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ON GENERALIZED CLIFFORD ALGEBRASAND SPIN LATTICE SYSTEMS�A.K. Kwa±niewskiInstitute of Computer S
ien
e, Biaªystok UniversitySosnowa 64, 15-887 Biaªystok, Polandand Higher S
hool of Mathemati
s and Applied Computer S
ien
eCzysta 11, 15-463 Biaªystok, Polande-mail: kwandr�no
.uw.edu.pl(Re
eived April 17, 2001)The in
essantly growing area of appli
ations of Cli�ord algebras andnaturalness of their use in formulating problems for dire
t 
al
ulation enti-tles one to 
all them Cli�ord numbers. The generalized �universal� Cli�ordnumbers are here introdu
ed via k -ubi
 form Qk repla
ing quadrati
 onein familiar 
onstru
tion of an appropriate ideal of tensor algebra. One ofthe epimorphi
 images of universal algebras k � Cn �= T (V )=I(Qk) is thealgebra Cl(k)n with n generators and these are the algebras to be used here.Be
ause generalized Cli�ord algebrasCl(k)n possess inherent Zk�Zk���Zkgrading � this makes them an e�
ient apparatus to deal with spin latti
esystems. This e�
ien
y is illustrated here by derivation of two major obser-vations. Namely � partition fun
tions for ve
tor and planar Potts modelsand other model with Zn invariant Hamiltonian are polynomials in gen-eralized hyperboli
 fun
tions of the n-th order. Se
ondly, the problem ofalgorithmi
 
al
ulation of the partition fun
tion for any ve
tor Potts modelas treated here is redu
ed to the 
al
ulation of Tr(
i1 :::
is), where 
's arethe generators of the generalized Cli�ord algebra. Finally the expressionfor Tr(
i1 :::
is), for arbitrary 
olle
tion of su
h 
 matri
es is derived.PACS numbers: 05.50.+q 1. Introdu
tionThe problem of eventual 
al
ulation of the partition fun
tion for anyve
tor Potts model is treated in two major steps. At �rst it is redu
ed tothe 
al
ulation of Tr(
i1 :::
is), where 
's are the generators of the generalized� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.(1451)



1452 A.K. Kwa±niewskiCli�ord algebra. Then � following [4℄ the expression for Tr(
i1 :::
is), forarbitrary 
olle
tion of su
h 
 matri
es is derived. As a result we arrive at the�rst general statement: the knowledge of an algorithm for 
al
ulating theexpression for Tr(
i1 :::
is) assures in prin
iple the possibility of 
al
ulation ofpartition fun
tions in all models for whi
h the transfer matrix is an elementfrom generalized Cli�ord algebra i.e. those with Zn invariant Hamiltonian.The method � su

essfully experien
ed for Z2 
ase � be
omes 
ompli
atedfor Zn, n > 2, however algorithms are under 
ontroll spe
i�
ally due tothe knowledge of 
orresponding algebra properties and those of generalizedhyperboli
 fun
tions fhs(z)gs2Z0n ( [5, 6℄); Z 0n = f0; 1; 2; :::; n � 1g.The se
ond general statement [6℄ might be also the reason for tem-poral 
ompla
en
y. Namely, as observed and stated in [6℄ (see also related[7�9,11,12℄) � partition fun
tions for ve
tor and planar Potts models andother models with Zn invariant Hamiltonian are just polynomials in thesefhs(z)gs2Z0n generalized hyperboli
 fun
tions of the n-th order. Hen
e ane�ort to guess the thermodynami
s of the system, though 
