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LOCAL CHARACTERISTICS OF RANDOM MOTION�Piotr GarbazewskiInstitute of Physis, Pedagogial Universitypl. Sªowia«ski 6, 65-069 Zielona Góra, Polande-mail: pgar�proton.if.wsp.zgora.pl(Reeived Otober 30, 2000)Markovian di�usion proesses yield a system of onservation laws whihouple various onditional expetation values (loal moments). Solutions ofthat losed system of deterministi partial di�erential equations stand fora regular alternative to errati (irregular) sample paths that are assoiatedwith weak solutions of the original stohasti di�erential equations. Weinvestigate an issue of loal harateristis of motion in the non-Gaussianontext, when moments of the probability measure may not exist. A parti-ular emphasis is put on jump-type stohasti proesses with the Ornstein��Uhlenbek�Cauhy proess as a fully omputable exemplary ase.PACS numbers: 02.50.Ga1. Loal harateristis of the Brownian motionLets us onsider a Markov proess Xt in R1. We an fully haraterizean assoiated random dynamis by means of a transition density p(y; s; x; t)with 0 � s < t and an initial density �0(x) = �(x; t0); 0 � t0. For thestohasti proess to be properly de�ned we impose the so-alled stohastiontinuity ondition: limt!s+ 1t� s Zjy�xj>" p(y; s; x; t)dx = 0 (1)to be valid for arbitrary (every) " > 0 and for almost every y 2 R1. That isknown to imply that along a sample path ! there holdslimt!s+ P [! : jXt(!)�Xs(!)j � "℄ = 0:� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.(1421)



1422 P. GarbazewskiThis ondition needs to be respeted by both di�usion and jump-type prop-agation senarios and is known to be neessary but still insu�ient for theMarkov proess to have ontinuous trajetories.Various harateristis of random motion an be diretly assoiated withproperties of sample trajetories (onsider for onreteness the iterated log-arithm laws in the Brownian motion). Those harateristis of random dy-namis that are free of irregularities of sample paths, need to involve someforms of averaging. That refers either to global averaging present whileevaluating moments of a probability measure (provided they exist) or to theevaluation of loal moments of that measure.Given a transition probability of a Markov proess, we an attempt toderive a number of loal expetation values, like e.g. the forward drift of theproess: b(x; s) = limt!s+ 1t� s Zjy�xj�Æ (y � x)p(x; s; y; t)dy (2)and the di�usion (oe�ient if a onstant) funtionD(x; s) = limt!s+ 1t� s Zjy�xj�Æ (y � x)2p(x; s; y; t)dy : (3)where the Æ uto� is needed to guarantee a onvergene of the integral. Inpriniple, the drift and di�usion funtions should take values independentof the Æ-uto� and/or exist when the uto� is removed (one we let Æ goto 1). However, for the jump-type proesses, loal moments (e.g. driftsand di�usion funtions) in the absene of a uto� are generially nonexistent,while in a uto� version they display an expliit and nontrivial Æ-dependene.As yet, our disussion extends to both ontinuous and disontinuousproesses. Let us expliitly reveal when a di�usion proess enters the game.By assuming that holds forlimt!s+ 1t� s ZR jy � xj2+p(x; s; y; t)dy = 0 (4)for any  > 0, we set a su�ient ondition for the ontinuity of samplepaths (to hold true almost surely), that also allows to remove the previousÆ-uto� from loal moment formulas. The resulting proess is a Markoviandi�usion proess with the forward drift b(x; s) and di�usion funtion D(x; s).Our further disussion will be arried under a simplifying assumption thata di�usion funtion D(x; s) atually is a onstant whih we denote by D.Our previous onsiderations, when speialized to Markovian di�usion-type proesses, an be ast in another form. Namely, we an depart from a



