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Markovian diffusion processes yield a system of conservation laws which
couple various conditional expectation values (local moments). Solutions of
that closed system of deterministic partial differential equations stand for
a regular alternative to erratic (irregular) sample paths that are associated
with weak solutions of the original stochastic differential equations. We
investigate an issue of local characteristics of motion in the non-Gaussian
context, when moments of the probability measure may not exist. A partic-
ular emphasis is put on jump-type stochastic processes with the Ornstein—
—Uhlenbeck—Cauchy process as a fully computable exemplary case.

PACS numbers: 02.50.Ga

1. Local characteristics of the Brownian motion

Lets us consider a Markov process X; in R'. We can fully characterize
an associated random dynamics by means of a transition density p(y, s, z,t)
with 0 < s < t and an initial density po(z) = p(z,t0),0 < to. For the
stochastic process to be properly defined we impose the so-called stochastic
continuity condition:

lim
t—sstt—s

/ p(y, s, z,t)de =0 (1)

ly—z|>e

to be valid for arbitrary (every) e > 0 and for almost every y € R'. That is
known to imply that along a sample path w there holds

lim Plw: |X;(w) — Xs(w)| > €] =0.

t—st
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This condition needs to be respected by both diffusion and jump-type prop-
agation scenarios and is known to be necessary but still insufficient for the
Markov process to have continuous trajectories.

Various characteristics of random motion can be directly associated with
properties of sample trajectories (consider for concreteness the iterated log-
arithm laws in the Brownian motion). Those characteristics of random dy-
namics that are free of irregularities of sample paths, need to involve some
forms of averaging. That refers either to global averaging present while
evaluating moments of a probability measure (provided they exist) or to the
evaluation of local moments of that measure.

Given a transition probability of a Markov process, we can attempt to
derive a number of local expectation values, like e.g. the forward drift of the
process:

b(z,s) = lim !

tsstt— s

/ (y — z)p(z,8,y,t)dy (2)

ly—z|<é

and the diffusion (coefficient if a constant) function

D(z,s) = lim

t—sstt—s

/ (y — z)?p(z, s,y,t)dy . (3)

ly—z|<o

where the 0 cutoff is needed to guarantee a convergence of the integral. In
principle, the drift and diffusion functions should take values independent
of the J-cutoff and/or exist when the cutoff is removed (once we let § go
to o). However, for the jump-type processes, local moments (e.g. drifts
and diffusion functions) in the absence of a cutoff are generically nonexistent,
while in a cutoff version they display an explicit and nontrivial é-dependence.

As yet, our discussion extends to both continuous and discontinuous
processes. Let us explicitly reveal when a diffusion process enters the game.
By assuming that holds for

. 1
lim
t—st t —

. / ly — 2*"p(z, s,y t)dy =0 (4)
R
for any v > 0, we set a sufficient condition for the continuity of sample
paths (to hold true almost surely), that also allows to remove the previous
o-cutoff from local moment formulas. The resulting process is a Markovian
diffusion process with the forward drift b(x, s) and diffusion function D(z, s).
Our further discussion will be carried under a simplifying assumption that
a diffusion function D(z,s) actually is a constant which we denote by D.
Our previous considerations, when specialized to Markovian diffusion-
type processes, can be cast in another form. Namely, we can depart from a
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formal infinitesimal version of a stochastic differential equation for a random
variable X; = X(t) taking values in R!:

dX; = b(X(t),t)dt + V2DdW; (5)

where W; = W (t) is a Wiener process and b(z, t) stands for the forward drift
of the diffusion-type process Xj.

