
Vol. 32 (2001) ACTA PHYSICA POLONICA B No 5
ON GENERALIZED CLIFFORD ALGEBRASAND SPIN LATTICE SYSTEMS�A.K. Kwa±niewskiInstitute of Computer Siene, Biaªystok UniversitySosnowa 64, 15-887 Biaªystok, Polandand Higher Shool of Mathematis and Applied Computer SieneCzysta 11, 15-463 Biaªystok, Polande-mail: kwandr�no.uw.edu.pl(Reeived April 17, 2001)The inessantly growing area of appliations of Cli�ord algebras andnaturalness of their use in formulating problems for diret alulation enti-tles one to all them Cli�ord numbers. The generalized �universal� Cli�ordnumbers are here introdued via k -ubi form Qk replaing quadrati onein familiar onstrution of an appropriate ideal of tensor algebra. One ofthe epimorphi images of universal algebras k � Cn �= T (V )=I(Qk) is thealgebra Cl(k)n with n generators and these are the algebras to be used here.Beause generalized Cli�ord algebrasCl(k)n possess inherent Zk�Zk���Zkgrading � this makes them an e�ient apparatus to deal with spin lattiesystems. This e�ieny is illustrated here by derivation of two major obser-vations. Namely � partition funtions for vetor and planar Potts modelsand other model with Zn invariant Hamiltonian are polynomials in gen-eralized hyperboli funtions of the n-th order. Seondly, the problem ofalgorithmi alulation of the partition funtion for any vetor Potts modelas treated here is redued to the alulation of Tr(i1 :::is), where 's arethe generators of the generalized Cli�ord algebra. Finally the expressionfor Tr(i1 :::is), for arbitrary olletion of suh  matries is derived.PACS numbers: 05.50.+q 1. IntrodutionThe problem of eventual alulation of the partition funtion for anyvetor Potts model is treated in two major steps. At �rst it is redued tothe alulation of Tr(i1 :::is), where 's are the generators of the generalized� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.(1451)



1452 A.K. Kwa±niewskiCli�ord algebra. Then � following [4℄ the expression for Tr(i1 :::is), forarbitrary olletion of suh  matries is derived. As a result we arrive at the�rst general statement: the knowledge of an algorithm for alulating theexpression for Tr(i1 :::is) assures in priniple the possibility of alulation ofpartition funtions in all models for whih the transfer matrix is an elementfrom generalized Cli�ord algebra i.e. those with Zn invariant Hamiltonian.The method � suessfully experiened for Z2 ase � beomes ompliatedfor Zn, n > 2, however algorithms are under ontroll spei�ally due tothe knowledge of orresponding algebra properties and those of generalizedhyperboli funtions fhs(z)gs2Z0n ( [5, 6℄); Z 0n = f0; 1; 2; :::; n � 1g.The seond general statement [6℄ might be also the reason for tem-poral omplaeny. Namely, as observed and stated in [6℄ (see also related[7�9,11,12℄) � partition funtions for vetor and planar Potts models andother models with Zn invariant Hamiltonian are just polynomials in thesefhs(z)gs2Z0n generalized hyperboli funtions of the n-th order. Hene ane�ort to guess the thermodynamis of the system, though onsidered astantalous, looks perhaps slightly more a reasonable, tangible task if � forexample � assisted by omputer simulations and alulations [12℄. Our noteis organized as follows:After just a rumb of history preliminaries follow. These are to presentin brief indispensable knowledge on (a) fhs(z)gs2Z0n generalized hyperbolifuntions of the n-th order and on (b) generalized Cli�ord algebras. (Formore on (a) and (b) one is invited to visit the Appendix.) After that,follows a presentation of reasoning leading us to the �rst and the seondgeneral statements above. For extensive literature on hyperboli funtionsfhs(z)gs2Z0n of the n-th order see [13, 14℄ and also [10℄ for hyperboli map-pings of the n-th order. As for generalized Cli�ord algebras see [3,4℄ and [10℄for extensive literature on the subjet. The appearing soon notion of Pfa�anis realled in the Appendix.2. Preliminaries and formulation of the main statementsWe start � as announed � with a rumb of history, however preededby an indispensable notation while formulating the general problem. Let usthen de�ne the family of states for Zn vetor Potts model on a p� q toruslattie (p rows, q olumns) to be the set S of (p � q) matries with entriesfrom Zn.S = f(si;k = (p� q); si;k 2 Zng; Zn = (!l)n�1l=0 ! = exp�2�in � : (2.1)