Loal Charateristis of Random Motion 1423formal in�nitesimal version of a stohasti di�erential equation for a randomvariable Xt = X(t) taking values in R1:dXt = b(X(t); t)dt +p2DdWt ; (5)whereWt =W (t) is a Wiener proess and b(x; t) stands for the forward driftof the di�usion-type proess Xt.If we assign a probability density �0(x) with whih the initial datax0 = X(0) for the stohasti di�erential equation are distributed (weaksolutions enter the sene), then the emergent Fik law would reveal a sta-tistial tendeny of partiles to �ow away from higher probability resideneareas. This feature is enoded in the orresponding Fokker�Plank equation(equivalently, a ontinuity equation):�t� = �r � (v�) ; (6)where a di�usion urrent veloity isv(x; t) = b(x; t)�Dr�(x; t)�(x; t) : (7)Clearly, the loal di�usion urrent (a loal �ow that might be experi-mentally observed for a loud of suspended partiles in a liquid) j = v�is nonzero in the nonequilibrium situation and quanti�es a non-negligiblematter transport whih ours as a onsequene of the Brownian motion, onthe ensemble average.It is interesting to notie that the loal veloity �eld v(x; t) obeys thenatural (loal) onservation law, whih we quite intentionally pattern afterthe moment identities (hierarhy of onservation laws) valid for the Boltz-mann and Kramers equations. The pertinent momentum onservation laworiginates diretly from the rules of the It� alulus for Markovian di�usionproesses, and from the �rst moment equation in the di�usion approximationof the Kramers theory: �tv + (v � r)v = r(
 �Q) : (8)The general form of an auxiliary potential 
(x; t) reads:
(x; t) = 2D ��t�+ 12 � b22D +r � b�� (9)and an be interpreted as a onstraint equation for the admissible forwarddrift b(x; t) = 2Dr�(x; t). It is useful to mention that the above momentum



1424 P. Garbazewskionservation law may be regarded to aount for e�ets of external (onser-vative) volume fores �r(�
) whih are determined by a priori arbitrary,but bounded from below, ontinuous funtion 
(x; t). Then, the allowedforward drift must be disentangled from the Riatti-type equation (9) as afuntion of 
.In the above there appears a ontribution from a probability density�-dependent potential Q(x; t). It is given in terms of the so-alled osmotiveloity �eld u(x; t): Q(x; t) = 12u2 +Dr � u ;u(x; t) = Dr ln�(x; t) ; (10)and is generi to a loal momentum onservation law respeted by isothermalMarkovian di�usion proesses. Notie that in ase of the free Brownianmotion (admitted, if we set 
 = 0), we would have v(x; t) = �u(x; t) for alltimes. An equivalent form of the pressure-type potential Q is Q = 2D24�1=2�1=2 .It is interesting to observe that a gradient �eld ansatz for the di�usionurrent veloity (v = rS): �t� = �r � [(rS)�℄ (11)allows to transform the momentum onservation law of a Markovian di�usionproess to the universal Hamilton�Jaobi form:
 = �tS + 12 jrSj2 +Q ; (12)where Q(x; t) was de�ned before. By applying the gradient operation weimmediately reover the previous loal momentum onservation law.Notie that the above Hamilton�Jaobi-type equation is sensitive to anyadditive (onstant or time-dependent) modi�ation of the potential 
. Inthe above, the ontribution due to Q is a diret onsequene of an initialprobability measure hoie for the di�usion proess, while 
 alone doesaount for an appropriate forward drift of the proess.The simplest realisation of the outlined theoretial framework an beprovided by invoking a standard Ornstein�Uhlenbek proess. Namely, letus onsider an It� equation (in its symboli di�erential version) for in�nites-imal inrements of the veloity random variable, exhibiting the systematifritional resistane:dV (t) = ��V (t)dt+ �p2DdW (t) ; (13)where W (t) is the normalized Wiener proess. One an easily infer theorresponding seond Kolmogorov (Fokker�Plank) equation�tp(v0; v; t) = �D4v + �rv � [vp(v0; v; t)℄ (14)



