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LOCAL CHARACTERISTICS OF RANDOM MOTION�Piotr Garba
zewskiInstitute of Physi
s, Pedagogi
al Universitypl. Sªowia«ski 6, 65-069 Zielona Góra, Polande-mail: pgar�proton.if.wsp.zgora.pl(Re
eived O
tober 30, 2000)Markovian di�usion pro
esses yield a system of 
onservation laws whi
h
ouple various 
onditional expe
tation values (lo
al moments). Solutions ofthat 
losed system of deterministi
 partial di�erential equations stand fora regular alternative to errati
 (irregular) sample paths that are asso
iatedwith weak solutions of the original sto
hasti
 di�erential equations. Weinvestigate an issue of lo
al 
hara
teristi
s of motion in the non-Gaussian
ontext, when moments of the probability measure may not exist. A parti
-ular emphasis is put on jump-type sto
hasti
 pro
esses with the Ornstein��Uhlenbe
k�Cau
hy pro
ess as a fully 
omputable exemplary 
ase.PACS numbers: 02.50.Ga1. Lo
al 
hara
teristi
s of the Brownian motionLets us 
onsider a Markov pro
ess Xt in R1. We 
an fully 
hara
terizean asso
iated random dynami
s by means of a transition density p(y; s; x; t)with 0 � s < t and an initial density �0(x) = �(x; t0); 0 � t0. For thesto
hasti
 pro
ess to be properly de�ned we impose the so-
alled sto
hasti

ontinuity 
ondition: limt!s+ 1t� s Zjy�xj>" p(y; s; x; t)dx = 0 (1)to be valid for arbitrary (every) " > 0 and for almost every y 2 R1. That isknown to imply that along a sample path ! there holdslimt!s+ P [! : jXt(!)�Xs(!)j � "℄ = 0:� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.(1421)
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zewskiThis 
ondition needs to be respe
ted by both di�usion and jump-type prop-agation s
enarios and is known to be ne
essary but still insu�
ient for theMarkov pro
ess to have 
ontinuous traje
tories.Various 
hara
teristi
s of random motion 
an be dire
tly asso
iated withproperties of sample traje
tories (
onsider for 
on
reteness the iterated log-arithm laws in the Brownian motion). Those 
hara
teristi
s of random dy-nami
s that are free of irregularities of sample paths, need to involve someforms of averaging. That refers either to global averaging present whileevaluating moments of a probability measure (provided they exist) or to theevaluation of lo
al moments of that measure.Given a transition probability of a Markov pro
ess, we 
an attempt toderive a number of lo
al expe
tation values, like e.g. the forward drift of thepro
ess: b(x; s) = limt!s+ 1t� s Zjy�xj�Æ (y � x)p(x; s; y; t)dy (2)and the di�usion (
oe�
ient if a 
onstant) fun
tionD(x; s) = limt!s+ 1t� s Zjy�xj�Æ (y � x)2p(x; s; y; t)dy : (3)where the Æ 
uto� is needed to guarantee a 
onvergen
e of the integral. Inprin
iple, the drift and di�usion fun
tions should take values independentof the Æ-
uto� and/or exist when the 
uto� is removed (on
e we let Æ goto 1). However, for the jump-type pro
esses, lo
al moments (e.g. driftsand di�usion fun
tions) in the absen
e of a 
uto� are generi
ally nonexistent,while in a 
uto� version they display an expli
it and nontrivial Æ-dependen
e.As yet, our dis
ussion extends to both 
ontinuous and dis
ontinuouspro
esses. Let us expli
itly reveal when a di�usion pro
ess enters the game.By assuming that holds forlimt!s+ 1t� s ZR jy � xj2+
p(x; s; y; t)dy = 0 (4)for any 
 > 0, we set a su�
ient 
ondition for the 
ontinuity of samplepaths (to hold true almost surely), that also allows to remove the previousÆ-
uto� from lo