onsidered astantalous, looks perhaps slightly more a reasonable, tangible task if � forexample � assisted by 
omputer simulations and 
al
ulations [12℄. Our noteis organized as follows:After just a 
rumb of history preliminaries follow. These are to presentin brief indispensable knowledge on (a) fhs(z)gs2Z0n generalized hyperboli
fun
tions of the n-th order and on (b) generalized Cli�ord algebras. (Formore on (a) and (b) one is invited to visit the Appendix.) After that,follows a presentation of reasoning leading us to the �rst and the se
ondgeneral statements above. For extensive literature on hyperboli
 fun
tionsfhs(z)gs2Z0n of the n-th order see [13, 14℄ and also [10℄ for hyperboli
 map-pings of the n-th order. As for generalized Cli�ord algebras see [3,4℄ and [10℄for extensive literature on the subje
t. The appearing soon notion of Pfa�anis re
alled in the Appendix.2. Preliminaries and formulation of the main statementsWe start � as announ
ed � with a 
rumb of history, however pre
ededby an indispensable notation while formulating the general problem. Let usthen de�ne the family of states for Zn ve
tor Potts model on a p� q toruslatti
e (p rows, q 
olumns) to be the set S of (p � q) matri
es with entriesfrom Zn.S = f(si;k = (p� q); si;k 2 Zng; Zn = (!l)n�1l=0 ! = exp�2�in � : (2.1)



On Generalized Cli�ord Algebras and Spin Latti
e Systems 1453The total energy E is then given by:�E[(si;k)℄kT = a p;qXi;k=1(s�1i;k si;k+1 + s�1i;k+1si;k) + b p;qXi;k=1�s�1i;k si+1;k + s�1i+1;ksi;k�and the partition fun
tion reads as follows:Z = X(si;k)2S exp��E[fsi;kg℄kT � : (2.2)We write sometime Z � ZN whenever it is important to indi
ate thatthis is a partition fun
tion for the toroidal grid with N sites. For n = 2 weshall arrive at Ising model.The partition fun
tion 
ould be written in terms of transfer matrix and forthat purpose we introdu
e the standard notation:~s � ~s 0 = pXi=1 sis0i; ~sk = 0BB� s1;ks2;k...sp;k1CCA ; ~s �k = 0BBB� s�1;ks�2;k...s�p;k1CCCA(si;k) = (~s1; ~s2; :::; ~sq) : (2.3)With the notation (2.3) adopted, the partition fun
tion Z may be nowrewritten in a formZ = X~s1;~s2;:::;~sqexp(a qXk=1(~s �k � ~sk+1 + ~s �k+1 � ~sk) + b qXk=1(~s �k ��1~sk + ~sk ��1~s �k )) ;(2.4)after the natural periodi
ity 
onditions have been imposed i.e.~sq+1 = ~s1 ; (~sk)1 = (~sk)p+1; k = 1; :::; q ; (2.5)where (~x)i denotes the i-th 
omponent of ~x. Periodi
ity 
onditions warrantthat we are dealing with the model on p� q torus latti
e. The matrix �1 in(2.4) is a p� q generalized Pauli matrix with matrix elements Æi+1;j , wherei; j 2 Z 0p = f0; 1; :::; p � 1g and �+� is understood as denoting the Z 0p groupa
tion on indi
es of ~sk ve
tors via addition mod p. We introdu
e also the �1generalized Pauli matrix, whi
h is one of the three �1; �2; �3 � playing thesame role in representing C(n)2p generalized Cli�ord algebras (see Morris [3℄)as the �usual� ones in representing the known C(2)2p Cli�ord algebras viatensor produ
ts of � matri
es [15℄.



1454 A.K. Kwa±niewskiC(n)2p generalized Cli�ord algebra is de�ned [16℄ to be generated by 
1; :::; 
2pmatri
es satisfying:
i
j = !
