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CHARGED BROWNIAN PARTICLEIN A MAGNETIC FIELD�Radosªaw CzopnikInstitute of Theoreti
al Physi
s, University of Wro
ªawpl. M. Borna 9, 50-204 Wro
ªaw, Polandand Piotr Garba
zewskiInstitute of Physi
s, Pedagogi
al Universitypl. Sªowia«ski 6, 65-069 Zielona Góra, Poland(Re
eived O
tober 30, 2000)We derive expli
it forms of Markovian transition probability densitiesfor the velo
ity spa
e and phase-spa
e Brownian motion of a 
harged par-ti
le in a 
onstant magneti
 �eld.PACS numbers: 02.50.Ga 1. MotivationAn old-fashioned problem of the Brownian motion of a 
harged parti-
le in a 
onstant magneti
 �eld has originated from studies of the di�u-sion of plasma a
ross a magneti
 �eld [1, 2℄ and nowadays, together witha free Brownian motion example, stands for a textbook illustration of howtransport and auto-
orrelation fun
tions should be 
omputed in generi
 sit-uations governed by the Langevin equation, 
f. [3℄ but also [4, 5℄. To ourknowledge, ex
ept for the paper [2℄, no attempt was made in the litera-ture to give a 
omplete 
hara
terization of the pertinent sto
hasti
 pro
ess.However a striking pe
uliarity of Ref. [2℄ is that the Brownian motion ina magneti
 �eld is there des
ribed in terms of operator-valued probabilitydistributions that involve fra
tional powers of matri
es. In 
onsequen
e,we have no 
lean relationship with the standard formalism of Kramers��Smolu
howski equations, nor ways to stay in 
onformity with the standardwisdom about probabilisti
 pro
edures valid in 
ase of the free Brownian� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.(1437)
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zewskimotion (Ornstein�Uhlenbe
k pro
ess), 
f. [6�8℄. Therefore, we address anissue of the Brownian motion of a 
harged parti
le in a magneti
 �eld anew,to unravel its features of a fully-�edged sto
hasti
 di�usion pro
ess.2. Velo
ity-spa
e di�usion pro
essThe standard analysis of the Brownian motion of a free parti
le employsthe Langevin equation d~udt = ��~u + ~A (t), where ~u denotes the velo
ity ofthe parti
le and the in�uen
e of the surrounding medium on the motion(random a

eleration) of the parti
le is modelled by means of two indepen-dent 
ontributions. A systemati
 part ��~u represents a dynami
al fri
tion.The remaining �u
tuating part ~A (t) is supposed to display a statisti
s ofthe familiar white noise: (i) ~A (t) is independent of ~u, (ii) hAi (s)i = 0 andhAi (s)Aj (s0)i = 2qÆijÆ (s� s0) for i; j = 1; 2; 3, where q = kBTm � is a phys-i
al parameter. The Ornstein�Uhlenbe
k sto
hasti
 pro
ess 
omes out onthat 
on
eptual basis.The linear fri
tion model 
an be adopted to the 
ase of di�usion of
harged parti
les in the presen
e of a 
onstant magneti
 �eld whi
h a
tsupon parti
les via the Lorentz for
e. The Langevin equation for that mo-tion reads: d~udt = ��~u+ qem
~u� ~B + ~A (t) ; (1)where qe denotes an ele
tri
 
harge of the parti
le of mass m.Let us assume for simpli
ity that the 
onstant magneti
 �eld ~B is dire
tedalong the z-axis of a Cartesian referen
e frame: ~B = (0; 0; B) and B = 
onst.In this 
ase Eq. (1) takes the formd~udt = ��~u+ ~A (t) ; (2)where � = 0� � �!
 0!
 � 00 0 � 1A ; (3)and !
 = qeBm
 denotes the Larmor frequen
y. Assuming the Langevin equa-tion to be (at least formally) solvable, we 
an infer a probability densityP (~u; tj~u0), t > 0, 
onditioned by the the initial velo
ity data 
hoi
e ~u = ~u0at t = 0. Physi
al 
ir
umstan
es of the problem enfor
e a demand:(i) P (~u; tj~u0)! Æ3 (~u� ~u0) as t! 0 and(ii) P (~u; tj~u0)! � m2�kBT �3=2 exp��mj~u0j22kBT � as t!1.
