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CHARGED BROWNIAN PARTICLEIN A MAGNETIC FIELD�Radosªaw CzopnikInstitute of Theoretial Physis, University of Wroªawpl. M. Borna 9, 50-204 Wroªaw, Polandand Piotr GarbazewskiInstitute of Physis, Pedagogial Universitypl. Sªowia«ski 6, 65-069 Zielona Góra, Poland(Reeived Otober 30, 2000)We derive expliit forms of Markovian transition probability densitiesfor the veloity spae and phase-spae Brownian motion of a harged par-tile in a onstant magneti �eld.PACS numbers: 02.50.Ga 1. MotivationAn old-fashioned problem of the Brownian motion of a harged parti-le in a onstant magneti �eld has originated from studies of the di�u-sion of plasma aross a magneti �eld [1, 2℄ and nowadays, together witha free Brownian motion example, stands for a textbook illustration of howtransport and auto-orrelation funtions should be omputed in generi sit-uations governed by the Langevin equation, f. [3℄ but also [4, 5℄. To ourknowledge, exept for the paper [2℄, no attempt was made in the litera-ture to give a omplete haraterization of the pertinent stohasti proess.However a striking peuliarity of Ref. [2℄ is that the Brownian motion ina magneti �eld is there desribed in terms of operator-valued probabilitydistributions that involve frational powers of matries. In onsequene,we have no lean relationship with the standard formalism of Kramers��Smoluhowski equations, nor ways to stay in onformity with the standardwisdom about probabilisti proedures valid in ase of the free Brownian� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.(1437)



1438 R. Czopnik, P. Garbazewskimotion (Ornstein�Uhlenbek proess), f. [6�8℄. Therefore, we address anissue of the Brownian motion of a harged partile in a magneti �eld anew,to unravel its features of a fully-�edged stohasti di�usion proess.2. Veloity-spae di�usion proessThe standard analysis of the Brownian motion of a free partile employsthe Langevin equation d~udt = ��~u + ~A (t), where ~u denotes the veloity ofthe partile and the in�uene of the surrounding medium on the motion(random aeleration) of the partile is modelled by means of two indepen-dent ontributions. A systemati part ��~u represents a dynamial frition.The remaining �utuating part ~A (t) is supposed to display a statistis ofthe familiar white noise: (i) ~A (t) is independent of ~u, (ii) hAi (s)i = 0 andhAi (s)Aj (s0)i = 2qÆijÆ (s� s0) for i; j = 1; 2; 3, where q = kBTm � is a phys-ial parameter. The Ornstein�Uhlenbek stohasti proess omes out onthat oneptual basis.The linear frition model an be adopted to the ase of di�usion ofharged partiles in the presene of a onstant magneti �eld whih atsupon partiles via the Lorentz fore. The Langevin equation for that mo-tion reads: d~udt = ��~u+ qem~u� ~B + ~A (t) ; (1)where qe denotes an eletri harge of the partile of mass m.Let us assume for simpliity that the onstant magneti �eld ~B is diretedalong the z-axis of a Cartesian referene frame: ~B = (0; 0; B) and B = onst.In this ase Eq. (1) takes the formd~udt = ��~u+ ~A (t) ; (2)where � = 0� � �! 0! � 00 0 � 1A ; (3)and ! = qeBm denotes the Larmor frequeny. Assuming the Langevin equa-tion to be (at least formally) solvable, we an infer a probability densityP (~u; tj~u0), t > 0, onditioned by the the initial veloity data hoie ~u = ~u0at t = 0. Physial irumstanes of the problem enfore a demand:(i) P (~u; tj~u0)! Æ3 (~u� ~u0) as t! 0 and(ii) P (~u; tj~u0)! � m2�kBT �3=2 exp��mj~u0j22kBT � as t!1.