j
i; i < j; 
ni = 1; i; j = 1; 2; :::; 2p; ! = exp 2�in : (2.6)The very algebra has � up to equivalen
e � only one irredu
ible and faithfulrepresentation, and its generators 
an be represented as tensor produ
ts ofgeneralized Pauli matri
es:�1 = (Æi+1;j); �2 = (!iÆi+1;j); �3 = (!iÆi;j) ; (2.7)where i; j 2 Z 0n = f0; 1; :::; n � 1g � the additive 
y
li
 group.It is now obvious that Z may be represented asZ = TrM q (2.8)as we have Z = X~s1;:::;~sqM(~s1; ~s2)M(~s2; ~s3):::M(~sq ; ~s1) ;where matrix elements of the transfer matrix M are given by:M(~s; ~s 0) = expf2b Re (~s � ��1~s)g expf2a Re (~s � � ~s 0)g : (2.9)It is 
onvenient to 
onsider the matrix M as a produ
tM = BA ;where the 
orresponding matrix elements are identi�ed asA(~s 00; ~s 0) = expf2a Re (~s 00 � � ~s 0)g ;B(~s; ~s 00) = expf2b Re (~s � ��1~s)gÆ(~s; ~s 00) : (2.10)As all these A, B, M matri
es are multi-indexed it is obvious that theymight be represented either as tensor produ
ts of (n�n) matri
es (p times)or as (np � np) matri
es.Of 
ourse, for n=2 we shall arrive at Ising model on p�q torus latti
e.Cal
ulations that might be 
arried out now for the Zn ve
tor Potts modelsimplify tremendously in the 
ase of n = 2 i.e. for the Ising model andthere lead to the known Onsager�Kaufman expression for 
omplete parti-tion fun
tion ( [14, 15℄) whi
h after 
arrying out the thermodynami
 limitgoes into the Onsager formula. The method we 
hoose is an appropriategeneralization of the one used in [14℄ whi
h 
onsists there in redu
ing theproblem of �nding of the partition fun
tion for the Ising model to 
al
ula-tion of Tr(P1; :::; Ps), where Tr is the normalized tra
e while P 's are linear
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ombinations of 
 matri
es � generators of usual Cli�ord algebra naturallyassigned to the latti
e.Then the observation that Tr(P1; :::; P2s) is just a Pfa�an [14℄ of anantisymmetri
 matrix formed with s
alar produ
ts of P 's leads one to 
al-
ulation of the determinant from this very matrix. Parallely, one may show( [5, 12℄) that in the Ising 
ase of [14℄ i.e. in the Z2 group 
aseM q = (B�A)qV0 +B+A)qV1) ; (2.11)where B� = exp(2bi p�1X�=1 �
�
�+1 � �
p
1!) ;B+ = exp(2bi p�1X�0=1 �
�0
�0+1 + �
p
1!) ;V0 = 12 (1+ U); V1 = 1212(1� U) : (2.12)U = pYk=1 
k�
k (2.13)and of 
ourse U2 = I as we are now temporarily inspe
ting the Ising 
asei.e. Z2 group 
ase. The formula (2.11) 
oin
ides then with the one known forIsing model [14℄ apart from the obvious and insigni�
ant s
aling of 
onstantsa and b by fa
tor 2. And here 
omes the �rst main statement valid � aswe shall see � for arbitrary n > 1. Namely, M q is a polynomial in 
1; :::
2pmatri
es. Indeed � for that to see it is enough to take into a

ount (2.11),the de�ning property (2.6) of 
1; :::
2p matri
es and the fa
t established in[5�7℄ that A = 
pâ ; (2.14)i.e. A is the p-th tensor power of the (n� n) �intera
tion matrix� â, whi
hhas the form of a 
ir
ulant matrix W [�1℄:â = (âI;J) = �exp�2a Re �!J�I�	� = n�1Xl=0 �l�l1 �W [�1℄ ; (2.15)where I; J 2 Z 0n = f0; 1; 2; :::; n � 1g and�l = expf2a Re(!l)g ; l 2 Z 0n : (2.16)(For more details 