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le in a Magneti
 Field 1439A formal solution of Eq. (2) reads:~u (t)� e��t~u0 = tZ0 e��(t�s) ~A (s) ds : (4)By taking into a

ount thate��t = e��t0� 
os!
t sin!
t 0� sin!
t 
os!
t 00 0 1 1A = e��tU (t) ; (5)we 
an rewrite (4) as follows~u (t)� e��tU (t) ~u0 = tZ0 e��(t�s)U (t� s) ~A (s) ds : (6)Statisti
al properties of ~u (t)�e��t~u0 are identi
al with those of ~A (s) ds.In 
onsequen
e, the problem of dedu
ing a probability density P (~u; tj~u0) isequivalent to deriving the probability distribution of the random ve
tor~S = tZ0  (s) ~A (s) ds ; (7)where  (s) = e��(t�s) = e��(t�s)U (t� s).The white noise term ~A (s) in view of the integration with respe
t totime is amenable to a more rigorous analysis that invokes the Wiener pro
essin
rements and their statisti
s, [9℄. Let us divide the time integration intervalinto a large number of small subintervals �t. We adjust them suitably toassure that  (t) is e�e
tively 
onstant on ea
h subinterval (j�t; (j + 1)�t)and equal  (j�t). As a result we obtain the expression~S = N�1Xj=0  (j�t) (j+1)�tZj�t ~A (s) ds : (8)Here ~B (�t) = R (j+1)�tj�t ~A (s) ds stands for the above-mentioned Wienerpro
ess in
rement. Physi
ally, ~B (�t) represents the net a

eleration whi
h
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zewskia Brownian parti
le may su�er (in fa
t a

umulates) during an interval oftime �t. Equation (8) be
omes~S = N�1Xj=0  (j�t) ~B (�t) = N�1Xj=0 ~sj ; (9)where we introdu
e ~sj =  (j�t) ~B (�t) =  j ~B (�t).The Wiener pro
ess argument [7, 8℄ allows us to infer the probabilitydistribution of ~sj. It is enough to employ the fa
t that the distribution of~B (�t) is Gaussian with mean zero and varian
e q = kBTm �. Thenw h ~B (�t)i = � 14�q�t�3=2 exp0B�� ��� ~B (�t)���24q�t 1CA (10)and in view of ~sj =  j ~B (�t) by performing the 
hange of variables in (10)we get ew [~sj℄ = det h �1j iw h �1j ~sji = 1det jw h �1j ~sji : (11)Sin
e det (s) = e�3�(t�s) and  �1 (s) = U [� (t� s)℄ e�(t�s) we obtainew [~sj℄ = � 14�q�t�3=2 1e�3�(t�j�t) exp � ��e�(t�j�t)U [� (t� j�t)℄~sj��24q�t !(12)and �nallyew [~sj℄ = � 14�q�t 1e�2�(t�j�t)�3=2 exp � j~sjj24q�te�2�(t�j�t)! : (13)Clearly, ~sj are mutually independent random variables whose distribu-tion is Gaussian with mean zero and varian
e �2j = 2q�te�2�(t�j�t). Hen
e,the probability distribution of ~S = PN�1j=0 ~sj is again Gaussian with meanzero. Its varian
e equals the sum of varian
es of ~sj i.e. �2 = Pj �2j =2qPj �te�2�(t�j�t). After taking the limit N !1 (�t! 0) we arrive at�2 = 2q tZ0 dse�2�(t�s) = kBTm �1� e�2�t� : (14)
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le in a Magneti
 Field 1441Be
ause of ~S = ~u (t) � e��t~u0 the transition probability density of theBrownian parti
le velo
ity, 
onditioned by the initial data ~u0 at t0 = 0 readsP (~u; tj~u0) =  12� kBTm (1� e�2�t)!3=2 exp � ��~u� e��t~u0��22kBTm (1� e�2�t)! : (15)The pro
ess is Markovian and time-homogeneous, hen
e the above for-mula 
an be trivially extended to en
ompass the 
ase of arbitrary t0 6= 0 :P (~u; tj~u0; t0) arises by substituting everywhere t� t0 instead of t.Physi