Loal Charateristis of Random Motion 1425for the transition probability density of the time homogeneous proess inthe veloity spae alone. The pertinent transition probability density reads:p(v0; v; t) = � m2�kT (1� e�2�t)�1=2 exp� m2kT (v � v0e��t)21� e��t � : (15)Let us onsider an instantaneous veloity Vt = v, that has been ahievedin the ourse of the Ornstein�Uhlenbek random evolution beginning froma ertain V0 = v0. We an evaluate a onditional expetation value (loalmean with respet to the law of random displaements) over all randomlyaessible veloities V (t+4t) = v0 at a time t+4t; 4t > 0. That determinesthe forward drift of the proess:b(v; t) = lim4t#0�Z v0p(v; v0;4t)dv0 � v� = ��v (16)and thus provides us with an information about the mean tendeny of thedynamis on small (but not too small if ompared to the relaxation time ��1)sales. Analogously, we an derive a di�usion funtion for the Ornstein�Uhlenbek proess whih is onstant and equals 2D�2.To arrive at loal onservation laws, an additional input of an initialprobability density �0(v) of V0 is neessary. To that end, one may hoosean asymptoti stationary (invariant, Maxwell�Boltzmann) density of theOrnstein�Uhlenbek proess: �0(v) = ( m2�kT )1=2 exp[mv22kT ℄.2. From Poisson probability law to jump-type proessesA random variable X taking disrete values 0; y; 2y; 3y; : : :, with y > 0 issaid to have Poisson distribution P(�); � � 0 with jump size y, if the prob-ability of X = ky is given by P (X = ky) = �kk! exp(��). The harateristifuntion of P(�) reads:E [exp(ipX)℄ = exp[�(eipy � 1)℄ = 1X0 e���kk! eik(py) = 1X0 eik(py)P (X = ky)(17)and the �rst moment of the probability measure equals E[X℄ = �. Notiethat P (X = 0) = exp(��), hene the numerial value of � � 0 �xes theno-jump probability. For the Poisson random variable with values b + ky,k = 0; 1; : : : we would get E[exp(ipX)℄ = exp[ibp+ �(eipy � 1)℄.If we onsider n independent random variables Xj; 1 � j � n suh thatXj has Poisson distribution P(�j) with jump size yj, then a new variable



1426 P. GarbazewskiX an be introdued by means of the distribution of X1 + : : : +Xn whoseharateristi funtion readsE[exp(ipX)℄ = exp" nXj=1 �j �eipyj � 1� #: (18)The exponent in the above might inlude an additional term ipPn1 bj ifnonrandom shifts of eah jump kyj by bj were allowed.We an admit not only jumps of �xed magnitudes y1; : : : ; yn but alsojumps overing an arbitrary range in R+. Let the distribution funtion ofthe magnitude of the jump be P (x < y) = �(y). In this ase we setE[exp(ipX)℄ = exp" ZR+ (eipy � 1)�(dy)# (19)assuming that the integral in the exponent exists. (Notie that the previousformula is reovered, if we hoose �(dy) =Pnj=1 �jÆ(y � yj)dy.)For any Borel set A � R bounded away from the origin, the randomvariable XA representing jumps bounded by A, gives rise to a harateristiexponent RA(eipy�1)d�(y), and the expeted number EA[X℄ of jumps of sizebounded by A is equal to �(A). We an interpret that in terms of jumps ofdi�erent sizes that are mutually independent. Jumps whose size is boundedby [y; y +4y);4y � 1, do ontribute a Poisson omponent with exponentfuntion approximately equal to (eipy � 1)�([y; y +4y)).Let us onsider an expression for a harateristi funtion of a prob-ability measure of a ertain random variable X that is given in the formE[exp(ipX)℄ = exp[�F (p)℄ where p 2 R1 and for �1 < p < +1, F = F (p)is a real valued, bounded from below, loally integrable funtion. If F (p)satis�es the elebrated Lévy�Khinhin formula, then the pertinent measureis positive and we may introdue positivity preserving semigroups, togetherwith the indued (Markovian) stohasti proesses. Let us onentrate ourattention on the integral part of the Lévy�Khinhin formula, whih is re-sponsible for arbitrary stohasti jump features. In that ase, F (p) takesthe form: F (p) = � +1Z�1 �exp(ipy)� 1� ipy1 + y2� �(dy) ; (20)where �(dy) stands for the so-alled Lévy measure on R1.A generi feature of jump-type proesses is that they admit jumps ofarbitrarily small size (without any lower bound) and some are is neessarywhen evaluating ontributions from a lose neighbourhood of the origin. One