On Generalized Cli�ord Algebras and Spin Lattie Systems 1453The total energy E is then given by:�E[(si;k)℄kT = a p;qXi;k=1(s�1i;k si;k+1 + s�1i;k+1si;k) + b p;qXi;k=1�s�1i;k si+1;k + s�1i+1;ksi;k�and the partition funtion reads as follows:Z = X(si;k)2S exp��E[fsi;kg℄kT � : (2.2)We write sometime Z � ZN whenever it is important to indiate thatthis is a partition funtion for the toroidal grid with N sites. For n = 2 weshall arrive at Ising model.The partition funtion ould be written in terms of transfer matrix and forthat purpose we introdue the standard notation:~s � ~s 0 = pXi=1 sis0i; ~sk = 0BB� s1;ks2;k...sp;k1CCA ; ~s �k = 0BBB� s�1;ks�2;k...s�p;k1CCCA(si;k) = (~s1; ~s2; :::; ~sq) : (2.3)With the notation (2.3) adopted, the partition funtion Z may be nowrewritten in a formZ = X~s1;~s2;:::;~sqexp(a qXk=1(~s �k � ~sk+1 + ~s �k+1 � ~sk) + b qXk=1(~s �k ��1~sk + ~sk ��1~s �k )) ;(2.4)after the natural periodiity onditions have been imposed i.e.~sq+1 = ~s1 ; (~sk)1 = (~sk)p+1; k = 1; :::; q ; (2.5)where (~x)i denotes the i-th omponent of ~x. Periodiity onditions warrantthat we are dealing with the model on p� q torus lattie. The matrix �1 in(2.4) is a p� q generalized Pauli matrix with matrix elements Æi+1;j , wherei; j 2 Z 0p = f0; 1; :::; p � 1g and �+� is understood as denoting the Z 0p groupation on indies of ~sk vetors via addition mod p. We introdue also the �1generalized Pauli matrix, whih is one of the three �1; �2; �3 � playing thesame role in representing C(n)2p generalized Cli�ord algebras (see Morris [3℄)as the �usual� ones in representing the known C(2)2p Cli�ord algebras viatensor produts of � matries [15℄.



1454 A.K. Kwa±niewskiC(n)2p generalized Cli�ord algebra is de�ned [16℄ to be generated by 1; :::; 2pmatries satisfying:ij = !ji; i < j; ni = 1; i; j = 1; 2; :::; 2p; ! = exp 2�in : (2.6)The very algebra has � up to equivalene � only one irreduible and faithfulrepresentation, and its generators an be represented as tensor produts ofgeneralized Pauli matries:�1 = (Æi+1;j); �2 = (!iÆi+1;j); �3 = (!iÆi;j) ; (2.7)where i; j 2 Z 0n = f0; 1; :::; n � 1g � the additive yli group.It is now obvious that Z may be represented asZ = TrM q (2.8)as we have Z = X~s1;:::;~sqM(~s1; ~s2)M(~s2; ~s3):::M(~sq ; ~s1) ;where matrix elements of the transfer matrix M are given by:M(~s; ~s 0) = expf2b Re (~s � ��1~s)g expf2a Re (~s � � ~s 0)g : (2.9)It is onvenient to onsider the matrix M as a produtM = BA ;where the orresponding matrix elements are identi�ed asA(~s 00; ~s 0) = expf2a Re (~s 00 � � ~s 0)g ;B(~s; ~s 00) = expf2b Re (~s � ��1~s)gÆ(~s; ~s 00) : (2.10)As all these A, B, M matries are multi-indexed it is obvious that theymight be represented either as tensor produts of (n�n) matries (p times)or as (np � np) matries.Of ourse, for n=2 we shall arrive at Ising model on p�q torus lattie.Calulations that might be arried out now for the Zn vetor Potts modelsimplify tremendously in the ase of n = 2 i.e. for the Ising model andthere lead to the known Onsager�Kaufman expression for omplete parti-tion funtion ( [14, 15℄) whih after arrying out the thermodynami limitgoes into the Onsager formula. The method we hoose is an appropriategeneralization of the one used in [14℄ whih onsists there in reduing theproblem of �nding of the partition funtion for the Ising model to alula-tion of Tr(P1; :::; Ps), where Tr is the normalized trae while P 's are linear