If we assign a probability density po(z) with which the initial data
29 = X(0) for the stochastic differential equation are distributed (weak
solutions enter the scene), then the emergent Fick law would reveal a sta-
tistical tendency of particles to flow away from higher probability residence
areas. This feature is encoded in the corresponding Fokker—Planck equation
(equivalently, a continuity equation):

Op=—V- (U:O) ) (6)

where a diffusion current velocity is

v(z,t) = b(z,t) — D———=. (7)

Clearly, the local diffusion current (a local flow that might be experi-
mentally observed for a cloud of suspended particles in a liquid) j = wvp
is nonzero in the nonequilibrium situation and quantifies a non-negligible
matter transport which occurs as a consequence of the Brownian motion, on
the ensemble average.

It is interesting to notice that the local velocity field v(z,t) obeys the
natural (local) conservation law, which we quite intentionally pattern after
the moment identities (hierarchy of conservation laws) valid for the Boltz-
mann and Kramers equations. The pertinent momentum conservation law
originates directly from the rules of the It6 calculus for Markovian diffusion
processes, and from the first moment equation in the diffusion approximation
of the Kramers theory:

v+ (v-V)o=V(2-0Q). (8)
The general form of an auxiliary potential £2(z,t) reads:

1/ b2

Q(z,t) = 2D [at¢+§ <E+v-b)] 9)

and can be interpreted as a constraint equation for the admissible forward
drift b(z,t) = 2DV ¢(x,t). Tt is useful to mention that the above momentum
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conservation law may be regarded to account for effects of external (conser-
vative) volume forces —V(—{2) which are determined by a priori arbitrary,
but bounded from below, continuous function §2(z,t). Then, the allowed
forward drift must be disentangled from the Ricatti-type equation (9) as a
function of 2.

In the above there appears a contribution from a probability density
p-dependent potential Q(z,t). It is given in terms of the so-called osmotic
velocity field u(z, t):

Q(z,t) = Lu®> + DV -u,
u(z,t) = DVinp(x,t), (10)

and is generic to a local momentum conservation law respected by isothermal
Markovian diffusion processes. Notice that in case of the free Brownian

motion (admitted, if we set £2 = 0), we would have v(x,t) = —u(zx,t) for all

times. An equivalent form of the pressure-type potential Q is Q = 2.D? Apfjf .

It is interesting to observe that a gradient field ansatz for the diffusion
current velocity (v = V.9):

Orp = =V - [(VS)p] (11)

allows to transform the momentum conservation law of a Markovian diffusion
process to the universal Hamilton—Jacobi form:

Q=05+ %VS”>+Q, (12)

where Q(z,t) was defined before. By applying the gradient operation we
immediately recover the previous local momentum conservation law.

Notice that the above Hamilton—Jacobi-type equation is sensitive to any
additive (constant or time-dependent) modification of the potential (2. In
the above, the contribution due to @ is a direct consequence of an initial
probability measure choice for the diffusion process, while 2 alone does
account for an appropriate forward drift of the process.

The simplest realisation of the outlined theoretical framework can be
provided by invoking a standard Ornstein—Uhlenbeck process. Namely, let
us consider an It equation (in its symbolic differential version) for infinites-
imal increments of the velocity random variable, exhibiting the systematic
frictional resistance:

dV (t) = =BV (t)dt + BV2DAW (1), (13)

where W (t) is the normalized Wiener process. One can easily infer the
corresponding second Kolmogorov (Fokker-Planck) equation

3tp(007“at) = /BDAU + /va ' [UP(anvat)] (14)
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for the transition probability density of the time homogeneous process in
the velocity space alone. The pertinent transition probability density reads:

1/2 _ —Bty2
m m (v —wee™ ")
t) = ' :
plvo, %) <27rkT(1 - e25t)) eXp{%T 1—e bt } 1

Let us consider an instantaneous velocity V; = v, that has been achieved
in the course of the Ornstein-Uhlenbeck random evolution beginning from
a certain V) = vg. We can evaluate a conditional expectation value (local
mean with respect to the law of random displacements) over all randomly
accessible velocities V (t+At) = v at a time t+At, At > 0. That determines
the forward drift of the process:

b(v,t) = kiﬁ) [/ v'p(v, 0, At)dv' — v | = =P (16)

and thus provides us with an information about the mean tendency of the
dynamics on small (but not too small if compared to the relaxation time S~1)
scales. Analogously, we can derive a diffusion function for the Ornstein—
Uhlenbeck process which is constant and equals 2D /2.