Loal Charateristis of Random Motion 1427obvious way to bypass this problem amounts to an "-uto� whih allows toneglet �too small� jumps. Namely, for a probability law with the hara-teristi exponent �F (p), we an onsider its restrition to upward jumps ofsize exeeding a given lower bound like e.g. to all y > " > 0:�+" (p) = Zy>" �eipy � 1� ipy1 + y2 � �(dy) = Zy>" [eipy � 1℄d�(y)� ipb+" ;b+" = Zy>" y1 + y2 �(dy) : (21)Clearly, we deal here with a random variable of the type onsideredbefore, and we an try to isolate ontributions from jumps of the size[y; y +4y) by oarse-graining a Borel set A of interest. A formal exploita-tion of �(dy) = nXj=1 �jÆ(y � yj)dy (22)gives rise toE[exp(ipX)℄ = exp" nXj=1 "�j(eipyj � 1)� ip �jyj1 + y2j ## : (23)Further speializing the problem we shall onsider Lévy measures thatobey the spatial re�etion property �(�dy) = ��(dy). Then, we an readilyextend our disussion to jumps of all sorts in R1, i.e. y an take values inboth R+ and R�, with the only restrition to be observed that jyj > " > 0.Notie that we shall deal with two distint types of jumps, either positive ornegative, with no ommon jump point for them. This fat means that theyare independent omponents of the more general random variable:�"(p) = Zjyj>" [eipy � 1℄�(dy)� ipb" ; (24)where (hoose �(dy) = dy�y2 for onreteness) the deterministi term identi-ally vanishes in view ofb" = b+" + b�" = Zy>" y1 + y2 �(dy) + Zy<�" y1 + y2 �(dy) � 0 : (25)



1428 P. GarbazewskiIn previous steps we have indiretly exploited a de�ning property of in-�nitely divisible probability laws: if exp�(p) is a harateristi funtion ofa given probability distribution, then [exp�(p)℄t = exp[t�(p)℄; t > 0 is like-wise a harateristi funtion of an in�nitely divisible probability law again.This feature extends our disussion to the stohasti jump and jump-typeproesses (time homogeneous with independent inrements). Obviously, forsuh proesses E[exp(ipX(t))℄ = exp[t�(p)℄ while EA[X(t)℄ = t�(A), andour previous arguments retain their validity with respet toE[exp(ipX(t))℄" = exp[t�"(p)℄ = exp"t Zjyj>" �eipy � 1� �(dy)#: (26)Coming bak to the Lévy�Khinhin formula, let us replae a funtionF (p) by an operator ating in a suitable domain aording to the reipe:F (p) ! Ĥ = F (p̂) where p̂ = �ir. We easily learn that for times t � 0there holds [exp(�tĤ)℄f(x) = [exp(�tF (p))f̂(p)℄_(x) ; (27)where the supersript _ denotes the inverse Fourier transform and f̂ standsfor the Fourier transform of a funtion f .If we set pt = 1p2� [exp(�tF (p))℄_, then the ation of exp(�tĤ) an begiven in terms of a onvolution: exp(�tĤ)f = f � pt, where (f � g)(x) :=RR g(x� z)f(z)dz. Clearly, there holds:�t�(x; t) = �(Ĥ�)(x; t) =)��"(A; t) = ZR dx" Zjyj>" [�A(x+ y)� �A(x)℄�(dy)#�"(x; t) (28)whih displays a generi master equation form. Indeed, we have here�t�"(A; t) = RR q"(x; t; A)�"(x; t)dx where q" is interpreted as the jump inten-sity.Let us however emphasize that the above simpli�ation ours only in thejyj > " > 0 jumping size regime. The real r�le of two integral terms in theexpression for b" is to ompensate the divergent ontributions from the Lévymeasure when the prinipal value integral "! 0 limit is onsidered; then thestandard jump proess theory does not literally apply sine arbitrarily smalljumps are admitted. Anyway, those two terms are irrelevant if we assumean " > 0 uto�, irrespetive of how small the hosen (and �xed) " is.The best known example of the stable probability law that is ompatiblewith the above de�nitions is provided by the lassi Cauhy density whih



