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The incessantly growing area of applications of Clifford algebras and
naturalness of their use in formulating problems for direct calculation enti-
tles one to call them Clifford numbers. The generalized “universal” Clifford
numbers are here introduced via k-ubic form @)y replacing quadratic one
in familiar construction of an appropriate ideal of tensor algebra. One of
the epimorphic images of universal algebras k — C,, = T(V)/I(Qy) is the
algebra Clﬁlk) with n generators and these are the algebras to be used here.
Because generalized Clifford algebras Clslk) possess inherent Z;, & Z, & AD Z,
grading — this makes them an efficient apparatus to deal with spin lattice
systems. This efficiency is illustrated here by derivation of two major obser-
vations. Namely — partition functions for vector and planar Potts models
and other model with Z,, invariant Hamiltonian are polynomials in gen-
eralized hyperbolic functions of the n-th order. Secondly, the problem of
algorithmic calculation of the partition function for any vector Potts model
as treated here is reduced to the calculation of Tr(y;, ...7:, ), where v’s are
the generators of the generalized Clifford algebra. Finally the expression
for Tr(~i,...7v:,), for arbitrary collection of such v matrices is derived.

PACS numbers: 05.50.+q

1. Introduction

The problem of eventual calculation of the partition function for any
vector Potts model is treated in two major steps. At first it is reduced to
the calculation of Tr(~y;, ...7vi, ), where «’s are the generators of the generalized
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Zakopane, Poland, September 10-17, 2000.
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Clifford algebra. Then — following [4] the expression for Tr(v;,...7i,), for
arbitrary collection of such v matrices is derived. As a result we arrive at the
first general statement: the knowledge of an algorithm for calculating the
expression for Tr(+y;, ...7y;, ) assures in principle the possibility of calculation of
partition functions in all models for which the transfer matrix is an element
from generalized Clifford algebra i.e. those with 7, invariant Hamiltonian.
The method — successfully experienced for Z5 case — becomes complicated
for Z,, n > 2, however algorithms are under controll specifically due to
the knowledge of corresponding algebra properties and those of generalized
hyperbolic functions {hs(2)}scz: ( [5,6]); Z,, = {0,1,2,...,n — 1}.

The second general statement [6] might be also the reason for tem-
poral complacency. Namely, as observed and stated in [6] (see also related
[7-9,11,12]) — partition functions for vector and planar Potts models and
other models with Z,, invariant Hamiltonian are just polynomials in these
{hs(2)}scz: generalized hyperbolic functions of the n-th order. Hence an
effort to guess the thermodynamics of the system, though considered as
tantalous, looks perhaps slightly more a reasonable, tangible task if — for
example — assisted by computer simulations and calculations [12|. Our note
is organized as follows:

After just a crumb of history preliminaries follow. These are to present
in brief indispensable knowledge on (a) {hs(2)}sez; generalized hyperbolic
functions of the n-th order and on (b) generalized Clifford algebras. (For
more on (a) and (b) one is invited to visit the Appendix.) After that,
follows a presentation of reasoning leading us to the first and the second
general statements above. For extensive literature on hyperbolic functions
{hs(2)}sez: of the n-th order see [13,14] and also [10] for hyperbolic map-
pings of the n-th order. As for generalized Clifford algebras see [3,4] and [10]
for extensive literature on the subject. The appearing soon notion of Pfaffian
is recalled in the Appendix.

2. Preliminaries and formulation of the main statements

We start — as announced — with a crumb of history, however preceded
by an indispensable notation while formulating the general problem. Let us
then define the family of states for Z,, vector Potts model on a p X ¢ torus
lattice (p rows, ¢ columns) to be the set S of (p x ¢) matrices with entries
from Z,.

_ 271
S={(six=0xq); six€7Zn}; Zn= (W) Jw=exp {7} . (20)
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The total energy £ is then given by:

E[(S )] D,q b,q
ROk Z(s_ls- + 88 )—i—bz sT)s + 50 s
¢ ik Sik+1 T 8 gy qSik ik Si+1k T S kSik
ik=1 ik=1

and the partition function reads as follows:

7= > exp{—%}. (2.2)

(si,1)€ES

We write sometime Z = Zx whenever it is important to indicate that
this is a partition function for the toroidal grid with N sites. For n = 2 we
shall arrive at Ising model.