Charged Brownian Partile in a Magneti Field 1439A formal solution of Eq. (2) reads:~u (t)� e��t~u0 = tZ0 e��(t�s) ~A (s) ds : (4)By taking into aount thate��t = e��t0� os!t sin!t 0� sin!t os!t 00 0 1 1A = e��tU (t) ; (5)we an rewrite (4) as follows~u (t)� e��tU (t) ~u0 = tZ0 e��(t�s)U (t� s) ~A (s) ds : (6)Statistial properties of ~u (t)�e��t~u0 are idential with those of ~A (s) ds.In onsequene, the problem of deduing a probability density P (~u; tj~u0) isequivalent to deriving the probability distribution of the random vetor~S = tZ0  (s) ~A (s) ds ; (7)where  (s) = e��(t�s) = e��(t�s)U (t� s).The white noise term ~A (s) in view of the integration with respet totime is amenable to a more rigorous analysis that invokes the Wiener proessinrements and their statistis, [9℄. Let us divide the time integration intervalinto a large number of small subintervals �t. We adjust them suitably toassure that  (t) is e�etively onstant on eah subinterval (j�t; (j + 1)�t)and equal  (j�t). As a result we obtain the expression~S = N�1Xj=0  (j�t) (j+1)�tZj�t ~A (s) ds : (8)Here ~B (�t) = R (j+1)�tj�t ~A (s) ds stands for the above-mentioned Wienerproess inrement. Physially, ~B (�t) represents the net aeleration whih



1440 R. Czopnik, P. Garbazewskia Brownian partile may su�er (in fat aumulates) during an interval oftime �t. Equation (8) beomes~S = N�1Xj=0  (j�t) ~B (�t) = N�1Xj=0 ~sj ; (9)where we introdue ~sj =  (j�t) ~B (�t) =  j ~B (�t).The Wiener proess argument [7, 8℄ allows us to infer the probabilitydistribution of ~sj. It is enough to employ the fat that the distribution of~B (�t) is Gaussian with mean zero and variane q = kBTm �. Thenw h ~B (�t)i = � 14�q�t�3=2 exp0B�� ��� ~B (�t)���24q�t 1CA (10)and in view of ~sj =  j ~B (�t) by performing the hange of variables in (10)we get ew [~sj℄ = det h �1j iw h �1j ~sji = 1det jw h �1j ~sji : (11)Sine det (s) = e�3�(t�s) and  �1 (s) = U [� (t� s)℄ e�(t�s) we obtainew [~sj℄ = � 14�q�t�3=2 1e�3�(t�j�t) exp � ��e�(t�j�t)U [� (t� j�t)℄~sj��24q�t !(12)and �nallyew [~sj℄ = � 14�q�t 1e�2�(t�j�t)�3=2 exp � j~sjj24q�te�2�(t�j�t)! : (13)Clearly, ~sj are mutually independent random variables whose distribu-tion is Gaussian with mean zero and variane �2j = 2q�te�2�(t�j�t). Hene,the probability distribution of ~S = PN�1j=0 ~sj is again Gaussian with meanzero. Its variane equals the sum of varianes of ~sj i.e. �2 = Pj �2j =2qPj �te�2�(t�j�t). After taking the limit N !1 (�t! 0) we arrive at�2 = 2q tZ0 dse�2�(t�s) = kBTm �1� e�2�t� : (14)