Loal Charateristis of Random Motion 1429will be our referene probability law in below. Let us fous our attentionon the ase whih is spei�ed by F (p) = jpj. The orresponding semigroupgenerator Ĥ = jrj is a pseudodi�erential operator. The assoiated kernel ptis a transition density of the jump-type Cauhy proess, whih is a solutionof a pseudodi�erential Fokker�Plank equation:�t�(x; t) = �jrj�(x; t): (29)The pertinent probability density reads �(x; t) = 1� tt2+x2 and the or-responding spae-time homogeneous transition density (e.g. the semigroupkernel funtion) is:�(x; t) = 1� tt2 + x2 =) p(y; s; x; t) = 1� t� s(t� s)2 + (x� y)2 ; 0 < s < thexp[ipX(t)℄i := ZR exp(ipx)�(x; t)dx = exp(�jpjt) : (30)The harateristi funtion of p(y; s; x; t) for y; s �xed, readsexp[ipy � jpj(t � s)℄, and the Lévy measure needed to evaluate the Lévy��Khinhin integral reads: �(dy) := limt#0[1t p(0; 0; y; t)℄dy = dy�y2 .The Cauhy proess belongs to the ategory of jump-type proesses,where apart from the long jumps-tail (no �xed bound an be imposed ontheir length) whih is the reason of the nonexistene of moments of theprobability measure, sample paths of the proess may have an in�nite num-ber of jumps of arbitrarily small size. By general arguments, pertaining tothe spae DE[0;1) of right ontinuous funtions with left limits (adlag),both in the �nite and in�nite time interval the number of jumps is at mostountable.An introdution of the "-uto� whih eliminates small jumps is fed up bythe physial intuition. An approximation of the jump-type proess shouldin priniple be possible in terms of more traditional jump proesses whihinvolve a �nite number of jumps in a �nite time interval. This radial approx-imation assumption is usually ahieved by giving a haraterisation of thea�liated Markovian jump-type proesses in terms of approximating (on-vergent) families of so-alled step proesses. The step proesses are not yetthe jump proesses of the standard daily experimental evidene. They needto have no aumulation points of jumps in a �nite time interval: in thatase the number of jumps is �nite on eah �nite time interval and betweenjumps the sample path is onstant.Let us reall that the operator jrj ats as follows:jrjf(x) = � 1� ZR �f(x+ y)� f(x)� yrf(x)1 + y2 � dyy2 : (31)



1430 P. GarbazewskiBy turning bak to the pseudodi�erential Fokker�Plank equation withthe "-uto� implemented, let us introdue an operator jrj":jrj"f(x) = � 1� Zjyj>" [f(x+ y)� f(x)℄dyy2 : (32)It su�es to replae f by �" to arrive at the right-hand-side of the previouslyde�ned Fokker�Plank equation for the step proess approximant of theCauhy proess. Its generator is just jrj".While mitigating the �arbitrarily small jumps� problem, the "-uto� doesnot remove all obstales related to the Cauhy proess. Indeed, at the �rstglane the situation looks deeivingly simple, beause on a �nite time intervalthere an be at most �nitely many points t 2 [0; T ℄ at whih the jump sizeexeeds a given positive number. In view of that, supt2[0;T ℄jX"t j <1 whereX"t stands for the "-bounded Cauhy proess (the same argument extends tothe unrestrited Cauhy proess Xt). However, there must be no �xed upperbound for the size of jumps (exept for being �nite), sine a stohastiallyontinuous proess with independent inrements having, with probability 1,no jumps of size exeeding a ertain onstant Æ, would possess all moments.That is ertainly not the ase for the Cauhy proess, whih is known notto have any moments.Hene imposing or not imposing an upper bound on the jump size (allit a Æ uto�) is another ritial issue that hampers a reliable approximationof the jump � type proess in terms of experimentally veri�able jump pro-esses whose jump size is bounded both from below and from above. Thisderives in part from to the resolution limitations of realisti experimentalarrangements (any experimental data olletion and any omputer simula-tion/experimentation have built-in lower and upper jump size bounds), andin part from the fat that all observations are arried in �nite time on sys-tems of �nite spatial extension. Let us point out that by imposing both "and Æ uto�s on the Cauhy proess, we would redue the problem to thestandard jump proess.Obstales related to heavy tails of the probability distribution an bevisualized by making omputer experiments for the onverging (in fat, di-verging) variane test. Namely, given a sample of jumps determined by theCauhy distribution: X1;X2; : : : Xn, with 1 � i � n, one an form a statis-tis based on �rst i �observations� and ask for the behaviour of the averageswith respet to i. First we need the i-th mean value: X = 1i Pik=1Xi andnext the i-th variane: S2i = 1i�1 Pik=1(Xk�Xi)2. Plots ofXi and S2i againsti would show up a fairly irregular behaviour and de�nite non-onvergenesignatures for large values of i � n.