al arguments (
f. demand (ii) pre
eding Eq. (4)) refer to anasymptoti
 probability distribution (invariant measure density) P (u) of therandom variable ~u in the Maxwell�Boltzmann formP (~u) = � m2�kBT �3=2 exp �m j~uj22kBT ! : (16)This time-independent probability density together with the time-homo-geneous transition density (15) uniquely determine a stationary Markoviansto
hasti
 pro
ess for whi
h we 
an evaluate various mean values. Expe
-tation values of velo
ity 
omponents vanish: hui (t)i = R1�1 uiP (~u) d~u = 0for i = 1; 2; 3. The matrix of the se
ond moments (velo
ity auto-
orrelationfun
tions) readshui (t)uj (t0)i = 1Z�1 uiu0jP (~u; t; ~u0; t0) d~ud~u0 ; (17)where i; j = 1; 2; 3 and in view of P (~u; t; ~u0; t0) = P (~u; tj~u0; t0)P (~u0) wearrive at the 
ompa
t expressionkBTm e��jt�t0j = kBTm e��jt�t0j0� 
os!
 jt� t0j sin!
 jt� t0j 0� sin!
 jt� t0j 
os!
 jt� t0j 00 0 1 1A :(18)In parti
ular, the auto-
orrelation fun
tion (se
ond moment) of thex-
omponent of velo
ity equalshu1 (t)u1 (t0)i = kBTm e��jt�t0j 
os!
 jt� t0j (19)in agreement with white noise 
al
ulations of Refs. [1℄ and [3℄, 
f. Chap. 11,formula (11.25). The so-
alled running di�usion 
oe�
ient arises here via
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zewskistraightforward integration of the fun
tion R11(�) = hu1(t)u1(t0)i, where� = t� t0 > 0:D1(t) = tZ0 hu1(0)u1(�)id� = kBTm � + [!
 sin(!
t)� � 
os(!
t)℄ exp(��t)�2 + !
2 (20)with an obvious asymptoti
s (the same for D2(t)): DB = limt!1D1(t) =kBTm ��2+!
2 and the large fri
tion (!
 �xed and bounded) version D = kBTm� .3. Spatial pro
ess � dynami
s in the planeThe 
ylindri
al symmetry of the problem allows us to 
onsider sepa-rately pro
esses running on the XY plane and along the Z-axis (where thefree Brownian motion takes pla
e). We shall 
on�ne further attention to thetwo-dimensional XY -plane problem. Hen
eforth, ea
h ve
tor will 
arry two
omponents whi
h 
orrespond to the x and y 
oordinates respe
tively. Wewill dire
tly refer to the ve
tor and matrix quantities introdu
ed in the pre-vious se
tion, but while keeping the same notation, we shall simply disregardtheir z-
oordinate 
ontributions.We de�ne the spatial displa
ement ~r of the Brownian parti
le as follows~r � ~r0 = tZ0 ~u (�) dn ; (21)where ~u (t) is given by Eq. (2) (ex
ept for disregarding the third 
oordinate).Our aim is to derive the probability distribution of ~r at time t providedthat the parti
le position and velo
ity were equal ~r0 and ~u0 respe
tively, attime t0 = 0. To that end we shall mimi
 pro
edures of the previous se
tion.In view of: ~r � ~r0 � tZ0 e���~u0 = tZ0 d� �Z0 dse��(��s) ~A (s) ; (22)we have ~r � ~r0 � ��1 �1� e��t�~u0 = tZ0 ��1 �1� e�(s�t)� ~A (s) ds ; (23)where ��1 = 1�2 + !2
 � � !
�!
 � � (24)
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le in a Magneti
 Field 1443is the inverse of the matrix � (regarded as a rank two sub-matrix of thatoriginally introdu
ed in Eq. (3)). Let us de�ne two auxiliary matri
es
 � ��1 �1� e��t� ;� (s) � ��1 �1� e�(s�t)� : (25)Be
ause of:e��t = exp��t� � �!