On Generalized Cli�ord Algebras and Spin Lattie Systems 1455ombinations of  matries � generators of usual Cli�ord algebra naturallyassigned to the lattie.Then the observation that Tr(P1; :::; P2s) is just a Pfa�an [14℄ of anantisymmetri matrix formed with salar produts of P 's leads one to al-ulation of the determinant from this very matrix. Parallely, one may show( [5, 12℄) that in the Ising ase of [14℄ i.e. in the Z2 group aseM q = (B�A)qV0 +B+A)qV1) ; (2.11)where B� = exp(2bi p�1X�=1 ���+1 � �p1!) ;B+ = exp(2bi p�1X�0=1 ��0�0+1 + �p1!) ;V0 = 12 (1+ U); V1 = 1212(1� U) : (2.12)U = pYk=1 k�k (2.13)and of ourse U2 = I as we are now temporarily inspeting the Ising asei.e. Z2 group ase. The formula (2.11) oinides then with the one known forIsing model [14℄ apart from the obvious and insigni�ant saling of onstantsa and b by fator 2. And here omes the �rst main statement valid � aswe shall see � for arbitrary n > 1. Namely, M q is a polynomial in 1; :::2pmatries. Indeed � for that to see it is enough to take into aount (2.11),the de�ning property (2.6) of 1; :::2p matries and the fat established in[5�7℄ that A = 
pâ ; (2.14)i.e. A is the p-th tensor power of the (n� n) �interation matrix� â, whihhas the form of a irulant matrix W [�1℄:â = (âI;J) = �exp�2a Re �!J�I�	� = n�1Xl=0 �l�l1 �W [�1℄ ; (2.15)where I; J 2 Z 0n = f0; 1; 2; :::; n � 1g and�l = expf2a Re(!l)g ; l 2 Z 0n : (2.16)(For more details onsult [5℄.) Using the formula (2.11), the notion ofPfa�an and its relation to determinant the author of [14℄ reobtained the



1456 A.K. Kwa±niewskiomplete partition funtion leading to the famous Onsager formula. Thematries V0; V1, from (2.11) have also simple form and thus Tr M q disen-tangles for n = 2 to be the sum only four summands of the Pfa�an typei.e. Tr(P1P2:::Ps). These four arising Pfa�ans ontribute to the partitionfuntion to give [14℄:Z = 2pq�1�( p;qYk;l=1�osh 2a0 osh 2b0�sinh2a0 os �q (2l+1)�sinh 2b0 os �p (2k+1)� 12+ p;qYk;l=1�osh 2a0 osh 2b0 � sinh2a0 os �q (2l + 1)� sinh 2b0 os 2�kp � 12+ p;qYk;l=1�osh 2a0 osh 2b0 � sinh2a0 os 2�lq � sinh2b0 os �p (2k + 1)� 12�� p;qYk;l=1�osh 2a0 osh 2b0 � sinh2a0 os 2�lq � sinh 2b0 os 2�kp � 12 ) ;(2.17)where � denotes the sign of T � T and a0 = 2a, b0 = 2b. Both the squareroot and the �-sign have appeared here beause of the use of Pf(A)2 =detA relation, where A is antisymmetri matrix and Pf denotes Pfa�anmapping [13℄.Here osh � h0 and sinh � h1; 0; 1 2 Z 02 are hyperboli funtions of theseond order to be replaed by fhs(z)gs2Z0n hyperboli funtions of the n-thorder in the Z 0n ase.The role of familiar 1; :::; 2p matries represented via tensor produtsof � matries [14℄ in the ustomary C(2)2p Cli�ord algebra ase is now to betaken over by generalized 1; :::; 2p matries satisfying (2.6) and representedvia tensor produts of generalized Pauli � matries (Morris [4℄ � see also[3,5�7℄). These mathematial simple devies i.e. (a) fhs(z)gs2Z0n hyperbolifuntions of the n-th order and (b)C(n)2p generalized Cli�ord algebras wereexpeted and in a sense foretold by Baxter in his popular monograph [16℄.Here is the opportune, pertinent and well-timed quotation from it:The only hope that ours to me is just as Onsager (1944) and Kaufman(1949) originally solved the zero-�eld Ising model by using the algebra ofspinor operators, so there may be similar algebrai methods for solving theeight-vertex and Potts models.We would like to stress that both C(n)2p (5�7,17) and fhs(z)gs2Z0n [4-6℄inventions appreiably ontribute in full of meaning to the development ofPotts-like models investigation.