onsult [5℄.) Using the formula (2.11), the notion ofPfa�an and its relation to determinant the author of [14℄ reobtained the
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omplete partition fun
tion leading to the famous Onsager formula. Thematri
es V0; V1, from (2.11) have also simple form and thus Tr M q disen-tangles for n = 2 to be the sum only four summands of the Pfa�an typei.e. Tr(P1P2:::Ps). These four arising Pfa�ans 
ontribute to the partitionfun
tion to give [14℄:Z = 2pq�1�( p;qYk;l=1�
osh 2a0 
osh 2b0�sinh2a0 
os �q (2l+1)�sinh 2b0 
os �p (2k+1)� 12+ p;qYk;l=1�
osh 2a0 
osh 2b0 � sinh2a0 
os �q (2l + 1)� sinh 2b0 
os 2�kp � 12+ p;qYk;l=1�
osh 2a0 
osh 2b0 � sinh2a0 
os 2�lq � sinh2b0 
os �p (2k + 1)� 12�� p;qYk;l=1�
osh 2a0 
osh 2b0 � sinh2a0 
os 2�lq � sinh 2b0 
os 2�kp � 12 ) ;(2.17)where � denotes the sign of T � T
 and a0 = 2a, b0 = 2b. Both the squareroot and the �-sign have appeared here be
ause of the use of Pf(A)2 =detA relation, where A is antisymmetri
 matrix and Pf denotes Pfa�anmapping [13℄.Here 
osh � h0 and sinh � h1; 0; 1 2 Z 02 are hyperboli
 fun
tions of these
ond order to be repla
ed by fhs(z)gs2Z0n hyperboli
 fun
tions of the n-thorder in the Z 0n 
ase.The role of familiar 
1; :::; 
2p matri
es represented via tensor produ
tsof � matri
es [14℄ in the 
ustomary C(2)2p Cli�ord algebra 
ase is now to betaken over by generalized 
1; :::; 
2p matri
es satisfying (2.6) and representedvia tensor produ
ts of generalized Pauli � matri
es (Morris [4℄ � see also[3,5�7℄). These mathemati
al simple devi
es i.e. (a) fhs(z)gs2Z0n hyperboli
fun
tions of the n-th order and (b)C(n)2p generalized Cli�ord algebras wereexpe
ted and in a sense foretold by Baxter in his popular monograph [16℄.Here is the opportune, pertinent and well-timed quotation from it:The only hope that o

urs to me is just as Onsager (1944) and Kaufman(1949) originally solved the zero-�eld Ising model by using the algebra ofspinor operators, so there may be similar algebrai
 methods for solving theeight-vertex and Potts models.We would like to stress that both C(n)2p (5�7,17) and fhs(z)gs2Z0n [4-6℄inventions appre
iably 
ontribute in full of meaning to the development ofPotts-like models investigation.



On Generalized Cli�ord Algebras and Spin Latti
e Systems 1457The use of fhs(z)gs2Z0n hyperboli
 fun
tions of the n-th order as in-di
ated in [5℄ leads to the formulation of our se
ond main statement:partition fun
tions are polynomials in fhs(z)gs2Z0n generalized hyperboli
fun
tions of the n-th order in the 
ase of ve
tor and planar Potts modelsand other models with Zn invariant Hamiltonian and with duality property.Let us explain it now brie�y. There are two steps to arrive at the se
ond mainstatement. The �rst one 
onsists of the simple observation that wheneverwe have an element U of an asso
iative algebra with unity, say � matrix Usu
h that Un = I; Uk 6= I 0 < k < n thenexpfzUg = Xk2Zn UkXr�0 znr+k(nr + k)! = Xk2Zn hk(z)Uk : (2.18)If also V is su
h that V n = I; V k 6= I 0 < k < n then obviously we haveTrfexp[xU ℄ exp[yV ℄g = Xk;l2Zn hk(x)hl(y)Tr(UkV l) : (2.19)The se
ond step is to realize that after the dual parameter a� has beenintrodu