Loal Charateristis of Random Motion 14313. Loal harateristis of the Ornstein�Uhlenbek�CauhyproessAlthough we diretly refer to the spei� Cauhy stohasti proess, infat we stay in a muh broader setting of so-alled Lévy �ights. Generially,the variane and higher umulants of those proesses are in�nite (nonexis-tent). There is also physially more singular sublass of suh proesses forwhih even the �rst moment (mean value) is nonexistent. That is true forthe Cauhy proess. Thus we need to relax the limitations of the standardGaussian paradigm: we fae here a fundamental problem of establishingother means (than varianes and mean values) to haraterize statistialproperties of Lévy proesses.Spei�ally, if a usual statistial analysis is performed on any experimen-tally available set of frequeny data, there is no obvious method to extrata reliable information about tendenies (loal mean values) of the randomdynamis. Nonexistene of mean values and higher moments may also beinterpreted as the nonexistene of observable (e.g. mean, like drifts or loalurrents) regularities of the dynamis. Moreover, as we have learned be-fore, the jump-type proesses usually admit arbitrarily small jumps (withno lower bound) and �nite, but arbitrarily large jump sizes (with no upperbound). Any laboratory experiment or omputer simulation would involveboth the lower (oarse-graining) and upper bound on the jump size. Mathe-matially, that sets (as suitable) the framework of standard jump proessesfor whih the entral limit theorem is known to hold true in its Gaussianversion (even if we aount for a possible abnormally slow onvergene to aGaussian). Therefore, there is no lear-ut proedures allowing to attributean unambiguous statistial interpretation in terms of Lévy proesses to givenphenomenologial data. Moreover, no realisti formulation of a �utuation-dissipation theorem is possible in that ase (nonexistene of varianes) whihpushes us away from any oneivable thermal equilibrium framework.The starting point for Ornstein and Uhlenbek (f. the previous setion)was the dissipative Langevin equationdVdt = ��V (t) +A(t) ; (33)where V (t) is a random variable desribing the veloity of a partile, � > 0is a dissipation onstant, and A(t) is another random variable whose proba-bilisti features are determined by the probability distribution of V (t), whihis assumed to satisfy a onrete law when t ! 1. Beause V (t) may haveno time derivative, the Langevin equation was soon replaed by another one,the stohasti di�erential equation, namelydV (t) = ��V (t)dt+ dB(t) ; V (0) = v0 (34)



1432 P. Garbazewskiwhih reeived a rigorous interpretation within the framework of stohastianalysis. In the ase when the probability distribution of V (t), t!1, is theMaxwell one, B(t) must be a Gaussian (in fat Wiener, Bt = Wt) proess,and then we end up with a lassial Ornstein�Uhlenbek proess.Now, we shall disuss properties of the proess V (t), in the ase whenB = (B(t))t�0 is the Cauhy proess instead of the traditional Wiener one.By straightforward integration we obtain that for t � sV (t) = e��(t�s)V (s) + e��t tZs e��dB(�) : (35)There are a number of (equivalent) proedures to dedue a probabilitydensity of the proess V (t) from the Cauhy inrements statistis. One mayfollow a diret probabilisti route whih, upon assuming that a harateristifuntion of the Cauhy probability measure readsE[eipB(t)℄ = e�t (p) (36)with the hoie of  (p) = �2jpj (before, we have used �2 = 1), leads to thetransition density:pt�s(u; v) = P [V (t) = ujV (s) = v℄ = 1� �2(t� s)(u� ve��(t�s))2 + �4(t� s) ; (37)where �2(t� s) = �2� (1� e��(t�s)).Sine V (0) = v0, the probability density of V (t) is given byP [V (t) = v℄ = 1� �2(t)(v � v0e��t)2 + �4(t) :Now, we shall demonstrate an important property (mentioned before inonnetion with the Ornstein�Uhlenbek proess) of the so-alled stohastiontinuity, whih is a neessary ondition to give a stohasti proess anunambiguous status. Namely, we need to show that for any " > 0 thefollowing equation is satis�edlimt!sP [jV (t)� V (s)j � "℄ = 0 :This equation is equivalent tolimt!0 Zju�vj�" pt(u; v)du = 0 :



