for § = 0.5.
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4. Summary

At a given temperature T' the one-nucleon excitation energy is higher at
lower densities.

The statistical description via the grandcanonical potential is used to
derive the nuclear matter equation of state. The liquid-gas phase transition
occurs at an excitation energy of 15-16 MeV per nucleon, and a density of
0.3-0.4 of symmetric matter saturation density, in accordance with experi-
mental observations.

All critical quantities decrease with increasing asymmetry. Neutron mat-
ter is stable against the transition. A maximum asymmetry value dpax exists,
beyond which nuclear matter is stable against the transition.

The transition is first order for both symmetric and asymmetric matter.
Allowing gas and liquid phases to have different asymmetry values leads to
a second order transition in the case of asymmetric matter.

The author acknowledges financial support by the Syrian Atomic Energy
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