Charged Brownian Partile in a Magneti Field 1441Beause of ~S = ~u (t) � e��t~u0 the transition probability density of theBrownian partile veloity, onditioned by the initial data ~u0 at t0 = 0 readsP (~u; tj~u0) =  12� kBTm (1� e�2�t)!3=2 exp � ��~u� e��t~u0��22kBTm (1� e�2�t)! : (15)The proess is Markovian and time-homogeneous, hene the above for-mula an be trivially extended to enompass the ase of arbitrary t0 6= 0 :P (~u; tj~u0; t0) arises by substituting everywhere t� t0 instead of t.Physial arguments (f. demand (ii) preeding Eq. (4)) refer to anasymptoti probability distribution (invariant measure density) P (u) of therandom variable ~u in the Maxwell�Boltzmann formP (~u) = � m2�kBT �3=2 exp �m j~uj22kBT ! : (16)This time-independent probability density together with the time-homo-geneous transition density (15) uniquely determine a stationary Markovianstohasti proess for whih we an evaluate various mean values. Expe-tation values of veloity omponents vanish: hui (t)i = R1�1 uiP (~u) d~u = 0for i = 1; 2; 3. The matrix of the seond moments (veloity auto-orrelationfuntions) readshui (t)uj (t0)i = 1Z�1 uiu0jP (~u; t; ~u0; t0) d~ud~u0 ; (17)where i; j = 1; 2; 3 and in view of P (~u; t; ~u0; t0) = P (~u; tj~u0; t0)P (~u0) wearrive at the ompat expressionkBTm e��jt�t0j = kBTm e��jt�t0j0� os! jt� t0j sin! jt� t0j 0� sin! jt� t0j os! jt� t0j 00 0 1 1A :(18)In partiular, the auto-orrelation funtion (seond moment) of thex-omponent of veloity equalshu1 (t)u1 (t0)i = kBTm e��jt�t0j os! jt� t0j (19)in agreement with white noise alulations of Refs. [1℄ and [3℄, f. Chap. 11,formula (11.25). The so-alled running di�usion oe�ient arises here via



1442 R. Czopnik, P. Garbazewskistraightforward integration of the funtion R11(�) = hu1(t)u1(t0)i, where� = t� t0 > 0:D1(t) = tZ0 hu1(0)u1(�)id� = kBTm � + [! sin(!t)� � os(!t)℄ exp(��t)�2 + !2 (20)with an obvious asymptotis (the same for D2(t)): DB = limt!1D1(t) =kBTm ��2+!2 and the large frition (! �xed and bounded) version D = kBTm� .3. Spatial proess � dynamis in the planeThe ylindrial symmetry of the problem allows us to onsider sepa-rately proesses running on the XY plane and along the Z-axis (where thefree Brownian motion takes plae). We shall on�ne further attention to thetwo-dimensional XY -plane problem. Heneforth, eah vetor will arry twoomponents whih orrespond to the x and y oordinates respetively. Wewill diretly refer to the vetor and matrix quantities introdued in the pre-vious setion, but while keeping the same notation, we shall simply disregardtheir z-oordinate ontributions.We de�ne the spatial displaement ~r of the Brownian partile as follows~r � ~r0 = tZ0 ~u (�) dn ; (21)where ~u (t) is given by Eq. (2) (exept for disregarding the third oordinate).Our aim is to derive the probability distribution of ~r at time t providedthat the partile position and veloity were equal ~r0 and ~u0 respetively, attime t0 = 0. To that end we shall mimi proedures of the previous setion.In view of: ~r � ~r0 � tZ0 e���~u0 = tZ0 d� �Z0 dse��(��s) ~A (s) ; (22)we have ~r � ~r0 � ��1 �1� e��t�~u0 = tZ0 ��1 �1� e�(s�t)� ~A (s) ds ; (23)where ��1 = 1�2 + !2 � � !�! � � (24)



Charged Brownian Partile in a Magneti Field 1443is the inverse of the matrix � (regarded as a rank two sub-matrix of thatoriginally introdued in Eq. (3)). Let us de�ne two auxiliary matries
 � ��1 �1� e��t� ;� (s) � ��1 �1� e�(s�t)� : (25)Beause of:e��t = exp��t� � �!! � �� = e��t� os!t sin!t� sin!t os!t � = e��tU (t) ;(26)we an represent matries 
, � (s) in more detailed form. We have:
 = 1�2 + !2 �� � !�! � �� e��t� � !�! � �� os!t sin!t� sin!t os!t ��(27)and� (s) = ��1 �1� e��(t�s)U (t� s)�= 1�2 + !2 � � !�! � ��1� e�(s�t) os! (s� t) �e�(s�t) sin! (s� t)e�(s�t) sin! (s� t) 1� e�(s�t) os! (s� t)�:(28)Next steps imitate proedures of the previous setion. Thus, we seek forthe probability distribution of the random (planar) vetor~R = tZ0 � (s) ~A (s) ds ;where ~R = ~r � ~r0 �
~u0.Dividing the time interval (0; t) into small subintervals to assure that� (s) an be regarded onstant over the time span (j�t; (j + 1)�t) andequal � (j�t), we obtain~R = N�1Xj=0 � (j�t) (j+1)�tZj�t ~A (s) ds = N�1Xj=0 � (j�t) ~B (�t) = N�1Xj=0 ~rj ; (29)where ~rj = � (j�t) ~B (�t) = �j ~B (�t).