The partition function could be written in terms of transfer matrix and for
that purpose we introduce the standard notation:

S1,k ST,k
o A 52,k . 3§,k
5.5 :Zsisi, S = i S = i
i=1 : :
Sp,k S;,k

(8ik) = (51,582,...,5g) - (2.3)

With the notation (2.3) adopted, the partition function Z may be now
rewritten in a form

q q
Z= > exp {QZ(E',: Sht S ) DY (5 D8+ F - zlgg)} ,
51,52,...,5¢ k=1 k=1
(2.4)
after the natural periodicity conditions have been imposed i.e.

§q+1 = —'1’ (gk)l = (gk)P-i-l; k= 17 -y (25)
where (Z); denotes the i-th component of Z. Periodicity conditions warrant
that we are dealing with the model on p x g torus lattice. The matrix X in
(2.4) is a p x g generalized Pauli matrix with matrix elements d;11 j, where
i,j € Z,, = {0,1,...,p — 1} and “+” is understood as denoting the Z, group
action on indices of 3}, vectors via addition mod p. We introduce also the oy
generalized Pauli matrix, which is one of the three o1, 09,03 — playing the

same role in representing Cé;l) generalized Clifford algebras (see Morris [3])
(2)

as the “usual” ones in representing the known 02]2)
tensor products of o matrices [15].

Clifford algebras via
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C’é;l) generalized Clifford algebra is defined [16] to be generated by i, ..., y2p
matrices satisfying:

. .. 271
YiYs = WYY, <17, ’Y? = ]—a 1,] = 1a27"'a2p7 W= eXpT . (26)

The very algebra has — up to equivalence — only one irreducible and faithful
representation, and its generators can be represented as tensor products of
generalized Pauli matrices:

o1 = (i415), 02 = (W'it1;), o03=(w'dij), (2.7)

where 4,7 € Z] ={0,1,...,n — 1} — the additive cyclic group.
It is now obvious that Z may be represented as

7 =Tr MY (2.8)

as we have

Z =Y M(3,8)M(5,35)..M(5,5)

81400058

where matrix elements of the transfer matrix M are given by:
M(5,5") = exp{2b Re (5 - X15)} exp{2a Re (3" - 5")} . (2.9)
It is convenient to consider the matrix M as a product
M = BA,
where the corresponding matrix elements are identified as

A(8".5") = exp{2aRe(3"*-5")},
B(5,5") = exp{2bRe (5" - X15)}4(5,5"). (2.10)

As all these A, B, M matrices are multi-indexed it is obvious that they
might be represented either as tensor products of (n x n) matrices (p times)
or as (n? x nP) matrices.

Of course, for n=2 we shall arrive at Ising model on px ¢ torus lattice.
Calculations that might be carried out now for the Z, vector Potts model
simplify tremendously in the case of n = 2 i.e. for the Ising model and
there lead to the known Onsager—Kaufman expression for complete parti-
tion function ( [14, 15]) which after carrying out the thermodynamic limit
goes into the Onsager formula. The method we choose is an appropriate
generalization of the one used in [14] which consists there in reducing the
problem of finding of the partition function for the Ising model to calcula-
tion of Tr(Py, ..., P;), where Tr is the normalized trace while P’s are linear
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combinations of v matrices — generators of usual Clifford algebra naturally
assigned to the lattice.

Then the observation that Tr(Py,..., Py) is just a Pfaffian [14] of an
antisymmetric matrix formed with scalar products of P’s leads one to cal-
culation of the determinant from this very matrix. Parallely, one may show
( [5,12]) that in the Ising case of [14] i.e. in the Zy group case

M?=(B_A)"Vy+ By A)V,), (2.11)
where
p—1
B_ = exp {2b’L (Z '70/)/04—1—1 - ’7})71) } 3
a=1
p—1
By = exp {Qbi (Z Yo' Yo' +1 + 7}071) } ;
o'=1
Vo=1(1+U), Wi =312(1-U). (2.12)

= [[»n (2.13)

and of course U? = I as we are now temporarily inspecting the Ising case
i.e. Zy group case. The formula (2.11) coincides then with the one known for
Ising model [14] apart from the obvious and insignificant scaling of constants
a and b by factor 2. And here comes the first main statement valid — as
we shall see — for arbitrary n > 1. Namely, M? is a polynomial in 7y, ...y
matrices. Indeed — for that to see it is enough to take into account (2.11),
the defining property (2.6) of 7, ...y, matrices and the fact established in
[5-7] that