To arrive at local conservation laws, an additional input of an initial
probability density po(v) of Vy is necessary. To that end, one may choose
an asymptotic stationary (invariant, Maxwell-Boltzmann) density of the
(gmier)'/ expl ).

Ornstein—Uhlenbeck process: pg(v) =

2. From Poisson probability law to jump-type processes

A random variable X taking discrete values 0, y, 2y, 3y, ..., with y > 0 is
said to have Poisson distribution P(X), A > 0 With jump size y, if the prob-
ability of X = ky is given by P(X = ky) = k, exp( A). The characteristic
function of P(A) reads:

E [exp(ipX)] = exp[A(e™Y — Ze Z_eik(py) — Zeik(py)P(X = ky)
0

(17)
and the first moment of the probability measure equals E[X] = X. Notice
that P(X = 0) = exp(—A\), hence the numerical value of A > 0 fixes the
no-jump probability. For the Poisson random variable with values b + ky,
k=0,1,... we would get Elexp(ipX)] = explibp + A(eP¥ — 1)].

If we consider n independent random variables X;,1 < j < n such that
X has Poisson distribution P();) with jump size y;, then a new variable
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X can be introduced by means of the distribution of X7 + ...+ X, whose
characteristic function reads

Elexp(ipX)] = exp [Z Aj (e™¥ —1) ] . (18)

=1

The exponent in the above might include an additional term ip Y 7 b; if
nonrandom shifts of each jump ky; by b; were allowed.

We can admit not only jumps of fixed magnitudes y1,...,y, but also
jumps covering an arbitrary range in Ry . Let the distribution function of
the magnitude of the jump be P(x < y) = p(y). In this case we set

Blexp(ipX)] = exp [ / (e — 1)u(dy)] (19)

Ry

assuming that the integral in the exponent exists. (Notice that the previous
formula is recovered, if we choose p(dy) = >°7_; A;j0(y — y;)dy.)

For any Borel set A C R bounded away from the origin, the random
variable X 4 representing jumps bounded by A, gives rise to a characteristic
exponent [, (€Y —1)du(y), and the expected number E4[X] of jumps of size
bounded by A is equal to pu(A). We can interpret that in terms of jumps of
different sizes that are mutually independent. Jumps whose size is bounded
by [y,y + Ay), Ay < 1, do contribute a Poisson component with exponent
function approximately equal to (e™¥ — 1)u([y,y + Ay)).

Let us consider an expression for a characteristic function of a prob-
ability measure of a certain random variable X that is given in the form
Elexp(ipX)] = exp[—F(p)] where p € R! and for —0co < p < +oc, F = F(p)
is a real valued, bounded from below, locally integrable function. If F(p)
satisfies the celebrated Lévy—Khinchin formula, then the pertinent measure
is positive and we may introduce positivity preserving semigroups, together
with the induced (Markovian) stochastic processes. Let us concentrate our
attention on the integral part of the Lévy—Khinchin formula, which is re-
sponsible for arbitrary stochastic jump features. In that case, F(p) takes
the form:

+o0 .
F(p) = — / [exp(ipy)—l— 1lfyy2 v(dy), (20)

where v(dy) stands for the so-called Lévy measure on R

A generic feature of jump-type processes is that they admit jumps of
arbitrarily small size (without any lower bound) and some care is necessary
when evaluating contributions from a close neighbourhood of the origin. One
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obvious way to bypass this problem amounts to an e-cutoff which allows to
neglect “too small” jumps. Namely, for a probability law with the charac-
teristic exponent —F'(p), we can consider its restriction to upward jumps of
size exceeding a given lower bound like e.g. to all y > ¢ > 0O:

