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QUANTUM DYNAMICAL MAPSAND RETURN TO EQUILIBRIUM�W.A. MajewskiInstitute of Theoretial Physis, Gda«sk UniversityWita Stwosza 57, 80-952 Gda«sk(Reeived Otober 30, 2000)Let (A; fTtg; !) be a dynamial system. Assume the detailed balaneondition for (fTtg; !). We prove, under the new form of the spetral on-dition, the property of return to equilibrium for the onsidered dynamialsystem.PACS numbers: 05.30.�d, 03.65.Db1. IntrodutionLet A be a C�-algebra with identity, and let Tt : A! A be a semigroupof linear stohasti maps. Thus, Tt obeys(i) Tt is positive: Tt(A�A) � 0 for all A 2 A.(ii) Tt(1) = 1:(iii) Ts Æ Tt = Ts+t; t; s � 0:Moreover, we shall onsider, for simpliity, the uniformly ontinuous dy-namial semigroup Tt. In nonequilibrium, isothermal quantum statistialmehanis we have usually a faithful state !. Thus it is natural to onsiderthe following dynamial system (A; fTtg; !). We assume (fTtg; !) satis�esdetailed balane ondition (we denote it brie�y by DBC). It involves theonept of mirosopi reversibility, whih was expressed in the followingway: there exists an anti-linear Jordan automorphism � of A of order two(that is, �2 = id) suh that!(�(A)�(B)) = !(�(AB)); for A;B 2 A; (1)� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.(1467)



1468 W.A. Majewskiand !(A�B) = ! (�(B�)�(A)) : (2)Then we say that a stohasti map on A obeys detailed balane if for allA;B 2 A we have ! (A�T (B)) = ! (�(B�)T (�(A))) ; (3)for details see [8�11℄.We remind that DBC implies time invariane of the state !, i.e., ! ÆTt(�) = !(�).The Gelfand�Naimark�Segal onstrution then gives a representation �!of A on a Hilbert spae H!, with yli vetor 
!, suh that h
!; �!(A)
!i= !(A). The ation of Tt on A indues an ation on the dense set �!(A)
!� H!, whih we denote by �!(Tt) and whih is de�ned by�!(Tt)�!(A)
! = �!(TtA)
!: (4)Under the above assumptions �!(Tt) is a one parameter semigroup ofontrations (f. [9, 11℄). The aim of this note is to disuss, for a largelass of dynamial systems, the interplay between spetral properties of thein�nitesimal generator of fTtg and the return to equilibrium. It is worthpointing out that our arguments are based on the theory of J -self-adjointmaps. Finally, some illustrative examples of J -symmetri maps will be givenin Setion 3.2. Spetral properties and return to equilibriumLet us onsider a system (A; Tt; !) satisfying DBC. As, by our assump-tion Tt is uniformly ontinuous dynamial semigroup, Tt indues on theHilbert spae of Gelfand-Segal onstrution H! the uniformly ontinuous,J -selfadjoint semigroup T!t � �!(Tt), i.e. (T!t )� = J T!t J where J is thefollowing anti-linear onjugationJ �!(A)
! = �!(�(A))
! : (5)Let us reall (f. [5℄) that a J -selfadjoint operator has the empty residualspetrum. Let A be the in�nitesimal generator of T!t . We onsider � 2�a(A), where �a(A) is the approximate spetrum of A, (f. [2℄), i.e. � 2�a(A) i� there exits a sequenef ng � H! suh that k(��A) nk ! 0: (6)



Quantum Dynamial Maps and Return to Equilibrium 1469We emphasize that although (6) is very similar to the Weyl riterion forselfadjoint operators we are dealing with in�nitesimal generators of dynam-ial semigroups, so, in general, with losed operators.We say that � is a point in the normal approximate spetrum of A,� 2 �na (A), if there exists a sequene f ng � H suh thatk(��A) nk ! 0 and k(��A)� nk ! 0: (7)Observation 1 Let A be the in�nitesimal generator of Tt and let us assumethat � is in �a(A)\iR. Then � 2 �na (A).Proof: Put �B�ReA = 12(A� + A). The ondition of dissipativeness of Aimplies (x;Bx) � 0 for eah x 2 H. Moreover,ReA�0� Re (A� i�0) = 12 (A+A�)for �0 2 R. The assumption of Observation 1 impliesj(A� n;  n)j�kA� nk ! 0Consequently, (ReA� n;  n)! 0as n!1. Let E be the positive square-root of �ReA�. ThenkE nk2 = (E2 n;  n) = �(ReA� n;  n)! 0as n!1. Therefore,kReA� nk = kE2 nk � kEkkE nk ! 0:Finally, let us remarkkA�� nk = k(A�� +A�) n �A� nk� k(A�� +A�) nk+ kA� nk ! 0 : }Similar properties of normal approximate spetrum are desribed in [3℄.Let us write A in the form A = iH �D ; (8)i.e. A is the sum of the Hamiltonian and the dissipative parts.