A =®Pa, (2.14)

i.e. A is the p-th tensor power of the (n x n) “interaction matrix” a, which
has the form of a circulant matrix W{oy]:

a = (ar.s) = (exp {2a Re (w Z Nob = (2.15)

where I, J € Z!, ={0,1,2,...,n — 1} and
M\ = exp{2a Re(w')}, 1€ 7. (2.16)

(For more details consult [5].) Using the formula (2.11), the notion of
Pfaffian and its relation to determinant the author of [14] reobtained the
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complete partition function leading to the famous Onsager formula. The
matrices Vg, Vi, from (2.11) have also simple form and thus Tr M? disen-
tangles for n = 2 to be the sum only four summands of the Pfaffian type
i.e. Tr(PyPy...P;). These four arising Pfaffians contribute to the partition
function to give [14]:

7 = 2ra~!

1
2

p.g

X { H [cosh 24’ cosh 20’ —sinh 24’ cos (214+1) —sinh 2¥' cos T (2k+ 1)]

q p
k=1

ol

2
+ [cosh 2a’ cosh 2" — sinh 24’ cos z(21 +1) — sinh 2V cos Lk]
q p

Dyq 1
27l 2
+ | I [cosh 24’ cosh 2’ — sinh 24’ cos 22 — sinh 28 cos z(2]4; + 1)]
q p

g o7l onk1?
-0 [cosh 2a’ cosh 20" — sinh 2a’ cos — — sinh 20’ cos —] ,(2.17)
q p
1

where o denotes the sign of T — T, and a’ = 2a, b’ = 2b. Both the square
root and the o-sign have appeared here because of the use of Pf(A)? =
det A relation, where A is antisymmetric matrix and Pf denotes Pfaffian
mapping [13].

Here cosh = hg and sinh = hy; 0,1 € Z} are hyperbolic functions of the
second order to be replaced by {hs(2)}scz: hyperbolic functions of the n-th
order in the Z], case.

The role of familiar +yq, ...,y2, matrices represented via tensor products

(2)

of o matrices [14] in the customary 02]2) Clifford algebra case is now to be
taken over by generalized 71, ..., 72, matrices satisfying (2.6) and represented
via tensor products of generalized Pauli o matrices (Morris [4] — see also
[3,5-7]). These mathematical simple devices i.e. (a) {hs(2)}scz: hyperbolic

functions of the n-th order and (b)CéZ) generalized Clifford algebras were
expected and in a sense foretold by Baxter in his popular monograph [16].
Here is the opportune, pertinent and well-timed quotation from it:

The only hope that occurs to me is just as Onsager (1944) and Kaufman
(1949) originally solved the zero-field Ising model by using the algebra of
spinor operators, so there may be similar algebraic methods for solving the
eight-verter and Potts models.

We would like to stress that both Céz) (5-7,17) and {hs(2)}sez, [4-6]
inventions appreciably contribute in full of meaning to the development of
Potts-like models investigation.
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The use of {hs(2)}scz hyperbolic functions of the n-th order as in-
dicated in [5] leads to the formulation of our second main statement:
partition functions are polynomials in {hs(2)}scz: generalized hyperbolic
functions of the n-th order in the case of vector and planar Potts models
and other models with 7, invariant Hamiltonian and with duality property.
Let us explain it now briefly. There are two steps to arrive at the second main
statement. The first one consists of the simple observation that whenever
we have an element U of an associative algebra with unity, say — matrix U
such that U" = I; U¥ AT 0 < k < n then

nr+k

exp{zU} = Z U* Z m = Z hy (2)U" . (2.18)

k€Z, >0 k€Zn

If also V is such that V™ = I; V¥ #£ 10 < k < n then obviously we have

TrfexpleU]explyV]} = 3 he(@)hu(y) e VY. (2.19)
kJleEZy

The second step is to realize that after the dual parameter a* has been
introduced ( [7,8]) the partition function for the toroidal grid with N sites
Z = Zy has that of (2.19) form:

Zy = [det a(a)] ® Tr{expla® (o1 + o7 )] exp[b(as + o)} . (2.20)

where o1, 09, o3 defined by (2.7) are generalized Pauli matrices — playing the
same role in representing Céz) generalized Clifford algebras (see Morris [4])
as the “usual” ones in representing the known Cg)) Clifford algebras via
tensor products of o matrices [15]. The “interaction matrix” a, which has

the form of a circulant matrix Woy] is defined by (2.15) and (2.16) and the
dual parameter ¢* is any fixed solution of the equation [7, 8|