61 = [ |1 72 vt = [ e - vavty) - vt

142
y>e y>e
Y
b = dy) . 21
= vty 1)
y>e

Clearly, we deal here with a random variable of the type considered
before, and we can try to isolate contributions from jumps of the size
[y, y + Ay) by coarse-graining a Borel set A of interest. A formal exploita-
tion of

v(dy) = Xd(y — y;)dy (22)
=1

gives rise to

n

Elexp(ipX)] = exp [Z [)\j(eipyj 1) - zpﬂ

23
1+y3 (23)

J=1

Further specializing the problem we shall consider Lévy measures that
obey the spatial reflection property v(—dy) = —v(dy). Then, we can readily
extend our discussion to jumps of all sorts in R!, i.e. y can take values in
both R4 and R_, with the only restriction to be observed that |y| > & > 0.
Notice that we shall deal with two distinct types of jumps, either positive or
negative, with no common jump point for them. This fact means that they
are independent components of the more general random variable:

$e(p) = / (€ — 1]u(dy) — ipbs (24)
ly|>e

where (choose v(dy) = % for concreteness) the deterministic term identi-
cally vanishes in view of

- Y Y
y>e y<—e¢
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In previous steps we have indirectly exploited a defining property of in-
finitely divisible probability laws: if exp ¢(p) is a characteristic function of
a given probability distribution, then [exp ¢(p)]' = exp[té(p)], t > 0 is like-
wise a characteristic function of an infinitely divisible probability law again.
This feature extends our discussion to the stochastic jump and jump-type
processes (time homogeneous with independent increments). Obviously, for
such processes Elexp(ipX (t))] = exp[td(p)] while E4[X ()] = tr(A), and
our previous arguments retain their validity with respect to

Elexp(ipX (t))]. = exp[tg:(p)] = exp [t / (e —1) V(dy)] . (26)

ly|>e

Coming back to the Lévy-Khinchin formula, let us replace a function
F(p) by an operator acting in a suitable domain according to the recipe:
F(p) — H = F(p) where p = —iV. We easily learn that for times ¢ > 0
there holds

[exp(—tH)]f () = [exp(=tF (p)) f (p)]" (x), (27)

where the superscript V denotes the inverse Fourier transform and f stands
for the Fourier transform of a function f.

If we set p; = \/%[exp(—tF(p))]V, then the action of exp(—tH) can be

given in terms of a convolution: exp(—tH)f = f % p;, where (f  g)(x) :=
[ 9(z — 2) f(2)dz. Clearly, there holds:
R

A

at,O(I,t) = H ( ) =

Ope(A,t) = / [/XA r+y) — xa()v(dy) | pe(z,t)  (28)
R

ly|>e

which displays a generic master equation form. Indeed, we have here
Oipe (A, t) = [ qe(z,t, A)p.(z,t)dz where ¢. is interpreted as the jump inten-
R

sity.

Let us however emphasize that the above simplification occurs only in the
ly| > € > 0 jumping size regime. The real role of two integral terms in the
expression for b, is to compensate the divergent contributions from the Lévy
measure when the principal value integral e — 0 limit is considered; then the
standard jump process theory does not literally apply since arbitrarily small
jumps are admitted. Anyway, those two terms are irrelevant if we assume
an £ > 0 cutoff, irrespective of how small the chosen (and fixed) ¢ is.