1470 W.A. MajewskiRemark 2 In general, under DBC, Raggio ( [13℄) proved that the generatorL of Tt is of the form L = Æ + 	 where Æ is the generator of one parametergroup of �-automorphism while 	 is the generator of the uniform ontinu-ous semigroup. Thus, the deomposition (8) is a genuine property of theonsidered lass of dynamial systems.Observation 3 Let us assume that i� 2 �na (A)\iR. Then � 2 �a(A�D),where  is a real parameter, i.e. �a(A)\iR exhibits the stability with respetto perturbations by D.Proof: Let us take f ng as in (7) and let us note that for �; � 2 R,k[i(���)H�(�+�)D�i(���)�℄ nk = k�(A�i�) n+�(A�i�)� nk (9)� j�jk(A � i�) nk+ j�jk(A � i�)� nk ! 0 (10)In partiular, for � 6= �k(A� 2��� �D � i�) nk ! 0 :Consequently, for  = 2���� , the Observation follows. }Observation 4 Let us assume i� 2 �na (A). Then 0 2 �a(D).Proof: 2kD nk = k(iH �D � i�� iH �D + i�) nk� k(A� i�) nk+ k(A� i�)� nk ! 0 : }Theorem 5 The following onditions are equivalent: (i) i� 2 �a(A)\iR;(ii) � 2 �a(H) and 0 2 �a(D) with the possibility of hoie of the samesequene f ng for 0 and given �.Proof: ) It is enough to apply Observations 1, 3 and 4. ( Let us observek(i��A) nk = k(i�� iH) n + (�D) nk� k(��H) nk+ kD nk ! 0 : }Denote by Na(D) the set of all sequenes f ng, with  n 2 H (n =1; 2; :::), suh that k nk = 1, kD nk ! 0. In what follows, Na(D) willbe alled the approximate kernel of D. Let Ha(H) denote the set of allapproximate eigenvetors of the Hamiltonian part H of A orresponding to0, i.e., the set of all sequenes f ng 2 H, (k nk = 1) suh that kH nk ! 0.



Quantum Dynamial Maps and Return to Equilibrium 1471De�nition 6 Spetral ConditionNa(D) � Ha(H) : (11)Corollary 7 Let Tt be J -selfadjoint, ompletely non unitary, uniformlyontinuous semigroup of ontrations on a Hilbert spae H, with generatorA. Let us assume the Spetral Condition. Then, �(A)\iR is equal to f0g.Proof: Let i�0 be in �(A)\iR. Then the assumptions of Corollary implythat i�0 2 �a(A)\iR. On the other hand, an appliation of Theorem 5 gives�0 2 �a(H) where H is the Hamiltonian part of A. Then an appliation ofthe Spetral Condition and Theorem 5 ompletes the proof of Theorem.}We shall needDe�nition 8 The semigroup Vt on H is strongly stable if as t ! 1kVtfk ! 0 for all f 2 H:Let us reall (f. [6℄)Theorem 9 Let the semigroup Vt be a ontration semigroup on H. H hasa maximal losed subspae H1 on whih Vt is (i.e. restrits to) a unitarysemigroup. The restrition of Vt on H?1 is a ompletely non unitary semi-group. Moreover, both Vt and V �t are strongly stable on H?1 if and only ifP = Q is a projetion, wherePf = limt!+1V �t Vtf = limt!+1VtV �t f = Qf (12)for f 2 H. The range of P = Q is then H1.Remarks 10(i) The limits in (12) exist (f. [4℄).(ii) A ondition leading to a semigroup strongly stable onH?1 was also studiedin ( [10℄).Theorem 11 (see [1℄) Let Vt be a bounded C0-semigroup with generatorA. Assume that �r(A)\iR = ;, where �r(A) denotes the residual part ofthe spetrum of A. If �(A)\iR is ountable, then Vt is strongly stable C0-semigroup.