On Generalized Cli�ord Algebras and Spin Lattie Systems 1457The use of fhs(z)gs2Z0n hyperboli funtions of the n-th order as in-diated in [5℄ leads to the formulation of our seond main statement:partition funtions are polynomials in fhs(z)gs2Z0n generalized hyperbolifuntions of the n-th order in the ase of vetor and planar Potts modelsand other models with Zn invariant Hamiltonian and with duality property.Let us explain it now brie�y. There are two steps to arrive at the seond mainstatement. The �rst one onsists of the simple observation that wheneverwe have an element U of an assoiative algebra with unity, say � matrix Usuh that Un = I; Uk 6= I 0 < k < n thenexpfzUg = Xk2Zn UkXr�0 znr+k(nr + k)! = Xk2Zn hk(z)Uk : (2.18)If also V is suh that V n = I; V k 6= I 0 < k < n then obviously we haveTrfexp[xU ℄ exp[yV ℄g = Xk;l2Zn hk(x)hl(y)Tr(UkV l) : (2.19)The seond step is to realize that after the dual parameter a� has beenintrodued ( [7, 8℄) the partition funtion for the toroidal grid with N sitesZ � ZN has that of (2.19) form:ZN = [det â(a)℄N2 Trfexp[a�(�1 + �+1 )℄ exp[b(�3 + �+3 )℄gN : (2.20)where �1; �2; �3 de�ned by (2.7) are generalized Pauli matries � playing thesame role in representing C(n)2p generalized Cli�ord algebras (see Morris [4℄)as the �usual� ones in representing the known C(2)2p Cli�ord algebras viatensor produts of � matries [15℄. The �interation matrix� â, whih hasthe form of a irulant matrix W [�1℄ is de�ned by (2.15) and (2.16) and thedual parameter a� is any �xed solution of the equation [7, 8℄[det â(a�)℄ = nn[det â(a)℄�1: (2.21)3. The struture of transfer matrix and a trae formulaIn order to see that A and B matries from (2.10) are just some elementsof C(n)2p we shall express them in terms of operators Xk and Zk ; k = 1; 2; :::; pi.e. matries typial for tensor produt representation of generalized Cli�ordalgebras via generalized Pauli matries (see (A.3)). Naturally M = BA (asin Ising ase) where A and B are expressed below in termsXk = I 
 :::
 I 
 �1 
 I 
 :::
 I (p� fators) ;Zk = I 
 :::
 I 
 �3 
 I 
 :::
 I (p� fators) ; (3.1)



1458 A.K. Kwa±niewskiwhere �1 and �3 are situated on the k -th site, ounting from the left-handside.The matrix A may be therefore now rewritten as a produt of (np� np)matries A = pYk=1W [Xk℄ ; where W [Xk℄ = n�1Xl=0 �lX lk : (3.2)Similarly, for the matrix B we derive:B = exp(b pXk=1 �Z�1k Zk+1 + Z�1k+1Zk�) ; (3.3)where Zp+1 = Z1. The formula (3.3) follows from the simple observationthat matrix elements of Z�1k Zk+1 + Z�1k+1Zk (multi-indexed by ~s and ~s00)give exatly ln of the orresponding term of (2.10) expression for B. The Æfuntion arises due to the fat that �3 = (ÆI;J!I) and the exponentiation ofmatrix elements is easy beause B is simply proportional to unit matrix.One A and B have been represented as in (3.2) and (3.3) it is easy to expressthem in terms of generalized  matries. Introduing then the tensor produtrepresentation (A.3) we get:Xk = !n�1n�1k �kZ�1k Zk+1 = �n�1k k+1 ; for odd n (3.4)and Xk = �!n�1n�1k �kZ�1k Zk+1 = ��n�1k k+1 for even n ; (3.5)where k = 1; 2; :::; p � 1 and �2 = !.The orresponding expressions on the boundaries read:Z�1p Z1 = U�n�1p 1 for odd n (3.6)and Z�1p Z1 = ��1�n�1p 1 for even n ; (3.7)where ! � U = 