ed ( [7, 8℄) the partition fun
tion for the toroidal grid with N sitesZ � ZN has that of (2.19) form:ZN = [det â(a)℄N2 Trfexp[a�(�1 + �+1 )℄ exp[b(�3 + �+3 )℄gN : (2.20)where �1; �2; �3 de�ned by (2.7) are generalized Pauli matri
es � playing thesame role in representing C(n)2p generalized Cli�ord algebras (see Morris [4℄)as the �usual� ones in representing the known C(2)2p Cli�ord algebras viatensor produ
ts of � matri
es [15℄. The �intera
tion matrix� â, whi
h hasthe form of a 
ir
ulant matrix W [�1℄ is de�ned by (2.15) and (2.16) and thedual parameter a� is any �xed solution of the equation [7, 8℄[det â(a�)℄ = nn[det â(a)℄�1: (2.21)3. The stru
ture of transfer matrix and a tra
e formulaIn order to see that A and B matri
es from (2.10) are just some elementsof C(n)2p we shall express them in terms of operators Xk and Zk ; k = 1; 2; :::; pi.e. matri
es typi
al for tensor produ
t representation of generalized Cli�ordalgebras via generalized Pauli matri
es (see (A.3)). Naturally M = BA (asin Ising 
ase) where A and B are expressed below in termsXk = I 
 :::
 I 
 �1 
 I 
 :::
 I (p� fa
tors) ;Zk = I 
 :::
 I 
 �3 
 I 
 :::
 I (p� fa
tors) ; (3.1)



1458 A.K. Kwa±niewskiwhere �1 and �3 are situated on the k -th site, 
ounting from the left-handside.The matrix A may be therefore now rewritten as a produ
t of (np� np)matri
es A = pYk=1W [Xk℄ ; where W [Xk℄ = n�1Xl=0 �lX lk : (3.2)Similarly, for the matrix B we derive:B = exp(b pXk=1 �Z�1k Zk+1 + Z�1k+1Zk�) ; (3.3)where Zp+1 = Z1. The formula (3.3) follows from the simple observationthat matrix elements of Z�1k Zk+1 + Z�1k+1Zk (multi-indexed by ~s and ~s00)give exa
tly ln of the 
orresponding term of (2.10) expression for B. The Æfun
tion arises due to the fa
t that �3 = (ÆI;J!I) and the exponentiation ofmatrix elements is easy be
ause B is simply proportional to unit matrix.On
e A and B have been represented as in (3.2) and (3.3) it is easy to expressthem in terms of generalized 
 matri
es. Introdu
ing then the tensor produ
trepresentation (A.3) we get:Xk = !n�1
n�1k �
kZ�1k Zk+1 = �
n�1k 
k+1 ; for odd n (3.4)and Xk = �!n�1
n�1k �
kZ�1k Zk+1 = ��
n�1k 
k+1 for even n ; (3.5)where k = 1; 2; :::; p � 1 and �2 = !.The 
orresponding expressions on the boundaries read:Z�1p Z1 = U�
n�1p 
1 for odd n (3.6)and Z�1p Z1 = ��1�
n�1p 
1 for even n ; (3.7)where ! � U = 
p�1 : (3.8)For the proof of (3.4)�(3.7) use (A.6) and (A.7) from the Appendix.From now on we shall pro
eed with formulas for n being odd, loosingnothing from generality of 
onsiderations while 
orresponding formulas for
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e Systems 1459the 
ase of n even are easily derivable from those for the odd 
ase. This inmind we get A = pYk=1W [!�1
n�1k �
k℄; (3.9)B = exp(b pXk=1(�
n�1k 
k+1 + 
n�1k+1 �
k))� exp�bU�
n�1p 
1 + bU�1
n�11 �
p	 :(3.10)Our �rst goal is then a
hieved if one notes thatU = pYk=1 
n�1k �
k ; (3.11)i.e. the transfer matrix M is now expressed in terms of generalized 
 ma-tri
es. NOTE: it is rather trivial and important to note that Un=1; Znk=1;Xnk =1 with obvious impli
ation of the same property for the n-th order poly-nomials in (3.9) and (3.10) � see (2.18) and (2.19). Now it is quite 