al moment formulas. The resulting pro
ess is a Markoviandi�usion pro
ess with the forward drift b(x; s) and di�usion fun
tion D(x; s).Our further dis
ussion will be 
arried under a simplifying assumption thata di�usion fun
tion D(x; s) a
tually is a 
onstant whi
h we denote by D.Our previous 
onsiderations, when spe
ialized to Markovian di�usion-type pro
esses, 
an be 
ast in another form. Namely, we 
an depart from a



Lo
al Chara
teristi
s of Random Motion 1423formal in�nitesimal version of a sto
hasti
 di�erential equation for a randomvariable Xt = X(t) taking values in R1:dXt = b(X(t); t)dt +p2DdWt ; (5)whereWt =W (t) is a Wiener pro
ess and b(x; t) stands for the forward driftof the di�usion-type pro
ess Xt.If we assign a probability density �0(x) with whi
h the initial datax0 = X(0) for the sto
hasti
 di�erential equation are distributed (weaksolutions enter the s
ene), then the emergent Fi
k law would reveal a sta-tisti
al tenden
y of parti
les to �ow away from higher probability residen
eareas. This feature is en
oded in the 
orresponding Fokker�Plan
k equation(equivalently, a 
ontinuity equation):�t� = �r � (v�) ; (6)where a di�usion 
urrent velo
ity isv(x; t) = b(x; t)�Dr�(x; t)�(x; t) : (7)Clearly, the lo
al di�usion 
urrent (a lo
al �ow that might be experi-mentally observed for a 
loud of suspended parti
les in a liquid) j = v�is nonzero in the nonequilibrium situation and quanti�es a non-negligiblematter transport whi
h o

urs as a 
onsequen
e of the Brownian motion, onthe ensemble average.It is interesting to noti
e that the lo
al velo
ity �eld v(x; t) obeys thenatural (lo
al) 
onservation law, whi
h we quite intentionally pattern afterthe moment identities (hierar
hy of 
onservation laws) valid for the Boltz-mann and Kramers equations. The pertinent momentum 
onservation laworiginates dire
tly from the rules of the It� 
al
ulus for Markovian di�usionpro
esses, and from the �rst moment equation in the di�usion approximationof the Kramers theory: �tv + (v � r)v = r(
 �Q) : (8)The general form of an auxiliary potential 
(x; t) reads:
(x; t) = 2D ��t�+ 12 � b22D +r � b�� (9)and 
an be interpreted as a 
onstraint equation for the admissible forwarddrift b(x; t) = 2Dr�(x; t). It is useful to mention that the above momentum
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onservation law may be regarded to a

ount for e�e
ts of external (
onser-vative) volume for
es �r(�
) whi
h are determined by a priori arbitrary,but bounded from below, 
ontinuous fun
tion 
(x; t). Then, the allowedforward drift must be disentangled from the Ri
atti-type equation (9) as afun
tion of 
.In the above there appears a 
ontribution from a probability density�-dependent potential Q(x; t). It is given in terms of the so-
alled osmoti
velo
ity �eld u(x; t): Q(x; t) = 12u2 +Dr � u ;u(x; t) = Dr ln�(x; t) ; (10)and is generi
 to a lo
al momentum 
onservation law respe
ted by isothermalMarkovian di�usion pro
esses. Noti
e that in 
ase of the free Brownianmotion (admitted, if we set 
 = 0), we would have v(x; t) = �u(x; t) for alltimes. An equivalent form of the pressure-type potential Q is Q = 2D24�1=2�1=2 .It is interesting to observe that a gradient �eld ansatz for the di�usion
urrent velo
ity (v = rS): �t� = �r � [(rS)�℄ (11)allows to transform the momentum 
onservation law of a Markovian di�usionpro
ess to the universal Hamilton�Ja
obi form:
 = �tS + 12 jrSj2 +Q ; (12)where Q(x; t) was de�ned before. By applying the gradient operation weimmediately re