p�1 : (3.8)For the proof of (3.4)�(3.7) use (A.6) and (A.7) from the Appendix.From now on we shall proeed with formulas for n being odd, loosingnothing from generality of onsiderations while orresponding formulas for



On Generalized Cli�ord Algebras and Spin Lattie Systems 1459the ase of n even are easily derivable from those for the odd ase. This inmind we get A = pYk=1W [!�1n�1k �k℄; (3.9)B = exp(b pXk=1(�n�1k k+1 + n�1k+1 �k))� exp�bU�n�1p 1 + bU�1n�11 �p	 :(3.10)Our �rst goal is then ahieved if one notes thatU = pYk=1 n�1k �k ; (3.11)i.e. the transfer matrix M is now expressed in terms of generalized  ma-tries. NOTE: it is rather trivial and important to note that Un=1; Znk=1;Xnk =1 with obvious impliation of the same property for the n-th order poly-nomials in (3.9) and (3.10) � see (2.18) and (2.19). Now it is quite learthat one may redue the TrM q problem to alulation of Tr(i1i2 :::is) forany olletions of 's.(Note that for n = 2 the way to get the omplete partition funtion isshorter as there, it is enough to redue the TrM q problem to alulation ofTr(P1P2:::Ps) where P 's are linear ombinations of 's. Hene the number ofneessary summations is muh, muh smaller than in the ase n > 2, whereit is rather useless to try to represent A and B matries in that onvenientform.)Hene now and to this end the main goal of this setion is to provide for-mula for Tr(i1i2 :::is) for any olletions of 's. We shall quote it after [5℄.Note! By de�nition, in this setion Tr map is normalized i.e. Tr I = 1. Thederivation has the form of a sequene of observations.Observation 1.Let k 6= nmod n, k 2 N ; then Tr(i1i2 :::ik) = 0Proof: The same as for usual Cli�ord algebras. Use the matrix U de�nedby (3.11).Observation 2.Tr(i1i2 :::ikn) 6= 0 i� there exists permutation Æ 2 Skn, suh thati�(1) = i�(2) = ::: = i�(n) ; i�(n+1) = ::: = i�(2n); ::: ; i�(kn�n+1) = ::: = i�(kn) :Proof: The proof follows from observation that due to (A.1) if no n-tuple ofthe same 's exists then Tr(:::) = 0. Other steps of the proof are redued tothis �rst one.



1460 A.K. Kwa±niewskiIt is therefore trivial to note, but important to realize, that:Observation 3.Tr(i1i2 :::ik) = 0 or Tr(i1i2 :::ik ) 2 Zn � the multipliative groupof n-th roots of unity.In Lemma 3 the letter k denotes again an arbitrary integer while in allpreeding lemmas, and in the following, i1; i2; :::; ik run from 1 to numberof generators of the given algebra. This number was hosen to be even,however note that the �odd ase� problem is redued to this very one due tothe properties of generalized Cli�ord algebra representations (Morris [4℄).The major problem now is to determine this value �0 or !l� l 2 Z 0n forarbitrary set of indies i1; i2; :::; ik . In order to do that de�ne a signum likefuntion K (unfortunately it is an epimorphism only for n = 2) � as follows:K : Sp ! Zn ; ��(1)��(2):::��(p) = K(�)�1�2:::�p ; (3.12)where �'s satisfy (A.1) exept for the ondition ni = 1, whih is now re-plaed by �2i = 1.This de�nition being adapted, it is now not very di�ult to see that:Observation 4.Tr(i1 :::ipn) = K(�)K(�), for(a) i�(1) = ::: = i�(n); ::: ; i�(pn�n+1) = ::: = i�(pn) and(b) i~�(n) < i~�(2n) < i~�(pn) ,where ~� � � Æ �, while � is a permutation of the elements fn; 2n; :::; png.