1444 R. Czopnik, P. GarbazewskiBy invoking the probability distribution (10) we perform an appropriatehange of variables: ~rj = �j ~B (�t) to yield a probability distribution of ~rjew [~rj℄ = det h��1j iw h��1j ~rji = 1det�jw h��1j ~rji : (30)Presently (not to be onfused with previous steps (11)�(15)) we havedet� (s) = 1�2 + !2 �1 + e2�(s�t) � 2e�(s�t) os! (s� t)� (31)and��1 (s) = 11 + e2�(s�t) � 2e�(s�t) os! (s� t) h1� e�(s�t)U (� (s� t))i� :(32)So, the inverse of the matrix �j has the form:��1j = eAjj ; (33)whereeAj = � 1� e�(j�t�t) os! (j�t� t) e�(j�t�t) sin! (j�t� t)�e�(j�t�t) sin! (j�t� t) 1� e�(j�t�t) os! (j�t� t) ��� � �!! � � (34)and j = 1 + e2�(j�t�t) � 2e�(j�t�t) os! (j�t� t) : (35)There holds: det��1j = (det�j)�1 = ��2 + !2� 1j (36)and as a onsequene we arrive at the following probability distribution of ~rjew [~rj ℄ = 11�2+!2 j � 14�q�t� exp8>>><>>>:���� eAj � rxjryj �����22j 4q�t 9>>>=>>>; : (37)In view of ���� eAj � rxjrxj �����2 = ��2 + !2� j ��rxj �2 + �ryj�2� (38)



Charged Brownian Partile in a Magneti Field 1445that �nally leads toew [~rj ℄ = � �2 + !24�q�tj� exp(�(�2 + !2 ) j~rjj24q�tj ) : (39)Sine this probability distribution is Gaussian with mean zero and vari-ane �2j = 2q�t 1�2+!2 j , the random vetor ~R as a sum of independentrandom variables ~rj has the distributionw �~R� = 12�Pj �2j exp �R2x +R2y2Pj �2j ! : (40)�2 =Xj �2j = 2qXj �t 1�2 + !2 j : (41)In the limit of �t! 0 we arrive at the integral�2 = 2q 1�2 + !2 tZ0  (s) ds (42)with R t0  (s) ds = t+�, where� = �(t) = 12� �1� e�2�t�� 2 1�2 + !2 h� + (! sin!t� � os!t) e��ti :(43)That gives rise to an ultimate form of the transition probability densityof the spatial displaement proess:P (~r; tj~r0; t0 = 0; ~u0) = 14� kBTm ��2+!2 (t+�) exp � j~r � ~r0 �
~u0j24kBTm ��2+!2 (t+�)!(44)with
 = 
(t) de�ned in Eqs. (25), (27). Notie that an asymptoti di�usionoe�ient DB = D �2�2+!2 enodes an attenuation signature for the spatialdispersion (when ! grows up at � �xed).The spatial displaement proess governed by the above transition prob-ability density surely is not Markovian. That an be heked by inspetion:the Chapman�Kolmogorov identity is not valid, like in the standard freeBrownian motion example where the Ornstein�Uhlenbek proess indued(sole) spatial dynamis is non-Markovian as well.