[det a(a*)] = n"[det a(a)] L. (2.21)

3. The structure of transfer matrix and a trace formula

In order to see that A and B matrices from (2.10) are just some elements

of Cé;l) we shall express them in terms of operators Xy and Z; ; k= 1,2,...,p
1.e. matrices typical for tensor product representation of generalized Clifford
algebras via generalized Pauli matrices (see (A.3)). Naturally M = BA (as
in Ising case) where A and B are expressed below in terms

X = I®.0100101®..01 (p— factors),
Zp = 1®.0IR0301®..01 (p—factors), (3.1)
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where o1 and o3 are situated on the k-th site, counting from the left-hand
side.

The matrix A may be therefore now rewritten as a product of (n? x nP)
matrices

p
A= ][ WI[Xk], where W[X;] = Z ¢ (3.2)
k=1

Similarly, for the matrix B we derive:

D
B = exp {bz (2 Zgor + ijle)} , (3.3)
k=1

where Z,,1 = Z;. The formula (3.3) follows from the simple observation
that matrix elements of Z, 'Zg41 + Z,;lek (multi-indexed by § and §")
give exactly In of the corresponding term of (2.10) expression for B. The ¢
function arises due to the fact that o3 = (67, jwr) and the exponentiation of
matrix elements is easy because B is simply proportional to unit matrix.
Once A and B have been represented as in (3.2) and (3.3) it is easy to express
them in terms of generalized v matrices. Introducing then the tensor product
representation (A.3) we get:
X = w" 17;? "V
Z7' Zk1 = 32 "yey1, for oddn (3.4)

and

Xy = &w"” 17;? Tk
2,  Zy = &3] ypq for evenm, (3.5)

where k = 1,2,...,p — 1 and &2 = w.
The corresponding expressions on the boundaries read:

Z,'Zy = Uy 'y for odd n (3.6)
and
1Z1 & lfyg Ly, for even m, (3.7)
where
w-U =@, . (3.8)

For the proof of (3.4)—(3.7) use (A.6) and (A.7) from the Appendix.
From now on we shall proceed with formulas for n being odd, loosing
nothing from generality of considerations while corresponding formulas for
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the case of n even are easily derivable from those for the odd case. This in
mind we get

p
A= wWlw v "l (3.9)
k=1

P
B = exp {bZ(’yg_l’)//H_l + 7,’;;11%)} x exp {bUF) 'y +bU 19771,
k=1
(3.10)
Our first goal is then achieved if one notes that

P
U=1I "%, (3.11)
k=1

i.e. the transfer matrix M is now expressed in terms of generalized v ma-
trices. NOTE: it is rather trivial and important to note that U"=1, Z=1,
X} =1 with obvious implication of the same property for the n-th order poly-
nomials in (3.9) and (3.10) — see (2.18) and (2.19). Now it is quite clear
that one may reduce the Tr MY problem to calculation of Tr(v;,vi,...vi,) for
any collections of v’s.

(Note that for n = 2 the way to get the complete partition function is
shorter as there, it is enough to reduce the Tr MY problem to calculation of
Tr(Py P,...Ps) where P’s are linear combinations of y’s. Hence the number of
necessary summations is much, much smaller than in the case n > 2, where
it is rather useless to try to represent A and B matrices in that convenient
form.)

Hence now and to this end the main goal of this section is to provide for-
mula for Tr(yi, vi,-.-vi,) for any collections of v’s. We shall quote it after [5].
Note! By definition, in this section Tr map is normalized i.e. Tr I = 1. The
derivation has the form of a sequence of observations.

Observation 1.

Let k # nmodn, k € N; then Tr(v;, ¥i,...7,) =0
Proof: The same as for usual Clifford algebras. Use the matrix U defined
by (3.11).