!
 � �� = e��t� 
os!
t sin!
t� sin!
t 
os!
t � = e��tU (t) ;(26)we 
an represent matri
es 
, � (s) in more detailed form. We have:
 = 1�2 + !2
 �� � !
�!
 � �� e��t� � !
�!
 � �� 
os!
t sin!
t� sin!
t 
os!
t ��(27)and� (s) = ��1 �1� e��(t�s)U (t� s)�= 1�2 + !2
 � � !
�!
 � ��1� e�(s�t) 
os!
 (s� t) �e�(s�t) sin!
 (s� t)e�(s�t) sin!
 (s� t) 1� e�(s�t) 
os!
 (s� t)�:(28)Next steps imitate pro
edures of the previous se
tion. Thus, we seek forthe probability distribution of the random (planar) ve
tor~R = tZ0 � (s) ~A (s) ds ;where ~R = ~r � ~r0 �
~u0.Dividing the time interval (0; t) into small subintervals to assure that� (s) 
an be regarded 
onstant over the time span (j�t; (j + 1)�t) andequal � (j�t), we obtain~R = N�1Xj=0 � (j�t) (j+1)�tZj�t ~A (s) ds = N�1Xj=0 � (j�t) ~B (�t) = N�1Xj=0 ~rj ; (29)where ~rj = � (j�t) ~B (�t) = �j ~B (�t).
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zewskiBy invoking the probability distribution (10) we perform an appropriate
hange of variables: ~rj = �j ~B (�t) to yield a probability distribution of ~rjew [~rj℄ = det h��1j iw h��1j ~rji = 1det�jw h��1j ~rji : (30)Presently (not to be 
onfused with previous steps (11)�(15)) we havedet� (s) = 1�2 + !2
 �1 + e2�(s�t) � 2e�(s�t) 
os!
 (s� t)� (31)and��1 (s) = 11 + e2�(s�t) � 2e�(s�t) 
os!
 (s� t) h1� e�(s�t)U (� (s� t))i� :(32)So, the inverse of the matrix �j has the form:��1j = eAj
j ; (33)whereeAj = � 1� e�(j�t�t) 
os!
 (j�t� t) e�(j�t�t) sin!
 (j�t� t)�e�(j�t�t) sin!
 (j�t� t) 1� e�(j�t�t) 
os!
 (j�t� t) ��� � �!
!
 � � (34)and 
j = 1 + e2�(j�t�t) � 2e�(j�t�t) 
os!
 (j�t� t) : (35)There holds: det��1j = (det�j)�1 = ��2 + !2
� 1
j (36)and as a 
onsequen
e we arrive at the following probability distribution of ~rjew [~rj ℄ = 11�2+!2
 
j � 14�q�t� exp8>>><>>>:���� eAj � rxjryj �����2
2j 4q�t 9>>>=>>>; : (37)In view of ���� eAj � rxjrxj �����2 = ��2 + !2
� 
j ��rxj �2 + �ryj�2� (38)
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le in a Magneti
 Field 1445that �nally leads toew [~rj ℄ = � �2 + !2
4�q�t
j� exp(�(�2 + !2
 ) j~rjj24q�t
j ) : (39)Sin
e this probability distribution is Gaussian with mean zero and vari-an
e �2j = 2q�t 1�2+!2
 
j , the random ve
tor ~R as a sum of independentrandom variables ~rj has the distributionw �~R� = 12�Pj �2j exp �R2x +R2y2Pj �2j ! : (40)�2 =Xj �2j = 2qXj �t 1�2 + !2
 
j : (41)In the limit of �t! 0 we arrive at the integral�2 = 2q 1�2 + !2
 tZ0 
 (s) ds (42)with R t0 
 (s) ds = t+�, where� = �(t) = 12� �1� e�2�t�� 2 1�2 + !2
 h� + (!
 sin!
t� � 
os!