over the previous lo
al momentum 
onservation law.Noti
e that the above Hamilton�Ja
obi-type equation is sensitive to anyadditive (
onstant or time-dependent) modi�
ation of the potential 
. Inthe above, the 
ontribution due to Q is a dire
t 
onsequen
e of an initialprobability measure 
hoi
e for the di�usion pro
ess, while 
 alone doesa

ount for an appropriate forward drift of the pro
ess.The simplest realisation of the outlined theoreti
al framework 
an beprovided by invoking a standard Ornstein�Uhlenbe
k pro
ess. Namely, letus 
onsider an It� equation (in its symboli
 di�erential version) for in�nites-imal in
rements of the velo
ity random variable, exhibiting the systemati
fri
tional resistan
e:dV (t) = ��V (t)dt+ �p2DdW (t) ; (13)where W (t) is the normalized Wiener pro
ess. One 
an easily infer the
orresponding se
ond Kolmogorov (Fokker�Plan
k) equation�tp(v0; v; t) = �D4v + �rv � [vp(v0; v; t)℄ (14)



Lo
al Chara
teristi
s of Random Motion 1425for the transition probability density of the time homogeneous pro
ess inthe velo
ity spa
e alone. The pertinent transition probability density reads:p(v0; v; t) = � m2�kT (1� e�2�t)�1=2 exp� m2kT (v � v0e��t)21� e��t � : (15)Let us 
onsider an instantaneous velo
ity Vt = v, that has been a
hievedin the 
ourse of the Ornstein�Uhlenbe
k random evolution beginning froma 
ertain V0 = v0. We 
an evaluate a 
onditional expe
tation value (lo
almean with respe
t to the law of random displa
ements) over all randomlya

essible velo
ities V (t+4t) = v0 at a time t+4t; 4t > 0. That determinesthe forward drift of the pro
ess:b(v; t) = lim4t#0�Z v0p(v; v0;4t)dv0 � v� = ��v (16)and thus provides us with an information about the mean tenden
y of thedynami
s on small (but not too small if 
ompared to the relaxation time ��1)s
ales. Analogously, we 
an derive a di�usion fun
tion for the Ornstein�Uhlenbe
k pro
ess whi
h is 
onstant and equals 2D�2.To arrive at lo
al 
onservation laws, an additional input of an initialprobability density �0(v) of V0 is ne
essary. To that end, one may 
hoosean asymptoti
 stationary (invariant, Maxwell�Boltzmann) density of theOrnstein�Uhlenbe
k pro
ess: �0(v) = ( m2�kT )1=2 exp[mv22kT ℄.2. From Poisson probability law to jump-type pro
essesA random variable X taking dis
rete values 0; y; 2y; 3y; : : :, with y > 0 issaid to have Poisson distribution P(�); � � 0 with jump size y, if the prob-ability of X = ky is given by P (X = ky) = �kk! exp(��). The 
hara
teristi
fun
tion of P(�) reads:E [exp(ipX)℄ = exp[�(eipy � 1)℄ = 1X0 e���kk! eik(py) = 1X0 eik(py)P (X = ky)(17)and the �rst moment of the probability measure equals E[X℄ = �. Noti
ethat P (X = 0) = exp(��), hen
e the numeri
al value of � � 0 �xes theno-jump probability. For the Poisson random variable with values b + ky,k = 0; 1; : : : we would get E[exp(ipX)℄ = exp[ibp+ �(eipy � 1)℄.If we 
onsider n independent random variables Xj; 1 � j � n su
h thatXj has Poisson distribution P(�j) with jump size yj, then a new variable
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an be introdu
ed by means of the distribution of X1 + : : : +Xn whose
hara
teristi
 fun
tion readsE[exp(ipX)℄ = exp" nXj=1 �j �eipyj � 1� #: (18)The exponent in the above might in
lude an additional term ipPn1 bj ifnonrandom shifts of ea
h jump kyj by bj were allowed.We 
an admit not only jumps of �xed magnitudes y1; : : : ; yn but alsojumps 
overing an arbitrary range in R+. Let the distribution fun