The best known example of the stable probability law that is compatible
with the above definitions is provided by the classic Cauchy density which



Local Characteristics of Random Motion 1429

will be our reference probability law in below. Let us focus our attention
on the case which is specified by F(p) = |p|. The corresponding semigroup
generator H= |V| is a pseudodifferential operator. The associated kernel p,
is a transition density of the jump-type Cauchy process, which is a solution
of a pseudodifferential Fokker—Planck equation:

duple,t) = ~|V|p(a,1). (29)

The pertinent probability density reads p(z,t) = %M#IQ and the cor-
responding space-time homogeneous transition density (e.g. the semigroup

kernel function) is:

1 t—s

p(x,t):;mﬁp(y,s,x,t):;(t_s)2+($_y)2, 0<s<t
{explipX (¢)]) := / exp(ipz)p(z,t)dz = exp(—|plt). (30)
R

The characteristic function of p(y,s,z,t) for y,s fixed, reads
explipy — |p|(t — s)], and the Lévy measure needed to evaluate the Lévy—
—Khinchin integral reads: v(dy) := limyo[+p(0,0,y,t)]dy = %.

The Cauchy process belongs to the category of jump-type processes,
where apart from the long jumps-tail (no fixed bound can be imposed on
their length) which is the reason of the nonexistence of moments of the
probability measure, sample paths of the process may have an infinite num-
ber of jumps of arbitrarily small size. By general arguments, pertaining to
the space Dg[0,00) of right continuous functions with left limits (cadlag),
both in the finite and infinite time interval the number of jumps is at most
countable.

An introduction of the e-cutoff which eliminates small jumps is fed up by
the physical intuition. An approximation of the jump-type process should
in principle be possible in terms of more traditional jump processes which
involve a finite number of jumps in a finite time interval. This radical approx-
imation assumption is usually achieved by giving a characterisation of the
affiliated Markovian jump-type processes in terms of approximating (con-
vergent) families of so-called step processes. The step processes are not yet
the jump processes of the standard daily experimental evidence. They need
to have no accumulation points of jumps in a finite time interval: in that
case the number of jumps is finite on each finite time interval and between
jumps the sample path is constant.

Let us recall that the operator |V| acts as follows:

yVi(z)] dy

Vi) = [ [+ - s - DL B @
R
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By turning back to the pseudodifferential Fokker—Planck equation with
the e-cutoff implemented, let us introduce an operator |V|.:

1 d
st = [ e+ - 1@, (32)
y|>€

It suffices to replace f by p. to arrive at the right-hand-side of the previously
defined Fokker—Planck equation for the step process approximant of the
Cauchy process. Its generator is just |V|..

While mitigating the “arbitrarily small jumps” problem, the e-cutoff does
not remove all obstacles related to the Cauchy process. Indeed, at the first
glance the situation looks deceivingly simple, because on a finite time interval
there can be at most finitely many points ¢ € [0,7] at which the jump size
exceeds a given positive number. In view of that, supte[O,TﬂXf | < oo where
X[ stands for the e-bounded Cauchy process (the same argument extends to
the unrestricted Cauchy process X;). However, there must be no fized upper
bound for the size of jumps (except for being finite), since a stochastically
continuous process with independent increments having, with probability 1,
no jumps of size exceeding a certain constant d, would possess all moments.
That is certainly not the case for the Cauchy process, which is known not
to have any moments.

Hence imposing or not imposing an upper bound on the jump size (call
it a ¢ cutoff) is another critical issue that hampers a reliable approximation
of the jump — type process in terms of experimentally verifiable jump pro-
cesses whose jump size is bounded both from below and from above. This
derives in part from to the resolution limitations of realistic experimental
arrangements (any experimental data collection and any computer simula-
tion/experimentation have built-in lower and upper jump size bounds), and
in part from the fact that all observations are carried in finite time on sys-
tems of finite spatial extension. Let us point out that by imposing both ¢
and § cutoffs on the Cauchy process, we would reduce the problem to the
standard jump process.