Observation 2.
Tr(Yi, Yig--Viy,, ) 7 0 iff there exists permutation § € Sy, such that

lo(1) = lg(2) = - = lg(n) s lo(nt1) = - = lo(2n)s s bo(kn—nt1) = - = bo(kn) -

Proof: The proof follows from observation that due to (A.1) if no n-tuple of
the same 7’s exists then Tr(...) = 0. Other steps of the proof are reduced to
this first one.
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It is therefore trivial to note, but important to realize, that:

Observation 3.
Tr(¥i, Yig--Vi,) = 0 or Tr(¥i,Viy--Vi,) € Zn — the multiplicative group
of n-th roots of unity.
In Lemma 3 the letter k& denotes again an arbitrary integer while in all
preceding lemmas, and in the following, 1,49, ...,%; run from 1 to number
of generators of the given algebra. This number was chosen to be even,
however note that the “odd case” problem is reduced to this very one due to
the properties of generalized Clifford algebra representations (Morris [4]).
The major problem now is to determine this value “0 or w'” I € Z! for
arbitrary set of indices 1,19, ...,%;. In order to do that define a signum like
function K (unfortunately it is an epimorphism only for n = 2) — as follows:

K: Sp — A @U(l)@o—(g)...@o.(p) = K(U)@1@2...@p s (3.12)

where ©’s satisfy (A.1) except for the condition 7' = 1, which is now re-
placed by @Z-Q =1
This definition being adapted, it is now not very difficult to see that:

Observation 4.
Tr(Yiy--Yip,) = K(X)K (o), for

(a) 7:0(1) = ... = ia(n)a ey ’I,U(pn,nJrl) = ... = ia(pn) and
(D) sy <isen) < io(pm)

where 6 = ¥ o g, while X' is a permutation of the elements {n,2n,...,pn}.
(The group of X’s is naturally identified with an appropriate subgroup of
Spn-)

Proof: The proof relies on observation that these are only different
n-tuples, which are “rigidly” shifted ones trough the others, i.e. there is
no permutation within any given n-tuple.

The generalization of the Observation 4 to the arbitrary case of some
of the n-tuples being equal is straightforward. (The necessary change of
conditions (a) and (b) is obvious.)

This in mind and from other preceding observations we finally get the

Trace Formula:

T (Yiy Vi Vigw) = D D > K(Z)K(0) X 8(iz(1), 1 i5:(pym))

0€Spn P XESH
xd(ig(pmﬂ), eny i&([p1+p2]n)) X ... X 5(7:&(pnfpm+1)7 ceny i&(pn)) (313)

with the notation following notation generalizing the “Zs—Pfaffian case™
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Notation: ﬁ: (p17p2a"'7pl)a Di 2 ]-7 Zé:lpi =D g=2Xo g, and Sﬁ' is a
subgroup of Sy, isomorphic to the group of all block matrices obtained via
permutations of “block columns” of the matrix

Ly

Ipn

, where Iy is the (k x k) unit matrix.
Lyp

0 — here denotes the multi-indexed Kronecker delta i.e. it assigns zero unless
all its arguments are equal and in this very case §(...) = 1. The sum X' is
meant to take into account only those permutations that do satisfy the
conditions:

(a) o(l) <o(2) <...<a(pin), ..., o(pn —pm+1) < ... < o(pn), and
(b) o(l) < o(pin+1) <..<o(pn—pn+1).
Comments:

(1) For the case of n = 2 the theorem gives us the Pfaffian of the product
Viry s Vi o5 S In the case, (and only! for n = 2) K(X) = 1 and we
are left, as a result with only X’ sum, while Kronecker deltas become
functions of the same number of indices i;.

(2) The theorem may be of significant help in computer aided calculating
of Tr M7 because any element of generalized Clifford algebra is a poly-
nomial in 4’s satisfying (A.1) and quite a lot of additional information

on the structure of MY € Céz) is available ([5-8,12]).

The author is very much indebted to the Referee whose indications al-
lowed preparing the paper in more desirable form. Special thanks are given
to W. Bajguz for his comments, assistance and elaboration of the LaTeX
version of this edition.

Appendix

1. According to the principal theorem of abstract algebra there exists unique
algebra n-Cj, for which the diagram below is commutative what means that
« = o o ag. Such type objects are called in abstract algebra universal. The
“usual” Clifford algebras 2-C, are defined that way for example in [2]. Here
our universal n-C, Clifford algebras are defined accordingly via the following
commutative diagram [3]
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where ¢ is a complex vector space of dim ¢ = k, n-Cy and A are associa-
tive algebras, 0 € Hom(n — Cy; A) while ag, @ are monomorphisms with the
property: [ag(z)]" = Qn(z)1, [ap(x)]™ = Qn(z)1. Here @, denotes n-ubic
form [3]. Let {7;}¥_, be ag — images of the vector space ¢ basis.