learthat one may redu
e the TrM q problem to 
al
ulation of Tr(
i1
i2 :::
is) forany 
olle
tions of 
's.(Note that for n = 2 the way to get the 
omplete partition fun
tion isshorter as there, it is enough to redu
e the TrM q problem to 
al
ulation ofTr(P1P2:::Ps) where P 's are linear 
ombinations of 
's. Hen
e the number ofne
essary summations is mu
h, mu
h smaller than in the 
ase n > 2, whereit is rather useless to try to represent A and B matri
es in that 
onvenientform.)Hen
e now and to this end the main goal of this se
tion is to provide for-mula for Tr(
i1
i2 :::
is) for any 
olle
tions of 
's. We shall quote it after [5℄.Note! By de�nition, in this se
tion Tr map is normalized i.e. Tr I = 1. Thederivation has the form of a sequen
e of observations.Observation 1.Let k 6= nmod n, k 2 N ; then Tr(
i1
i2 :::
ik) = 0Proof: The same as for usual Cli�ord algebras. Use the matrix U de�nedby (3.11).Observation 2.Tr(
i1
i2 :::
ikn) 6= 0 i� there exists permutation Æ 2 Skn, su
h thati�(1) = i�(2) = ::: = i�(n) ; i�(n+1) = ::: = i�(2n); ::: ; i�(kn�n+1) = ::: = i�(kn) :Proof: The proof follows from observation that due to (A.1) if no n-tuple ofthe same 
's exists then Tr(:::) = 0. Other steps of the proof are redu
ed tothis �rst one.



1460 A.K. Kwa±niewskiIt is therefore trivial to note, but important to realize, that:Observation 3.Tr(
i1
i2 :::
ik) = 0 or Tr(
i1
i2 :::
ik ) 2 Zn � the multipli
ative groupof n-th roots of unity.In Lemma 3 the letter k denotes again an arbitrary integer while in allpre
eding lemmas, and in the following, i1; i2; :::; ik run from 1 to numberof generators of the given algebra. This number was 
hosen to be even,however note that the �odd 
ase� problem is redu
ed to this very one due tothe properties of generalized Cli�ord algebra representations (Morris [4℄).The major problem now is to determine this value �0 or !l� l 2 Z 0n forarbitrary set of indi
es i1; i2; :::; ik . In order to do that de�ne a signum likefun
tion K (unfortunately it is an epimorphism only for n = 2) � as follows:K : Sp ! Zn ; ��(1)��(2):::��(p) = K(�)�1�2:::�p ; (3.12)where �'s satisfy (A.1) ex
ept for the 
ondition 
ni = 1, whi
h is now re-pla
ed by �2i = 1.This de�nition being adapted, it is now not very di�
ult to see that:Observation 4.Tr(
i1 :::
ipn) = K(�)K(�), for(a) i�(1) = ::: = i�(n); ::: ; i�(pn�n+1) = ::: = i�(pn) and(b) i~�(n) < i~�(2n) < i~�(pn) ,where ~� � � Æ �, while � is a permutation of the elements fn; 2n; :::; png.(The group of �'s is naturally identi�ed with an appropriate subgroup ofSpn.)Proof: The proof relies on observation that these are only di�erentn-tuples, whi
h are �rigidly� shifted ones trough the others, i.e. there isno permutation within any given n-tuple.The generalization of the Observation 4 to the arbitrary 
ase of someof the n-tuples being equal is straightforward. (The ne
essary 
hange of
onditions (a) and (b) is obvious.)This in mind and from other pre
eding observations we �nally get theTra
e Formula:Tr(
i1
i2 :::
ipn) = 0X�2SpnX~p X�2S~pK(�)K(�) � Æ(i~�(1); :::; i~�(p1n))�Æ(i~�(p1n+1); :::; i~�([p1+p2℄n))� :::� Æ(i~�(pn�pln+1); :::; i~�(pn)) (3.13)with the notation following notation generalizing the �Z2�Pfa�an 