(The group of �'s is naturally identi�ed with an appropriate subgroup ofSpn.)Proof: The proof relies on observation that these are only di�erentn-tuples, whih are �rigidly� shifted ones trough the others, i.e. there isno permutation within any given n-tuple.The generalization of the Observation 4 to the arbitrary ase of someof the n-tuples being equal is straightforward. (The neessary hange ofonditions (a) and (b) is obvious.)This in mind and from other preeding observations we �nally get theTrae Formula:Tr(i1i2 :::ipn) = 0X�2SpnX~p X�2S~pK(�)K(�) � Æ(i~�(1); :::; i~�(p1n))�Æ(i~�(p1n+1); :::; i~�([p1+p2℄n))� :::� Æ(i~�(pn�pln+1); :::; i~�(pn)) (3.13)with the notation following notation generalizing the �Z2�Pfa�an ase�:



On Generalized Cli�ord Algebras and Spin Lattie Systems 1461Notation: ~p = (p1; p2; :::; pl); pi � 1; Pli=1 pi = p; ~� = � Æ �, and S~p is asubgroup of Spn isomorphi to the group of all blok matries obtained viapermutations of �blok olumns� of the matrix0BBB� Ipn1 Ipn2 . . . Ipnl 1CCCA ; where Ik is the (k � k) unit matrix.Æ � here denotes the multi-indexed Kroneker delta i.e. it assigns zero unlessall its arguments are equal and in this very ase Æ(:::) = 1. The sum �0 ismeant to take into aount only those permutations that do satisfy theonditions:(a) �(1) < �(2) < ::: < �(p1n); ::: ; �(pn� pln+ 1) < ::: < �(pn); and(b) �(l) < �(p1n+ 1) < ::: < �(pn� pln+ 1).Comments:(1) For the ase of n = 2 the theorem gives us the Pfa�an of the produti1 ; :::; ip2 , as in the ase, (and only! for n = 2) K(�) = 1 and weare left, as a result with only �0 sum, while Kroneker deltas beomefuntions of the same number of indies ij .(2) The theorem may be of signi�ant help in omputer aided alulatingof TrM q beause any element of generalized Cli�ord algebra is a poly-nomial in 's satisfying (A.1) and quite a lot of additional informationon the struture of M q 2 C(n)2p is available ([5�8,12℄).The author is very muh indebted to the Referee whose indiations al-lowed preparing the paper in more desirable form. Speial thanks are givento W. Bajguz for his omments, assistane and elaboration of the LaTeXversion of this edition. Appendix1. Aording to the prinipal theorem of abstrat algebra there exists uniquealgebra n-Ck for whih the diagram below is ommutative what means that� = � Æ �0. Suh type objets are alled in abstrat algebra universal. The�usual� Cli�ord algebras 2-Ck are de�ned that way for example in [2℄. Hereour universal n-Ck Cli�ord algebras are de�ned aordingly via the followingommutative diagram [3℄



1462 A.K. Kwa±niewski
where & is a omplex vetor spae of dim & = k, n-Ck and A are assoia-tive algebras, � 2 Hom(n�Ck;A) while �0; � are monomorphisms with theproperty: [�0(x)℄n = Qn(x)1, [�0(x)℄n = Qn(x)1. Here Qn denotes n-ubiform [3℄. Let figki=1 be �0 � images of the vetor spae & basis.Universal n-Ck Cli�ord algebra is generated by the generators figki=1 sub-jeted to the following relationsfi1 ; i2 ; :::; ing = Æ(i1; :::; in) i1; :::; in = 1; 2; :::; k ; (A.1)where the �n-antiommutator� [3℄ is just symmetrizer operatorfa1; a2; :::; ang = X�2Sn a�(1):::a�(n)with Sn denoting the group of permutations andÆ(i1; :::; in) = n 1 for i1 = : : : = in0 otherwiseC(n)k generalized Cli�ord algebra [3℄, [4℄ generated by 1; :::; k matries sat-isfying: ij = !ji; i < j; ni = 1; i; j = 1; 2; :::; k: (A.2)C(n)k is the epimorphi image of the universal n-Ck algebra [3℄.Namely, one may verify that matries satisfying (A.2) also satisfy (A.1)and it is easily seen that both sets of ommutation relations oinide if andonly if n = 2 as then !