Universal n-Cy Clifford algebra is generated by the generators {v;}¥_, sub-
jected to the following relations

{’)’il,’)’i2,...,’)’in} = (5(’1:1, ,Zn) ’il,...,’l:n = 1,2,...,]{}, (Al)

where the ”n-anticommutator” [3] is just symmetrizer operator

{al,ag, ...,an} = Z ag(l)...ag(n)

oESH

with S, denoting the group of permutations and

. . 1 for 4/1=...=1
ity orin) = { 1 n
(i1, in) 0 otherwise

C,(cn) generalized Clifford algebra [3], [4] generated by 71, ..., vx matrices sat-
isfying:
Vi =wyvi, 1<3, v =1, i,j=12,..k. (A.2)
C’,(cn) is the epimorphic image of the universal n-Cj algebra [3].
Namely, one may verify that matrices satisfying (A.2) also satisfy (A.1)
and it is easily seen that both sets of commutation relations coincide if and

only if n = 2 as then w™ ! = w. C’é;l) generalized Clifford algebra used in this
note is generated by 71, ...,72, matrices satisfying:

YiYs = WY5%i, 1 < ja 7;1 = 1a ,Laj = 1a27"'a2p' (A3)

The Céz) algebra has — up to equivalence — only one irreducible and faithful
representation, and its generators can be represented as tensor products of
generalized Pauli matrices:

o1 = (0i11)s 02 = (W'iy1), 03 = (w'dij), (A4)

where 4,5 € Z] ={0,1,...,n — 1} — the additive cyclic group.
One easily checks, that {o;}3 do satisfy (A.3) for n being odd.
Let I denotes since now the unit (n x n) matrix and let
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1 =03QIQIR®..0IRI,
Yo =01Q®030I®...0I®I,

T =010Q01Q018...001 03,
V1= 0RIRIR...QIRI,
Yo = 01Q002RI®..IRI,

Yp = 01Q01Q01X¥...001&02, (A5)

then v, 4,5 = 1,...,p do satisfy (A.2) with w replaced by w™*, hence (A.5)
are generators of the algebra isomorphic to Céz) (isomorphism is given by
o1 <> 03 in (A.5)). (This very (A.5) representation was chosen for technical
reason — we get, for example, in calculations of section II, the matrix U

without coefficients etc.). Tt is also to be noted that for n being odd
o3 =0l toy. (A.6)

The case of n being even leads to similar representation with ¢; unchanged
but o9 and o3 now equal to:

oy = (€041 ), 03 = Eo Loy, (A7)

where ¢ is a primitive 2n-th root of unity such that ¢? = w.
(A.5) (with these appropriate for case n = 2v generalized Pauli matrices)

(n)

reproduces the same type representation of CQZ
n = 2v + 1.0ne easily proves that

as the one for the case

1. _
9 2TV =20 +1 (A.8)

and )
93 927 filwm forn =2v. (A.9)
oy loy = o

C,(cn) algebras had already appeared unrecognized in [18,19].
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2. In this part of the Appendix we recall the definition of hyperbolic
functions of n-th order (for extensive references and many identities see:
[10,13,20] and references therein). Let z be any element of an associative,
finite dimensional algebra with unity I. Then

n—1
exp{z} = hi(xz), where
=0
o nk+i
x .

=
I
=)

One expresses hyperbolic functions of n-th order h;; i € Z] in terms expo-
tentials due to

27

filwz) =w'fi(x), i=0,1,...,n—1; w:exp{T}. (A.11)

The (A.11) reveals the Z, symmetry properties of these generalized “cosh”
functions and we get from this set of relations

n—1

1 .
filz) = — w_klexp{wkx}, 1=0,1,...,n—1. A12
@=52 (A.12)
For considerations of the section II we need the following observation:
Let U be an element of an associative, finite dimensional algebra with unity
I and in addition let U™ =1 and UX # 1 for 0 < k < n. Then Vi ; s € Z!,
defined as follows [5,13,20]

n—1 o
Zw_‘”UZ, s€e ) (A.13)
i=0

1
Vi=-
n
form the family of mutually orthogonal projection operators. In particular
and specifically one notices that for Vy = V' the following is true:

Observation: Let U be as above. Then V defined as follows V' = % Z?:_Ol U’
Vr=V. (A.14)

Proof: For the proof, just note that for some a;’s V" = Z?:_()l a;U" and both
sides of this identity equation must be symmetric in U’ monomials. One
concludes therefore that a; = aj, 4,7 = 0,1,...,n — 1 hence — counting
the number of all arising summands — one arrives at the conclusion of the

Observation.
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