ase�:



On Generalized Cli�ord Algebras and Spin Latti
e Systems 1461Notation: ~p = (p1; p2; :::; pl); pi � 1; Pli=1 pi = p; ~� = � Æ �, and S~p is asubgroup of Spn isomorphi
 to the group of all blo
k matri
es obtained viapermutations of �blo
k 
olumns� of the matrix0BBB� Ipn1 Ipn2 . . . Ipnl 1CCCA ; where Ik is the (k � k) unit matrix.Æ � here denotes the multi-indexed Krone
ker delta i.e. it assigns zero unlessall its arguments are equal and in this very 
ase Æ(:::) = 1. The sum �0 ismeant to take into a

ount only those permutations that do satisfy the
onditions:(a) �(1) < �(2) < ::: < �(p1n); ::: ; �(pn� pln+ 1) < ::: < �(pn); and(b) �(l) < �(p1n+ 1) < ::: < �(pn� pln+ 1).Comments:(1) For the 
ase of n = 2 the theorem gives us the Pfa�an of the produ
t
i1 ; :::; 
ip2 , as in the 
ase, (and only! for n = 2) K(�) = 1 and weare left, as a result with only �0 sum, while Krone
ker deltas be
omefun
tions of the same number of indi
es ij .(2) The theorem may be of signi�
ant help in 
omputer aided 
al
ulatingof TrM q be
ause any element of generalized Cli�ord algebra is a poly-nomial in 
's satisfying (A.1) and quite a lot of additional informationon the stru
ture of M q 2 C(n)2p is available ([5�8,12℄).The author is very mu
h indebted to the Referee whose indi
ations al-lowed preparing the paper in more desirable form. Spe
ial thanks are givento W. Bajguz for his 
omments, assistan
e and elaboration of the LaTeXversion of this edition. Appendix1. A

ording to the prin
ipal theorem of abstra
t algebra there exists uniquealgebra n-Ck for whi
h the diagram below is 
ommutative what means that� = � Æ �0. Su
h type obje
ts are 
alled in abstra
t algebra universal. The�usual� Cli�ord algebras 2-Ck are de�ned that way for example in [2℄. Hereour universal n-Ck Cli�ord algebras are de�ned a

ordingly via the following
ommutative diagram [3℄
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where & is a 
omplex ve
tor spa
e of dim & = k, n-Ck and A are asso
ia-tive algebras, � 2 Hom(n�Ck;A) while �0; � are monomorphisms with theproperty: [�0(x)℄n = Qn(x)1, [�0(x)℄n = Qn(x)1. Here Qn denotes n-ubi
form [3℄. Let f
igki=1 be �0 � images of the ve
tor spa
e & basis.Universal n-Ck Cli�ord algebra is generated by the generators f
igki=1 sub-je
ted to the following relationsf
i1 ; 
i2 ; :::; 
ing = Æ(i1; :::; in) i1; :::; in = 1; 2; :::; k ; (A.1)where the �n-anti
ommutator� [3℄ is just symmetrizer operatorfa1; a2; :::; ang = X�2Sn a�(1):::a�(n)with Sn denoting the group of permutations andÆ(i1; :::; in) = n 1 for i1 = : : : = in0 otherwiseC(n)k generalized Cli�ord algebra [3℄, [4℄ generated by 
1; :::; 
k matri
es sat-isfying: 
i
j = !
j
i; i < j; 
ni = 1; i; j = 1; 2; :::; k: (A.2)C(n)k is the epimorphi
 image of the universal n-Ck algebra [3℄.Namely, one may verify that matri
es satisfying (A.2) also satisfy (A.1)and it is easily seen that both sets of 
ommutation relations 
oin
ide if andonly if n = 2 as then !�1 = !. C(n)2p generalized Cli�ord algebra used in thisnote is generated by 
1; :::; 
2p matri
es satisfying:
i
j = !