�1 = !. C(n)2p generalized Cli�ord algebra used in thisnote is generated by 1; :::; 2p matries satisfying:ij = !ji; i < j; ni = 1; i; j = 1; 2; :::; 2p : (A.3)The C(n)2p algebra has � up to equivalene � only one irreduible and faithfulrepresentation, and its generators an be represented as tensor produts ofgeneralized Pauli matries:�1 = (Æi+1;j); �2 = (!iÆi+1;j); �3 = (!iÆi;j) ; (A.4)where i; j 2 Z 0n = f0; 1; :::; n � 1g � the additive yli group.One easily heks, that f�ig31 do satisfy (A.3) for n being odd.Let I denotes sine now the unit (n� n) matrix and let
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 I 
 I 
 : : :
 I 
 I ;2 = �1 
 �3 
 I 
 : : :
 I 
 I ;...p = �1 
 �1 
 �1 
 : : : 
 �1 
 �3 ;�1 = �2 
 I 
 I 
 : : :
 I 
 I ;�2 = �1 
 �2 
 I 
 : : :
 I 
 I ;...�p = �1 
 �1 
 �1 
 : : : 
 �1 
 �2 ; (A.5)then i; �j i; j = 1; : : : ; p do satisfy (A.2) with ! replaed by !�1, hene (A.5)are generators of the algebra isomorphi to C(n)2p (isomorphism is given by�1 $ �3 in (A.5)). (This very (A.5) representation was hosen for tehnialreason � we get, for example, in alulations of setion II, the matrix Uwithout oe�ients et.). It is also to be noted that for n being odd�3 = �n�11 �2 : (A.6)The ase of n being even leads to similar representation with �1 unhangedbut �2 and �3 now equal to:�2 = (�iÆi+1;j); �3 = ��n�11 �2 ; (A.7)where � is a primitive 2n-th root of unity suh that �2 = !.(A.5) (with these appropriate for ase n = 2� generalized Pauli matries)reprodues the same type representation of C(n)2p as the one for the asen = 2� + 1.One easily proves that�n�13 �2 = !�1�n�12 �1 = ��13 for n = 2� + 1 (A.8)and �n�13 �2 = ��1!�1�n�12 �1 = ��13 for n = 2� : (A.9)C(n)k algebras had already appeared unreognized in [18, 19℄.



1464 A.K. Kwa±niewski2. In this part of the Appendix we reall the de�nition of hyperbolifuntions of n-th order (for extensive referenes and many identities see:[10, 13, 20℄ and referenes therein). Let x be any element of an assoiative,�nite dimensional algebra with unity I. Thenexpfxg = n�1Xi=0 hi(x) ; wherehi(x) = 1Xk=0 xnk+i(nk + i)! ; i = 0; : : : ; n� 1 : (A.10)One expresses hyperboli funtions of n-th order hi; i 2 Z 0n in terms expo-tentials due tofi(!x) = !ifi(x); i = 0; 1; : : : ; n� 1 ; ! = exp�2�in � : (A.11)The (A.11) reveals the Zn symmetry properties of these generalized �osh�funtions and we get from this set of relationsfi(x) = 1n n�1Xk=0!�ki expn!kxo ; i = 0; 1; : : : ; n� 1 : (A.12)For onsiderations of the setion II we need the following observation:Let U be an element of an assoiative, �nite dimensional algebra with unityI and in addition let Un = 1 and UK 6= 1 for 0 < k < n. Then Vs ; s 2 Z 0nde�ned as follows [5, 13, 20℄Vs = 1n n�1Xi=0 !�siU i ; s 2 Z 0n (A.13)form the family of mutually orthogonal projetion operators. In partiularand spei�ally one noties that for V0 � V the following is true:Observation: Let U be as above. Then V de�ned as follows V = 1nPn�1i=0 U iV n = V : (A.14)Proof: For the proof, just note that for some ai's V n =Pn�1i=0 aiU i and bothsides of this identity equation must be symmetri in U i monomials. Oneonludes therefore that ai = aj , i; j = 0; 1; : : : ; n � 1 hene � ountingthe number of all arising summands � one arrives at the onlusion of theObservation.
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