Obstacles related to heavy tails of the probability distribution can be
visualized by making computer experiments for the converging (in fact, di-
verging) variance test. Namely, given a sample of jumps determined by the
Cauchy distribution: X1, Xs,... X,,, with 1 < ¢ < n, one can form a statis-
tics based on first 7 “observations” and ask for the behaviour of the averages
with respect to i. First we need the i-th mean value: X = %22:1 X, and
next the i-th variance: S? = % > i1 (Xk—X;)?. Plots of X; and S? against
1 would show up a fairly irregular behaviour and definite non-convergence
signatures for large values of 1 < n.
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3. Local characteristics of the Ornstein—Uhlenbeck—Cauchy
process

Although we directly refer to the specific Cauchy stochastic process, in
fact we stay in a much broader setting of so-called Lévy flights. Generically,
the variance and higher cumulants of those processes are infinite (nonexis-
tent). There is also physically more singular subclass of such processes for
which even the first moment (mean value) is nonexistent. That is true for
the Cauchy process. Thus we need to relax the limitations of the standard
Gaussian paradigm: we face here a fundamental problem of establishing
other means (than variances and mean values) to characterize statistical
properties of Lévy processes.

Specifically, if a usual statistical analysis is performed on any experimen-
tally available set of frequency data, there is no obvious method to extract
a reliable information about tendencies (local mean values) of the random
dynamics. Nonexistence of mean values and higher moments may also be
interpreted as the nonexistence of observable (e.g. mean, like drifts or local
currents) regularities of the dynamics. Moreover, as we have learned be-
fore, the jump-type processes usually admit arbitrarily small jumps (with
no lower bound) and finite, but arbitrarily large jump sizes (with no upper
bound). Any laboratory experiment or computer simulation would involve
both the lower (coarse-graining) and upper bound on the jump size. Mathe-
matically, that sets (as suitable) the framework of standard jump processes
for which the central limit theorem is known to hold true in its Gaussian
version (even if we account for a possible abnormally slow convergence to a
Gaussian). Therefore, there is no clear-cut procedures allowing to attribute
an unambiguous statistical interpretation in terms of Lévy processes to given
phenomenological data. Moreover, no realistic formulation of a fluctuation-
dissipation theorem is possible in that case (nonexistence of variances) which
pushes us away from any conceivable thermal equilibrium framework.

The starting point for Ornstein and Uhlenbeck (cf. the previous section)
was the dissipative Langevin equation

W W)+ AW, (33)

dt
where V() is a random variable describing the velocity of a particle, A > 0
is a dissipation constant, and A(t) is another random variable whose proba-
bilistic features are determined by the probability distribution of V'(¢), which
is assumed to satisfy a concrete law when ¢ — oo. Because V(¢) may have
no time derivative, the Langevin equation was soon replaced by another one,
the stochastic differential equation, namely

dV (t) = —AV(t)dt + dB(t), V(0) = v (34)



1432 P. GARBACZEWSKI

which received a rigorous interpretation within the framework of stochastic
analysis. In the case when the probability distribution of V(t), t — oo, is the
Maxwell one, B(t) must be a Gaussian (in fact Wiener, By = W}) process,
and then we end up with a classical Ornstein—Uhlenbeck process.

Now, we shall discuss properties of the process V' (), in the case when
B = (B(t))s>0 is the Cauchy process instead of the traditional Wiener one.
By straightforward integration we obtain that for ¢ > s

V(t) = e M9V (s) + e_)‘t/eATdB(T) . (35)

S

There are a number of (equivalent) procedures to deduce a probability
density of the process V(¢) from the Cauchy increments statistics. One may
follow a direct probabilistic route which, upon assuming that a characteristic
function of the Cauchy probability measure reads

E[ePB1] = ¢=() (36)

with the choice of 9 (p) = o?|p| (before, we have used 02 = 1), leads to the
transition density:
1 a%(t — s)

pi—s(u,v) = P[V(t) =u|V(s) =v] = ;(u TNV 4 ol =5 (37)

where 02(t — 5) = UTQ(l _ e*)\(tfs)).
Since V(0) = vy, the probability density of V (t) is given by
1 0?1

PV =] =2 (v — vge )2 + oi(t)