1472 W.A. MajewskiTheorems 9, 11 and Corollary 7 yield:Corollary 12 Let T!t be a J -selfadjoint, uniformly ontinuous semigroupof ontrations on a Hilbert spae H!, with generator A. Denote by A? thein�nitesimal generator of the restrition of T!t on H?1 . Let us assume theSpetral Condition for A?. Then, limt!1(T!t )�T!t is equal to an orthogonalprojetion.Note that we have atually proved that under the assumption of DBC andthe spetral ondition the system (M; �!(Tt); !), where �!(Tt) is a om-pletely positive semigroup on the W �-algebra M � (�!(A))00 � B(H!),shows signs of return to equilibrium. This an be rephrased as follows. Letus assume DBC and the spetral ondition. Additionally let us assume theomplete positivity of dynamial semigroup. Then the limit'+(A) = limt!+1'(�!(Tt)(A)) (13)exists forA 2M and normal states ' provided that limt!+1 !(A�!(Tt)(B))exists for all A in a �-weakly subset of M and B in the largest �!(T )-invariant W �-subalgebra N on whih �!(Tt) is equal to a group of automor-phisms. The assumption of omplete positivity is neessary for a harater-ization of N (f. [12℄). The equality (13) may be proved in muh same wayas Theorem in ( [10℄) with the spetral ondition taking the plae of theasymptoti normality assumption. In other words, as the spetral onditionan be onsidered as being more intrinsi property of dynamial system wegot the strengthening of the desription of return to equilibrium.3. ExamplesIn the previous setion it was indiated how analysis of J -symmetrimaps an be used for a study of the question onerning the return to equi-librium. Now, we want to show that J -symmetriity arise naturally, also,in the elementary Quantum Mehanis. Let H � L2(Rn) be a Hilbert spaeassoiated with a quantum system. On that Hilbert spae we onsider theShrödinger operator S with omplex-valued potential V = V1 + iV2, V1; V2real-valued, measurable funtions, i.e. S � �+ V . Then one an show thatS is a J -self-adjoint operator (f. [5℄), where (in that ase) the onjugationJ on H is indued by the omplex onjugation on C. It is obvious, thatunder the assumption V2 � 0, iS generates a semigroup on H. To get an in-teresting example of a lass of operators satisfying onditions of the previoussetion we reall: Let V2 be a bounded real-valued funtion on a measurespae (Y; �); Y � Rn. De�ne(TV2g)(y) = V2(y)g(y); g 2 L2(Y; �): (14)



Quantum Dynamial Maps and Return to Equilibrium 1473Then, �(TV2) is equal to the essential range of V2. Suppose additionallythat V2 is ontinuously di�erentiable, gradV2 6= 0 almost everywhere in Y ,then TV2 is spetrally absolutely ontinuous (f. [7℄). Moreover, let V1 be aloally bounded, positive funtion suh that V1(y) ! 1 for jyj ! 1. Theimportant point to note here is that the just onsidered lass of funtionsontains potentials of osillators (harmoni, anharmoni, et.) Then ��+V1 � H (the sum is taken in the sense of quadrati forms) has only disretespetrum (f. [14℄). Clearly, to have a onrete example of suh the sumone an take H to be the Hamiltonian operator assoiated with a model ofosillator.To illustrate the main idea of our analysis let us onsider, as an example,one dimensional osillator. Thus, H is taken to be H = 12 (� d2dx2 + x2).One an verify that H is a selfadjoint operator, �(H) is pure disrete, andHa(H) = ;. Further, let us take as a dissipative perturbation D of H thatgiven by TV2 . We remind that to get a well de�ned semigroup we have toassume V2 � 0. Let us apply Theorem 5 and its orollaries to the pair(iH;�D). To this end we assume that i� 2 �a(iH �D) \ iR. Theorem 5implies that � 2 �(H) and 0 2 �(D) with the same hoie of vetors f ng.But the spetrum of H is pure disrete, it does not ontain 0, the spetrumof D is pure ontinuous so (ii) of Theorem 5 does not hold. Consequentlyi� 62 �a(iH � D) \ iR and, for example, Theorem 11 implies the strongstability of the semigroup Vt = expfiHt � Dtg. On the other hand, ifwe onsider a slightly shifted Hamiltonian part H 0 = H � 121 then �(H 0) ispure disrete, it ontains 0, �(D) is pure ontinuous, it an ontain 0 (with asuitable hoie of the funtion V2) and therefore the pair (iH 0;�D) providesa nie example where the spetral ondition is useful.To onlude this brief disussion one may say that the presented simplemodels learly indiate that the spetral ondition presenting some ompat-ibility requirement between �xed points of dissipation and invariant statesof Hamiltonian part of dynamis an be also useful in onrete models ofQuantum Mehanis.This paper was begun during a visit at King's College (London). I amvery grateful to Ray Streater for numerous illuminating disussions and im-portant omments. This work was partially supported by BW 5400-5-0033-0grant.
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