tion ofthe magnitude of the jump be P (x < y) = �(y). In this 
ase we setE[exp(ipX)℄ = exp" ZR+ (eipy � 1)�(dy)# (19)assuming that the integral in the exponent exists. (Noti
e that the previousformula is re
overed, if we 
hoose �(dy) =Pnj=1 �jÆ(y � yj)dy.)For any Borel set A � R bounded away from the origin, the randomvariable XA representing jumps bounded by A, gives rise to a 
hara
teristi
exponent RA(eipy�1)d�(y), and the expe
ted number EA[X℄ of jumps of sizebounded by A is equal to �(A). We 
an interpret that in terms of jumps ofdi�erent sizes that are mutually independent. Jumps whose size is boundedby [y; y +4y);4y � 1, do 
ontribute a Poisson 
omponent with exponentfun
tion approximately equal to (eipy � 1)�([y; y +4y)).Let us 
onsider an expression for a 
hara
teristi
 fun
tion of a prob-ability measure of a 
ertain random variable X that is given in the formE[exp(ipX)℄ = exp[�F (p)℄ where p 2 R1 and for �1 < p < +1, F = F (p)is a real valued, bounded from below, lo
ally integrable fun
tion. If F (p)satis�es the 
elebrated Lévy�Khin
hin formula, then the pertinent measureis positive and we may introdu
e positivity preserving semigroups, togetherwith the indu
ed (Markovian) sto
hasti
 pro
esses. Let us 
on
entrate ourattention on the integral part of the Lévy�Khin
hin formula, whi
h is re-sponsible for arbitrary sto
hasti
 jump features. In that 
ase, F (p) takesthe form: F (p) = � +1Z�1 �exp(ipy)� 1� ipy1 + y2� �(dy) ; (20)where �(dy) stands for the so-
alled Lévy measure on R1.A generi
 feature of jump-type pro
esses is that they admit jumps ofarbitrarily small size (without any lower bound) and some 
are is ne
essarywhen evaluating 
ontributions from a 
lose neighbourhood of the origin. One
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al Chara
teristi
s of Random Motion 1427obvious way to bypass this problem amounts to an "-
uto� whi
h allows tonegle
t �too small� jumps. Namely, for a probability law with the 
hara
-teristi
 exponent �F (p), we 
an 
onsider its restri
tion to upward jumps ofsize ex
eeding a given lower bound like e.g. to all y > " > 0:�+" (p) = Zy>" �eipy � 1� ipy1 + y2 � �(dy) = Zy>" [eipy � 1℄d�(y)� ipb+" ;b+" = Zy>" y1 + y2 �(dy) : (21)Clearly, we deal here with a random variable of the type 
onsideredbefore, and we 
an try to isolate 
ontributions from jumps of the size[y; y +4y) by 
oarse-graining a Borel set A of interest. A formal exploita-tion of �(dy) = nXj=1 �jÆ(y � yj)dy (22)gives rise toE[exp(ipX)℄ = exp" nXj=1 "�j(eipyj � 1)� ip �jyj1 + y2j ## : (23)Further spe
ializing the problem we shall 
onsider Lévy measures thatobey the spatial re�e
tion property �(�dy) = ��(dy). Then, we 
an readilyextend our dis
ussion to jumps of all sorts in R1, i.e. y 
an take values inboth R+ and R�, with the only restri
tion to be observed that jyj > " > 0.Noti
e that we shall deal with two distin
t types of jumps, either positive ornegative, with no 
ommon jump point for them. This fa
t means that theyare independent 
omponents of the more general random variable:�"(p) = Zjyj>" [eipy � 1℄�(dy)� ipb" ; (24)where (
hoose �(dy) = dy�y2 for 
on
reteness) the deterministi
 term identi-
ally vanishes in view ofb" = b+" + b�" = Zy>" y1 + y2 �(dy) + Zy<�" y1 + y2 �(dy) � 0 : (25)
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zewskiIn previous steps we have indire
tly exploited a de�ning property of in-�nitely divisible probability laws: if exp�(p) is a 
hara