1446 R. Czopnik, P. Garbazewski4. Phase-spae proess4.1. Axial diretionWe take advantage of the ylindrial symmetry of our problem, andonsider separately the (free) Brownian dynamis in the diretion parallelto the magneti �eld vetor, e.g. along the Z-axis.That amounts to the familiar Ornstein-Uhlenbek proess in its extendedphase-spae form. In the absene of external fores, the kineti (Kramers�Fokker�Plank equation) reads:�tW + urzW = �ru(Wu) + q4uW ; (45)where q = D�2. Here � is the frition oe�ient, D will be identi�ed laterwith the spatial di�usion onstant, and (as before) we set D = kBT=m� inonformity with the Einstein �utuation-dissipation identity. The joint prob-ability distribution (in fat, density) W (z; u; t) for a freely moving Brownianpartile whih at t = 0 initiates its motion at x0 with an arbitrary initial ve-loity u0 an be given in the form of the maximally symmetri displaementprobability law:W (z; u; t) =W (R;S) = �4�2(FG�H2)��1=2exp��GR2 �HRS + FS22(FG �H2) � ;(46)where R = z � u0(1� e��t)��1; S = u� u0e��twhile F = D� (2�t� 3 + 4e��t � e�2�t)G = D�(1� e�2�t)and H = D(1� e��t)2:4.2. Planar proessNow we shall onsider Brownian dynamis in the diretion perpendiularto the magneti �eld ~B, hene (while in terms of on�guration-spae vari-ables) we address an issue of the planar dynamis. We are interested in theomplete phase-spae proess, hene we need to speify the transition prob-ability density P (~r; ~u; tj~r0; ~u0; t0 = 0) of the Markov proess onditionedby the initial data ~u = ~u0 and ~r = ~r0 at time t0 = 0. That is equivalentto deduing the joint probability distribution W (~S; ~R) of random vetors ~Sand ~R, previously de�ned to appear in the form ~S = ~u (t) � e��t~u0 and~R = ~r � ~r0 � 
~u0, respetively. Let us stress that presently all vetors



Charged Brownian Partile in a Magneti Field 1447are regarded as two-dimensional versions (the third omponent being sim-ply disregarded) of the original random variables we have disussed so far inSetions 2 and 3.Vetors ~S and ~R both share a Gaussian distribution with mean zero.Consequently, the joint distribution W (~S; ~R) is determined by the matrix ofvarianes and ovarianes: C = (ij) = (hxixji), where we abbreviate fourphase-spae variables in a single notion of x = (S1; S2; R1; R2) and labelomponents of x by i; j = 1; 2; 3; 4. In terms of ~R and ~S the ovarianematrix C reads:C = 0BB� hS1S1i hS1S2i hS1R1i hS1R2ihS2S1i hS2S2i hS2R1i hS2R2ihR1S1i hR1S2i hR1R1i hR1R2ihR2S1i hR2S2i hR2R1i hR2R2i 1CCA : (47)The joint probability distribution of ~S and ~R is given byW �~S; ~R� =W (~x) = 14�2 � 1detC� 12 exp0��12Xi;j �1ij xixj1A ; (48)where �1ij denotes the omponent of the inverse matrix C�1.The probability distributions of ~S and ~R, whih were established in theprevious setions, determine a number of expetation values:g � hS1S1i = hS2S2i = kBTm �1� e�2�t� (49)while hS1S2i = hS2S1i = 0. Furthermore:f � hR1R1i = hR2R2i = 2kBTm ��2 + !2 (t+�) = 2DB(t+�) : (50)In addition we have hR1R2i = hR2R1i = 0. As a onsequene, we areleft with only four non-vanishing omponents of the ovariane matrix C:13 = 31 = hS1R1i, 14 = 41 = hS1R2i, 23 = 32 = hS2R1i, 24 = 42 =hS2R2i whih need a loser examination.We an obtain those ovarianes by exploiting a dependene of the ran-dom quantities ~S and ~R on the white-noise term ~A (s) whose statistialproperties are known. There follows:S1 = tZ0 dse��(t�s) [os! (t� s)A1 (s) + sin! (t� s)A2 (s)℄ ;S2 = tZ0 dse��(t�s) [� sin! (t� s)A1 (s) + os! (t� s)A2 (s)℄ ; (51)