Now, we shall demonstrate an important property (mentioned before in
connection with the Ornstein-Uhlenbeck process) of the so-called stochastic
continuity, which is a necessary condition to give a stochastic process an
unambiguous status. Namely, we need to show that for any € > 0 the
following equation is satisfied

lim P[|V(t) — V(s)] > ¢] =0.

t—s

This equation is equivalent to

lim / pi(u,v)du =0.

t—0
lu—v|>e
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Because of

1 1— —At _ 1— —At
pr(ulv)du =1 — - arctan %(t)e) + arctan %

lu—v|>e

and remembering that o?(t) = %2(1 — e M), the stochastic continuity prop-
erty does follow.

The nonexistence of moments of the probability measure in case of the
Cauchy process leads to straightforward difficulties, since the standard local
characteristics of the diffusion-type process like the drift and the diffusion
function (or coefficient) seem to be excluded in the present case. However,
for the considered Ornstein—Uhlenbeck—Cauchy process, the notion of the
forward drift of the process proves to make sense.

Since we know the Markov transition function p;—4(u,v), t > s, for the
process V;, we can exploit our experience with diffusion processes and say
that the process V; has a drift (in fact, forward drift) if the following limit

. 1
lim
t>st—s

/ (u—v)pp_s(u,v)du (38)

lu—v|<d

does not depend on the choice of § > 0. If so, then its value depending
only on (v, s) we denote by b(v,s) and call it the drift coefficient. Clearly,
if p is homogeneous in time, then the drift coefficient depends only on the
variable v. Let us emphasize that in the above definition we do not require
the process V; to have finite moments.

We claim that the jump-type Markov process V (¢) has a (forward) drift
which reads b(v) = —Av. Indeed, by first evaluating the indefinite integral

o (t)du
I:l/(u—v)( (t)d

T u —ve~ )2 4 g4 (1)

and substituting z = u — ve™

o? zdz v o?(t)dz
7r(t) /z2+d04(t)+;(e ’ _1>/%

_ # log(22 + 04(t)) + % (ef)\t _ 1) arctan <o’22(t)) .

, we get

Hence

1= %05 [(u=ve ) 010 + & (¢ = 1) aetan [ 22
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and consequently the limit

u=v+¢e 2
1 t
i L)

lim -1 = —
t—0 1t 27

t—0 1

U=V—E

X <1Og[(v +e—ve )2 4+ ot ()] — log[(v — £ — ve™)? + 04(75)])
lim L0 e 1) <arctan [L”e_”] _ arctan [LW”D

o?(t) o?(t)

exists and is e-independent. This is the forward drift of the process V()
which proves a consistency of the derived transition probability density with
the stochastic differential equation for the process V; = V().

It is well known that for Markovian diffusion processes all local charac-
teristics of motion (conditional expectation values that yield drifts and vari-
ances) can be derived from transition probability densities, supplemented
(if needed) by the density of the process. We have demonstrated that, in
the non-Gaussian context, the nonexistence of moments does not necessarily
imply the nonexistence of local characteristics (drifts) of the process.

However, the situation becomes uncomfortable once we attempt to eval-
uate another local moment. Namely, in the present case there holds:

202

/ (u — v)?py(u, v)du = =—§ (39)

™

. 1
lim
tsstt—s
lv—u|<é

i.e. an explicit cutoff § (upper bound on the size of jumps) persists in this
formula and there is no way to remove that jump size restriction from the
formalism, unless we wish to get the divergent integral.

This property is a clear indication that a convergence to a Gaussian
might always be expected if the Ornstein—Uhlenbeck—Cauchy process is ap-
proximated (we disregard an issue of how good that approximation is) by
means of jump processes with an upper and lower bound on the jump size.
In that case both the mean and variance would exist for the approximating
process. In particular, the central limit theorem would work as usual for the
(€,6)-jump process approximation of the Cauchy process B;.
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