teristi
 fun
tion ofa given probability distribution, then [exp�(p)℄t = exp[t�(p)℄; t > 0 is like-wise a 
hara
teristi
 fun
tion of an in�nitely divisible probability law again.This feature extends our dis
ussion to the sto
hasti
 jump and jump-typepro
esses (time homogeneous with independent in
rements). Obviously, forsu
h pro
esses E[exp(ipX(t))℄ = exp[t�(p)℄ while EA[X(t)℄ = t�(A), andour previous arguments retain their validity with respe
t toE[exp(ipX(t))℄" = exp[t�"(p)℄ = exp"t Zjyj>" �eipy � 1� �(dy)#: (26)Coming ba
k to the Lévy�Khin
hin formula, let us repla
e a fun
tionF (p) by an operator a
ting in a suitable domain a

ording to the re
ipe:F (p) ! Ĥ = F (p̂) where p̂ = �ir. We easily learn that for times t � 0there holds [exp(�tĤ)℄f(x) = [exp(�tF (p))f̂(p)℄_(x) ; (27)where the supers
ript _ denotes the inverse Fourier transform and f̂ standsfor the Fourier transform of a fun
tion f .If we set pt = 1p2� [exp(�tF (p))℄_, then the a
tion of exp(�tĤ) 
an begiven in terms of a 
onvolution: exp(�tĤ)f = f � pt, where (f � g)(x) :=RR g(x� z)f(z)dz. Clearly, there holds:�t�(x; t) = �(Ĥ�)(x; t) =)��"(A; t) = ZR dx" Zjyj>" [�A(x+ y)� �A(x)℄�(dy)#�"(x; t) (28)whi
h displays a generi
 master equation form. Indeed, we have here�t�"(A; t) = RR q"(x; t; A)�"(x; t)dx where q" is interpreted as the jump inten-sity.Let us however emphasize that the above simpli�
ation o

urs only in thejyj > " > 0 jumping size regime. The real r�le of two integral terms in theexpression for b" is to 
ompensate the divergent 
ontributions from the Lévymeasure when the prin
ipal value integral "! 0 limit is 
onsidered; then thestandard jump pro
ess theory does not literally apply sin
e arbitrarily smalljumps are admitted. Anyway, those two terms are irrelevant if we assumean " > 0 
uto�, irrespe
tive of how small the 
hosen (and �xed) " is.The best known example of the stable probability law that is 
ompatiblewith the above de�nitions is provided by the 
lassi
 Cau
hy density whi
h



Lo
al Chara
teristi
s of Random Motion 1429will be our referen
e probability law in below. Let us fo
us our attentionon the 
ase whi
h is spe
i�ed by F (p) = jpj. The 
orresponding semigroupgenerator Ĥ = jrj is a pseudodi�erential operator. The asso
iated kernel ptis a transition density of the jump-type Cau
hy pro
ess, whi
h is a solutionof a pseudodi�erential Fokker�Plan
k equation:�t�(x; t) = �jrj�(x; t): (29)The pertinent probability density reads �(x; t) = 1� tt2+x2 and the 
or-responding spa
e-time homogeneous transition density (e.g. the semigroupkernel fun
tion) is:�(x; t) = 1� tt2 + x2 =) p(y; s; x; t) = 1� t� s(t� s)2 + (x� y)2 ; 0 < s < thexp[ipX(t)℄i := ZR exp(ipx)�(x; t)dx = exp(�jpjt) : (30)The 
hara
teristi
 fun
tion of p(y; s; x; t) for y; s �xed, readsexp[ipy � jpj(t � s)℄, and the Lévy measure needed to evaluate the Lévy��Khin
hin integral reads: �(dy) := limt#0[1t p(0; 0; y; t)℄dy = dy�y2 .The Cau
hy pro
ess belongs to the 
ategory of jump-type pro
esses,where apart from the long jumps-tail (no �xed bound 
an be imposed ontheir length) whi
h is the reason of the nonexisten
e of moments of theprobability measure, sample paths of the pro
ess may have an in�nite num-ber of jumps of arbitrarily small size. By general arguments, pertaining tothe spa
e DE[0;1) of right 
ontinuous fun
tions with left limits (
adlag),both in the �nite and in�nite time interval the number of jumps is at most
ountable.An introdu
tion of the "-
uto� whi