t) e��ti :(43)That gives rise to an ultimate form of the transition probability densityof the spatial displa
ement pro
ess:P (~r; tj~r0; t0 = 0; ~u0) = 14� kBTm ��2+!2
 (t+�) exp � j~r � ~r0 �
~u0j24kBTm ��2+!2
 (t+�)!(44)with
 = 
(t) de�ned in Eqs. (25), (27). Noti
e that an asymptoti
 di�usion
oe�
ient DB = D �2�2+!2
 en
odes an attenuation signature for the spatialdispersion (when !
 grows up at � �xed).The spatial displa
ement pro
ess governed by the above transition prob-ability density surely is not Markovian. That 
an be 
he
ked by inspe
tion:the Chapman�Kolmogorov identity is not valid, like in the standard freeBrownian motion example where the Ornstein�Uhlenbe
k pro
ess indu
ed(sole) spatial dynami
s is non-Markovian as well.
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zewski4. Phase-spa
e pro
ess4.1. Axial dire
tionWe take advantage of the 
ylindri
al symmetry of our problem, and
onsider separately the (free) Brownian dynami
s in the dire
tion parallelto the magneti
 �eld ve
tor, e.g. along the Z-axis.That amounts to the familiar Ornstein-Uhlenbe
k pro
ess in its extendedphase-spa
e form. In the absen
e of external for
es, the kineti
 (Kramers�Fokker�Plan
k equation) reads:�tW + urzW = �ru(Wu) + q4uW ; (45)where q = D�2. Here � is the fri
tion 
oe�
ient, D will be identi�ed laterwith the spatial di�usion 
onstant, and (as before) we set D = kBT=m� in
onformity with the Einstein �u
tuation-dissipation identity. The joint prob-ability distribution (in fa
t, density) W (z; u; t) for a freely moving Brownianparti
le whi
h at t = 0 initiates its motion at x0 with an arbitrary initial ve-lo
ity u0 
an be given in the form of the maximally symmetri
 displa
ementprobability law:W (z; u; t) =W (R;S) = �4�2(FG�H2)��1=2exp��GR2 �HRS + FS22(FG �H2) � ;(46)where R = z � u0(1� e��t)��1; S = u� u0e��twhile F = D� (2�t� 3 + 4e��t � e�2�t)G = D�(1� e�2�t)and H = D(1� e��t)2:4.2. Planar pro
essNow we shall 
onsider Brownian dynami
s in the dire
tion perpendi
ularto the magneti
 �eld ~B, hen
e (while in terms of 
on�guration-spa
e vari-ables) we address an issue of the planar dynami
s. We are interested in the
omplete phase-spa
e pro
ess, hen
e we need to spe
ify the transition prob-ability density P (~r; ~u; tj~r0; ~u0; t0 = 0) of the Markov pro
ess 
onditionedby the initial data ~u = ~u0 and ~r = ~r0 at time t0 = 0. That is equivalentto dedu
ing the joint probability distribution W (~S; ~R) of random ve
tors ~Sand ~R, previously de�ned to appear in the form ~S = ~u (t) � e��t~u0 and~R = ~r � ~r0 � 
~u0, respe
tively. Let us stress that presently all ve
tors
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le in a Magneti
 Field 1447are regarded as two-dimensional versions (the third 
omponent being sim-ply disregarded) of the original random variables we have dis
ussed so far inSe
tions 2 and 3.Ve
tors ~S and ~R both share a Gaussian distribution with mean zero.Consequently, the joint distribution W (~S; ~R) is determined by the matrix ofvarian
es and 
ovarian
es: C = (
ij) = (hxixji), where we abbreviate fourphase-spa
e variables in a single notion of x = (S1; S2; R1; R2) and label
omponents of x by i; j = 1; 2; 3; 4. In terms of ~R and ~S the 
ovarian
ematrix C reads:C = 0BB� hS1S1i hS1S2i hS1R1i hS1R2ihS2S1i hS2S2i hS2R1i hS2R2ihR1S1i hR1S2i hR1R1i hR1R2ihR2S1i hR2S2i hR2R1i hR2R2i 1CCA : (47)The joint probability distribution of ~S and ~R is given byW �~S; ~R� =W (~x) = 14�2 � 1detC� 12 exp0��12Xi;j 
�1ij xixj1A ; (48)where 
�1ij denotes the 
omponent of the inverse matrix C�1.The probability distributions of ~S and ~R, whi
h were established in theprevious se
tions, determine a number of expe
tation values:g � hS1S1i = hS2S2i = kBTm �1� e�2�t� (49)while hS1S2i = hS2S1i = 0. Furthermore:f � hR1R1i = hR2R2i = 2kBTm ��2 + !2
 (t+�) = 2DB(t+�) : (50)In addition we have hR1R2i = hR2R1i = 0. As a 
onsequen
e, we areleft with only four non-vanishing 
omponents of the 
ovarian
e matrix C:
13 = 
31 = hS1R1i, 
14 = 
41 = hS1R2i, 
23 = 
32 = hS2R1i, 
24 = 
42 =hS2R2i whi
h need a 
loser examination.We 
an obtain those 
ovarian
es by exploiting a dependen
e of the ran-dom quantities ~S and ~R on the white-noise term ~A (s) whose statisti
alproperties are known. There follows:S1 = tZ0 dse��(t�s) [
os!