j
i; i < j; 
ni = 1; i; j = 1; 2; :::; 2p : (A.3)The C(n)2p algebra has � up to equivalen
e � only one irredu
ible and faithfulrepresentation, and its generators 
an be represented as tensor produ
ts ofgeneralized Pauli matri
es:�1 = (Æi+1;j); �2 = (!iÆi+1;j); �3 = (!iÆi;j) ; (A.4)where i; j 2 Z 0n = f0; 1; :::; n � 1g � the additive 
y
li
 group.One easily 
he
ks, that f�ig31 do satisfy (A.3) for n being odd.Let I denotes sin
e now the unit (n� n) matrix and let
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1 = �3 
 I 
 I 
 : : :
 I 
 I ;
2 = �1 
 �3 
 I 
 : : :
 I 
 I ;...
p = �1 
 �1 
 �1 
 : : : 
 �1 
 �3 ;�
1 = �2 
 I 
 I 
 : : :
 I 
 I ;�
2 = �1 
 �2 
 I 
 : : :
 I 
 I ;...�
p = �1 
 �1 
 �1 
 : : : 
 �1 
 �2 ; (A.5)then 
i; �
j i; j = 1; : : : ; p do satisfy (A.2) with ! repla
ed by !�1, hen
e (A.5)are generators of the algebra isomorphi
 to C(n)2p (isomorphism is given by�1 $ �3 in (A.5)). (This very (A.5) representation was 
hosen for te
hni
alreason � we get, for example, in 
al
ulations of se
tion II, the matrix Uwithout 
oe�
ients et
.). It is also to be noted that for n being odd�3 = �n�11 �2 : (A.6)The 
ase of n being even leads to similar representation with �1 un
hangedbut �2 and �3 now equal to:�2 = (�iÆi+1;j); �3 = ��n�11 �2 ; (A.7)where � is a primitive 2n-th root of unity su
h that �2 = !.(A.5) (with these appropriate for 
ase n = 2� generalized Pauli matri
es)reprodu
es the same type representation of C(n)2p as the one for the 
asen = 2� + 1.One easily proves that�n�13 �2 = !�1�n�12 �1 = ��13 for n = 2� + 1 (A.8)and �n�13 �2 = ��1!�1�n�12 �1 = ��13 for n = 2� : (A.9)C(n)k algebras had already appeared unre
ognized in [18, 19℄.
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all the de�nition of hyperboli
fun
tions of n-th order (for extensive referen
es and many identities see:[10, 13, 20℄ and referen
es therein). Let x be any element of an asso
iative,�nite dimensional algebra with unity I. Thenexpfxg = n�1Xi=0 hi(x) ; wherehi(x) = 1Xk=0 xnk+i(nk + i)! ; i = 0; : : : ; n� 1 : (A.10)One expresses hyperboli
 fun
tions of n-th order hi; i 2 Z 0n in terms expo-tentials due tofi(!x) = !ifi(x); i = 0; 1; : : : ; n� 1 ; ! = exp�2�in � : (A.11)The (A.11) reveals the Zn symmetry properties of these generalized �
osh�fun
tions and we get from this set of relationsfi(x) = 1n n�1Xk=0!�ki expn!kxo ; i = 0; 1; : : : ; n� 1 : (A.12)For 
onsiderations of the se
tion II we need the following observation:Let U be an element of an asso
iative, �nite dimensional algebra with unityI and in addition let Un = 1 and UK 6= 1 for 0 < k < n. Then Vs ; s 2 Z 0nde�ned as follows [5, 13, 20℄Vs = 1n n�1Xi=0 !�siU i ; s 2 Z 0n (A.13)form the family of mutually orthogonal proje
tion operators. In parti
ularand spe
i�
ally one noti
es that for V0 � V the following is true:Observation: Let U be as above. Then V de�ned as follows V = 1nPn�1i=0 U iV n = V : (A.14)Proof: For the proof, just note that for some ai's V n =Pn�1i=0 aiU i and bothsides of this identity equation must be symmetri
 in U i monomials. One
on
ludes therefore that ai = aj , i; j = 0; 1; : : : ; n � 1 hen
e � 
ountingthe number of all arising summands � one arrives at the 
on
lusion of theObservation.
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