h eliminates small jumps is fed up bythe physi
al intuition. An approximation of the jump-type pro
ess shouldin prin
iple be possible in terms of more traditional jump pro
esses whi
hinvolve a �nite number of jumps in a �nite time interval. This radi
al approx-imation assumption is usually a
hieved by giving a 
hara
terisation of thea�liated Markovian jump-type pro
esses in terms of approximating (
on-vergent) families of so-
alled step pro
esses. The step pro
esses are not yetthe jump pro
esses of the standard daily experimental eviden
e. They needto have no a

umulation points of jumps in a �nite time interval: in that
ase the number of jumps is �nite on ea
h �nite time interval and betweenjumps the sample path is 
onstant.Let us re
all that the operator jrj a
ts as follows:jrjf(x) = � 1� ZR �f(x+ y)� f(x)� yrf(x)1 + y2 � dyy2 : (31)
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k to the pseudodi�erential Fokker�Plan
k equation withthe "-
uto� implemented, let us introdu
e an operator jrj":jrj"f(x) = � 1� Zjyj>" [f(x+ y)� f(x)℄dyy2 : (32)It su�
es to repla
e f by �" to arrive at the right-hand-side of the previouslyde�ned Fokker�Plan
k equation for the step pro
ess approximant of theCau
hy pro
ess. Its generator is just jrj".While mitigating the �arbitrarily small jumps� problem, the "-
uto� doesnot remove all obsta
les related to the Cau
hy pro
ess. Indeed, at the �rstglan
e the situation looks de
eivingly simple, be
ause on a �nite time intervalthere 
an be at most �nitely many points t 2 [0; T ℄ at whi
h the jump sizeex
eeds a given positive number. In view of that, supt2[0;T ℄jX"t j <1 whereX"t stands for the "-bounded Cau
hy pro
ess (the same argument extends tothe unrestri
ted Cau
hy pro
ess Xt). However, there must be no �xed upperbound for the size of jumps (ex
ept for being �nite), sin
e a sto
hasti
ally
ontinuous pro
ess with independent in
rements having, with probability 1,no jumps of size ex
eeding a 
ertain 
onstant Æ, would possess all moments.That is 
ertainly not the 
ase for the Cau
hy pro
ess, whi
h is known notto have any moments.Hen
e imposing or not imposing an upper bound on the jump size (
allit a Æ 
uto�) is another 
riti
al issue that hampers a reliable approximationof the jump � type pro
ess in terms of experimentally veri�able jump pro-
esses whose jump size is bounded both from below and from above. Thisderives in part from to the resolution limitations of realisti
 experimentalarrangements (any experimental data 
olle
tion and any 
omputer simula-tion/experimentation have built-in lower and upper jump size bounds), andin part from the fa
t that all observations are 
arried in �nite time on sys-tems of �nite spatial extension. Let us point out that by imposing both "and Æ 
uto�s on the Cau
hy pro
ess, we would redu
e the problem to thestandard jump pro
ess.Obsta
les related to heavy tails of the probability distribution 
an bevisualized by making 
omputer experiments for the 
onverging (in fa
t, di-verging) varian
e test. Namely, given a sample of jumps determined by theCau
hy distribution: X1;X2; : : : Xn, with 1 � i � n, one 
an form a statis-ti
s based on �rst i �observations� and ask for the behaviour of the averageswith respe
t to i. First we need the i-th mean value: X = 1i Pik=1Xi andnext the i-th varian
e: S2i = 1i�1 Pik=1(Xk�Xi)2. Plots ofXi and S2i againsti would show up a fairly irregular behaviour and de�nite non-
onvergen
esignatures for large values of i � n.