Loal Charateristis of Random Motion 1433Beause ofZju�vj�" pt(ujv)du = 1� 1� �artan "+ v(1� e��t)�2(t) + artan "� v(1� e��t)�2(t) �and remembering that �2(t) = �2� (1� e��t), the stohasti ontinuity prop-erty does follow.The nonexistene of moments of the probability measure in ase of theCauhy proess leads to straightforward di�ulties, sine the standard loalharateristis of the di�usion-type proess like the drift and the di�usionfuntion (or oe�ient) seem to be exluded in the present ase. However,for the onsidered Ornstein�Uhlenbek�Cauhy proess, the notion of theforward drift of the proess proves to make sense.Sine we know the Markov transition funtion pt�s(u; v), t � s, for theproess Vt, we an exploit our experiene with di�usion proesses and saythat the proess Vt has a drift (in fat, forward drift) if the following limitlimt!s 1t� s Zju�vj�Æ (u� v)pt�s(u; v)du (38)does not depend on the hoie of Æ > 0. If so, then its value dependingonly on (v; s) we denote by b(v; s) and all it the drift oe�ient. Clearly,if p is homogeneous in time, then the drift oe�ient depends only on thevariable v. Let us emphasize that in the above de�nition we do not requirethe proess Vt to have �nite moments.We laim that the jump-type Markov proess V (t) has a (forward) driftwhih reads b(v) = ��v. Indeed, by �rst evaluating the inde�nite integralI = 1� Z (u� v) �2(t)du(u� ve��t)2 + �4(t)and substituting z = u� ve��t, we get�2(t)� Z zdzz2 + �4(t) + v� �e��t � 1�Z �2(t)dzz2 + �4(t)= �2(t)2� log(z2 + �4(t)) + v� �e��t � 1� artan� z�2(t)� :HeneI = �2(t)2� log ��u� ve��t�2 + �4(t)�+ v� �e��t � 1� artan �u� ve��t�2(t) �



1434 P. Garbazewskiand onsequently the limitlimt!0 1t I����u=v+"u=v�" = limt!0 1t �2(t)2���log[(v + "� ve��t)2 + �4(t)℄� log[(v � "� ve��t)2 + �4(t)℄�+ limt!0 1t v� (e��t � 1)�artan �v + "� ve��t�2(t) �� artan �v � "� ve��t�2(t) ��= 0� �v� ��2 + �2� = ��vexists and is "-independent. This is the forward drift of the proess V (t)whih proves a onsisteny of the derived transition probability density withthe stohasti di�erential equation for the proess Vt = V (t).It is well known that for Markovian di�usion proesses all loal hara-teristis of motion (onditional expetation values that yield drifts and vari-anes) an be derived from transition probability densities, supplemented(if needed) by the density of the proess. We have demonstrated that, inthe non-Gaussian ontext, the nonexistene of moments does not neessarilyimply the nonexistene of loal harateristis (drifts) of the proess.However, the situation beomes unomfortable one we attempt to eval-uate another loal moment. Namely, in the present ase there holds:limt!s+ 1t� s Zjv�uj�Æ (u� v)2pt(u; v)du = 2�2� Æ (39)i.e. an expliit uto� Æ (upper bound on the size of jumps) persists in thisformula and there is no way to remove that jump size restrition from theformalism, unless we wish to get the divergent integral.This property is a lear indiation that a onvergene to a Gaussianmight always be expeted if the Ornstein�Uhlenbek�Cauhy proess is ap-proximated (we disregard an issue of how good that approximation is) bymeans of jump proesses with an upper and lower bound on the jump size.In that ase both the mean and variane would exist for the approximatingproess. In partiular, the entral limit theorem would work as usual for the("; Æ)-jump proess approximation of the Cauhy proess Bt.The author reeives �nanial support from the the Polish State Commit-tee for Sienti� Researh (KBN) grant No. 2 P03B 086 16.
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