1448 R. Czopnik, P. Garbazewski
R1 = tZ0 ds 1�2 + !2 h� �1� e��(t�s) os! (t� s)�+!e��(t�s) sin! (t� s) iA1 (s)+ tZ0 ds 1�2 + !2 h� �e��(t�s) sin! (t� s)+! �1� e��(t�s) os! (t� s)� iA2 (s) ;R2 = tZ0 ds 1�2 + !2 h� ! �1� e��(t�s) os! (t� s)�+�e��(t�s) sin! (t� s) iA1 (s)+ tZ0 ds 1�2 + !2 h!e��(t�s) sin! (t� s)+� �1� e��(t�s) os! (t� s)� iA2 (s) :Multiplying together suitable omponents of vetors ~S and ~R and takingaverages of those produts in onformity with the rules hAi (s)i = 0 andhAi (s)Aj (s0)i = 2qÆijÆ (s� s0), where q = kBTm �, i; j = 1; 2; 3, we arrive at:h � hR1S1i = hR2S2i = 2q 1�2 + !2 tZ0 dse��(t�s)[� os! (t� s)+! sin! (t� s)� �e��(t�s)℄ = q 1�2 + !2 �1� 2e��t os!t+ e�2�t� (52)and k � hR1S2i = �hR2S1i = 2q 1�2 + !2 tZ0 dse��(t�s)[�� sin! (t� s)+! os! (t� s)� !e��(t�s)℄= q 1�2 + !2 �2e��t sin!t� !� �1� e�2�t�� : (53)



Charged Brownian Partile in a Magneti Field 1449The ovariane matrix C = (ij) has thus the formC = 0BB� g 0 h �k0 g k hh k f 0�k h 0 f 1CCA (54)while its inverse C�1 reads as follows:C�1 = 1detC �fg � h2 � k2�0BB� f 0 �h k0 f �k �h�h �k g 0k �h 0 g 1CCA ; (55)where detC = �fg � h2 � k2�2. The joint probability distribution of ~S and~R an be ultimately written in the form:W �~S; ~R� =14�2 (fg � h2 � k2) exp0B��f ���~S���2 + g ���~R���2 � 2h~S � ~R+ 2k �~S � ~R�i=32 (fg � h2 � k2) 1CA :(56)In the above, all vetor entries are two-dimensional. The spei� i = 3vetor produt oordinate in the exponent is simply an abbreviation forthe (ordinary R3-vetor produt) proedure that involves merely �rst twoomponents of three-dimensional vetors (the third is then arbitrary andirrelevant), hene e�etively involves our two-dimensional ~R and ~S.One of the authors (P. G.) reeives �nanial support from the PolishState Committee for Sienti� Researh (KBN) grant No. 2 PO3B 086 16.REFERENCES[1℄ J.B. Taylor, Phys. Rev. Lett. 6, 262 (1961).[2℄ B. Kur³uno�glu, Ann. Phys. 17, 259 (1962).[3℄ R. Balesu, Statistial Dynamis. Matter out of Equilibrium, Imperial CollegePress, London 1997.[4℄ Z. Shuss, Theory and Appliations of Stohasti Di�erential Equations, Wiley,NY 1980.



1450 R. Czopnik, P. Garbazewski[5℄ N.G. van Kampen, Stohasti Proesses in Physis and Chemistry, NorthHolland, Amsterdam 1981.[6℄ S. Stepanov, Phys. Rev. E54, 2209 (1996).[7℄ S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).[8℄ E. Nelson, Dynamial Theories of Brownian Motion, Prineton UniversityPress, Prineton 1967.[9℄ J.L. Doob, Ann. Math. 43, 351 (1942).