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al Chara
teristi
s of Random Motion 14313. Lo
al 
hara
teristi
s of the Ornstein�Uhlenbe
k�Cau
hypro
essAlthough we dire
tly refer to the spe
i�
 Cau
hy sto
hasti
 pro
ess, infa
t we stay in a mu
h broader setting of so-
alled Lévy �ights. Generi
ally,the varian
e and higher 
umulants of those pro
esses are in�nite (nonexis-tent). There is also physi
ally more singular sub
lass of su
h pro
esses forwhi
h even the �rst moment (mean value) is nonexistent. That is true forthe Cau
hy pro
ess. Thus we need to relax the limitations of the standardGaussian paradigm: we fa
e here a fundamental problem of establishingother means (than varian
es and mean values) to 
hara
terize statisti
alproperties of Lévy pro
esses.Spe
i�
ally, if a usual statisti
al analysis is performed on any experimen-tally available set of frequen
y data, there is no obvious method to extra
ta reliable information about tenden
ies (lo
al mean values) of the randomdynami
s. Nonexisten
e of mean values and higher moments may also beinterpreted as the nonexisten
e of observable (e.g. mean, like drifts or lo
al
urrents) regularities of the dynami
s. Moreover, as we have learned be-fore, the jump-type pro
esses usually admit arbitrarily small jumps (withno lower bound) and �nite, but arbitrarily large jump sizes (with no upperbound). Any laboratory experiment or 
omputer simulation would involveboth the lower (
oarse-graining) and upper bound on the jump size. Mathe-mati
ally, that sets (as suitable) the framework of standard jump pro
essesfor whi
h the 
entral limit theorem is known to hold true in its Gaussianversion (even if we a

ount for a possible abnormally slow 
onvergen
e to aGaussian). Therefore, there is no 
lear-
ut pro
edures allowing to attributean unambiguous statisti
al interpretation in terms of Lévy pro
esses to givenphenomenologi
al data. Moreover, no realisti
 formulation of a �u
tuation-dissipation theorem is possible in that 
ase (nonexisten
e of varian
es) whi
hpushes us away from any 
on
eivable thermal equilibrium framework.The starting point for Ornstein and Uhlenbe
k (
f. the previous se
tion)was the dissipative Langevin equationdVdt = ��V (t) +A(t) ; (33)where V (t) is a random variable des
ribing the velo
ity of a parti
le, � > 0is a dissipation 
onstant, and A(t) is another random variable whose proba-bilisti
 features are determined by the probability distribution of V (t), whi
his assumed to satisfy a 
on
rete law when t ! 1. Be
ause V (t) may haveno time derivative, the Langevin equation was soon repla
ed by another one,the sto
hasti
 di�erential equation, namelydV (t) = ��V (t)dt+ dB(t) ; V (0) = v0 (34)
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zewskiwhi
h re
eived a rigorous interpretation within the framework of sto
hasti
analysis. In the 
ase when the probability distribution of V (t), t!1, is theMaxwell one, B(t) must be a Gaussian (in fa
t Wiener, Bt = Wt) pro
ess,and then we end up with a 
lassi
al Ornstein�Uhlenbe
k pro
ess.Now, we shall dis
uss properties of the pro
ess V (t), in the 
ase whenB = (B(t))t�0 is the Cau
hy pro
ess instead of the traditional Wiener one.By straightforward integration we obtain that for t � sV (t) = e��(t�s)V (s) + e��t tZs e��dB(�) : (35)There are a number of (equivalent) pro
edures to dedu
e a probabilitydensity of the pro
ess V (t) from the Cau
hy in
rements statisti
s. One mayfollow a dire
t probabilisti
 route whi
h, upon assuming that a 
hara
teristi
fun
tion of the Cau
hy probability measure readsE[eipB(t)℄ = e�t (p) (36)with the 
hoi
e of  (p) = �2jpj (before, we have used �2 = 1), leads to thetransition density:pt�s(u; v) = P [V (t) = ujV (s) = v℄ = 1� �2(t� s)(u� ve��(t�s))2 + �4(t� s) ; (37)where �2(t� s) = �2� (1� e��(t�s)).Sin
e V (0) = v0, the probability density of V (t) is given byP [V (t) = v℄ = 1� �2(t)(v � v0e��t)2 + �4(t) :Now, we shall demonstrate an important property (mentioned before in