 (t� s)A1 (s) + sin!
 (t� s)A2 (s)℄ ;S2 = tZ0 dse��(t�s) [� sin!
 (t� s)A1 (s) + 
os!
 (t� s)A2 (s)℄ ; (51)
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R1 = tZ0 ds 1�2 + !2
 h� �1� e��(t�s) 
os!
 (t� s)�+!
e��(t�s) sin!
 (t� s) iA1 (s)+ tZ0 ds 1�2 + !2
 h� �e��(t�s) sin!
 (t� s)+!
 �1� e��(t�s) 
os!
 (t� s)� iA2 (s) ;R2 = tZ0 ds 1�2 + !2
 h� !
 �1� e��(t�s) 
os!
 (t� s)�+�e��(t�s) sin!
 (t� s) iA1 (s)+ tZ0 ds 1�2 + !2
 h!
e��(t�s) sin!
 (t� s)+� �1� e��(t�s) 
os!
 (t� s)� iA2 (s) :Multiplying together suitable 
omponents of ve
tors ~S and ~R and takingaverages of those produ
ts in 
onformity with the rules hAi (s)i = 0 andhAi (s)Aj (s0)i = 2qÆijÆ (s� s0), where q = kBTm �, i; j = 1; 2; 3, we arrive at:h � hR1S1i = hR2S2i = 2q 1�2 + !2
 tZ0 dse��(t�s)[� 
os!
 (t� s)+!
 sin!
 (t� s)� �e��(t�s)℄ = q 1�2 + !2
 �1� 2e��t 
os!
t+ e�2�t� (52)and k � hR1S2i = �hR2S1i = 2q 1�2 + !2
 tZ0 dse��(t�s)[�� sin!
 (t� s)+!
 
os!
 (t� s)� !
e��(t�s)℄= q 1�2 + !2
 �2e��t sin!
t� !
� �1� e�2�t�� : (53)
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le in a Magneti
 Field 1449The 
ovarian
e matrix C = (
ij) has thus the formC = 0BB� g 0 h �k0 g k hh k f 0�k h 0 f 1CCA (54)while its inverse C�1 reads as follows:C�1 = 1detC �fg � h2 � k2�0BB� f 0 �h k0 f �k �h�h �k g 0k �h 0 g 1CCA ; (55)where detC = �fg � h2 � k2�2. The joint probability distribution of ~S and~R 
an be ultimately written in the form:W �~S; ~R� =14�2 (fg � h2 � k2) exp0B��f ���~S���2 + g ���~R���2 � 2h~S � ~R+ 2k �~S � ~R�i=32 (fg � h2 � k2) 1CA :(56)In the above, all ve
tor entries are two-dimensional. The spe
i�
 i = 3ve
tor produ
t 
oordinate in the exponent is simply an abbreviation forthe (ordinary R3-ve
tor produ
t) pro
edure that involves merely �rst two
omponents of three-dimensional ve
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