onne
tion with the Ornstein�Uhlenbe
k pro
ess) of the so-
alled sto
hasti

ontinuity, whi
h is a ne
essary 
ondition to give a sto
hasti
 pro
ess anunambiguous status. Namely, we need to show that for any " > 0 thefollowing equation is satis�edlimt!sP [jV (t)� V (s)j � "℄ = 0 :This equation is equivalent tolimt!0 Zju�vj�" pt(u; v)du = 0 :
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ause ofZju�vj�" pt(ujv)du = 1� 1� �ar
tan "+ v(1� e��t)�2(t) + ar
tan "� v(1� e��t)�2(t) �and remembering that �2(t) = �2� (1� e��t), the sto
hasti
 
ontinuity prop-erty does follow.The nonexisten
e of moments of the probability measure in 
ase of theCau
hy pro
ess leads to straightforward di�
ulties, sin
e the standard lo
al
hara
teristi
s of the di�usion-type pro
ess like the drift and the di�usionfun
tion (or 
oe�
ient) seem to be ex
luded in the present 
ase. However,for the 
onsidered Ornstein�Uhlenbe
k�Cau
hy pro
ess, the notion of theforward drift of the pro
ess proves to make sense.Sin
e we know the Markov transition fun
tion pt�s(u; v), t � s, for thepro
ess Vt, we 
an exploit our experien
e with di�usion pro
esses and saythat the pro
ess Vt has a drift (in fa
t, forward drift) if the following limitlimt!s 1t� s Zju�vj�Æ (u� v)pt�s(u; v)du (38)does not depend on the 
hoi
e of Æ > 0. If so, then its value dependingonly on (v; s) we denote by b(v; s) and 
all it the drift 
oe�
ient. Clearly,if p is homogeneous in time, then the drift 
oe�
ient depends only on thevariable v. Let us emphasize that in the above de�nition we do not requirethe pro
ess Vt to have �nite moments.We 
laim that the jump-type Markov pro
ess V (t) has a (forward) driftwhi
h reads b(v) = ��v. Indeed, by �rst evaluating the inde�nite integralI = 1� Z (u� v) �2(t)du(u� ve��t)2 + �4(t)and substituting z = u� ve��t, we get�2(t)� Z zdzz2 + �4(t) + v� �e��t � 1�Z �2(t)dzz2 + �4(t)= �2(t)2� log(z2 + �4(t)) + v� �e��t � 1� ar
tan� z�2(t)� :Hen
eI = �2(t)2� log ��u� ve��t�2 + �4(t)�+ v� �e��t � 1� ar
tan �u� ve��t�2(t) �
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zewskiand 
onsequently the limitlimt!0 1t I����u=v+"u=v�" = limt!0 1t �2(t)2���log[(v + "� ve��t)2 + �4(t)℄� log[(v � "� ve��t)2 + �4(t)℄�+ limt!0 1t v� (e��t � 1)�ar
tan �v + "� ve��t�2(t) �� ar
tan �v � "� ve��t�2(t) ��= 0� �v� ��2 + �2� = ��vexists and is "-independent. This is the forward drift of the pro
ess V (t)whi
h proves a 
onsisten
y of the derived transition probability density withthe sto
hasti
 di�erential equation for the pro
ess Vt = V (t).It is well known that for Markovian di�usion pro
esses all lo
al 
hara
-teristi
s of motion (
onditional expe
tation values that yield drifts and vari-an
es) 
an be derived from transition probability densities, supplemented(if needed) by the density of the pro
ess. We have demonstrated that, inthe non-Gaussian 
ontext, the nonexisten
e of moments does not ne
essarilyimply the nonexisten
e of lo
al 
hara
teristi
s (drifts) of the pro
ess.However, the situation be
omes un
omfortable on
e we attempt to eval-uate another lo
al moment. Namely, in the present 
ase there holds:limt!s+ 1t� s Zjv�uj�Æ (u� v)2pt(u; v)du = 2�2� Æ (39)i.e. an expli
it 
uto� Æ (upper bound on the size of jumps) persists in thisformula and there is no way to remove that jump size restri
tion from theformalism, unless we wish to get the divergent integral.This property is a 
lear indi
ation that a 
onvergen
e to a Gaussianmight always be expe
ted if the Ornstein�Uhlenbe
k�Cau
hy pro
ess is ap-proximated (we disregard an issue of how good that approximation is) bymeans of jump pro
esses with an upper and lower bound on the jump size.In that 
ase both the mean and varian
e would exist for the approximatingpro
ess. In parti
ular, the 
entral limit theorem would work as usual for the("; Æ)-jump pro
ess approximation of the Cau
hy pro
ess Bt.The author re
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 Resear
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