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Let (A,{T;},w) be a dynamical system. Assume the detailed balance
condition for ({T}},w). We prove, under the new form of the spectral con-
dition, the property of return to equilibrium for the considered dynamical
system.
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1. Introduction

Let A be a C*-algebra with identity, and let T} : A — A be a semigroup
of linear stochastic maps. Thus, T} obeys

(1) Ty is positive: Ty(A*A) > 0 for all A € A.
(11) Ty(1) = 1.
(ZZZ) Ts o Tt == Ts+ta t,S Z 0.

Moreover, we shall consider, for simplicity, the uniformly continuous dy-
namical semigroup 7;. In nonequilibrium, isothermal quantum statistical
mechanics we have usually a faithful state w. Thus it is natural to consider
the following dynamical system (A, {T;},w). We assume ({T}},w) satisfies
detailed balance condition (we denote it briefly by DBC). It involves the
concept of microscopic reversibility, which was expressed in the following
way: there exists an anti-linear Jordan automorphism o of A of order two
(that is, 02 = id) such that

w(o(A)o(B)) =w(o(AB)), for A,B € A, (1)
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and
w(A*B) = w (c(B*)o(A)) . (2)

Then we say that a stochastic map on A obeys detailed balance if for all
A, B € A we have

w(A"T(B)) = w (o(B")T(0(4))), (3)

for details see [8-11].

We remind that DBC implies time invariance of the state w, i.e., w o
Ti(-) = w(*).

The Gelfand-Naimark—-Segal construction then gives a representation m,,
of A on a Hilbert space H,,, with cyclic vector £2,,, such that (£2,,7,(A)2,)
= w(A). The action of T; on A induces an action on the dense set 7, (.A)f2,
C H,,, which we denote by m,(T};) and which is defined by

7 (T) T (A) 2y, = 70 (T A) 2. (4)

Under the above assumptions 7, (7}) is a one parameter semigroup of
contractions (cf. [9, 11]). The aim of this note is to discuss, for a large
class of dynamical systems, the interplay between spectral properties of the
infinitesimal generator of {7;} and the return to equilibrium. It is worth
pointing out that our arguments are based on the theory of J-self-adjoint
maps. Finally, some illustrative examples of J-symmetric maps will be given
in Section 3.

2. Spectral properties and return to equilibrium

Let us consider a system (A, T}, w) satisfying DBC. As, by our assump-
tion T} is uniformly continuous dynamical semigroup, T} induces on the
Hilbert space of Gelfand-Segal construction H,, the uniformly continuous,
J-selfadjoint semigroup Ty = n,(T}), i.e. (T)* = JTFJ where J is the
following anti-linear conjugation

T (A) 2 = (0 (A)) 82y, - (5)

Let us recall (¢f. [5]) that a J-selfadjoint operator has the empty residual
spectrum. Let A be the infinitesimal generator of 7}’. We consider A €
0a(A), where o,(A) is the approximate spectrum of A, (cf. [2]), i.e. X €
oq(A) iff there exits a sequence

{n} CH, such that |(A— A),| — 0. (6)
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We emphasize that although (6) is very similar to the Weyl criterion for
selfadjoint operators we are dealing with infinitesimal generators of dynam-
1cal semigroups, so, in general, with closed operators.

We say that A is a point in the normal approximate spectrum of A,
A € 0l (A), if there exists a sequence {1, } C H such that

[(A = A)¢pn|l = 0 and  [[(A = A)*n| — 0. (7)
Observation 1 Let A be the infinitesimal generator of Ty and let us assume
that A is in o4(A)NiR. Then A € o' (A).

Proof: Put —B=Re A = $(A* + A). The condition of dissipativeness of A
implies (z, Bx) > 0 for each 2 € H. Moreover,

Re A),= Re (4 —iXg) = 3(A + AY)
for \g € R. The assumption of Observation 1 implies

Consequently,
(Re A)x¢717 1/}71) —0

as n — o0o. Let E be the positive square-root of —Re A). Then
1B4n]|* = (E*n, 9n) = —(Re Axthn, ) — 0
as n — oo. Therefore,
[Re Axull = 1Bl < |E||| Egpnll — 0.
Finally, let us remark
[AXYnll = I(AX + Ax)on — Axipn|

< (AN + AN ¢l + [[Ax¢pn] = 0.
<

Similar properties of normal approximate spectrum are described in [3].
Let us write A in the form

A=iH-D, (8)

1.e. A is the sum of the Hamiltonian and the dissipative parts.
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Remark 2 In general, under DBC, Raggio ( [13]) proved that the generator
L of Ty is of the form L = § +W¥ where & is the generator of one parameter
group of x-automorphism while ¥ is the generator of the uniform continu-
ous semigroup. Thus, the decomposition (8) is a genwine property of the
considered class of dynamical systems.

Observation 3 Let us assume that i\ € o7 (A)NiR. Then X € 0,(A—~D),
where 7y is a real parameter, i.e. 0,(A)NiR exhibits the stability with respect
to perturbations by D.

Proof: Let us take {t¢,} as in (7) and let us note that for o, 5 € R,
[[i(e—B)H —(a+B)D—i(a—B)A|¢nl| = |la(A—iA)pn+B(A—iX) | (9)
< lafl[(A = iX)an|l + [BII(A = iX)"4n]| — 0 (10)
In particular, for a # 8

(4= 225D = Nl 0.

Consequently, for v = %, the Observation follows.

%
Observation 4 Let us assume i\ € o) (A). Then 0 € o4(D).
Proof:
2| Dl = [[(iH — D — i\ —iH — D + i\)ty ||
<A = i)l + [[(A = iX) ]| — 0.
%

Theorem 5 The following conditions are equivalent: (i) i € o,(A)NiR,
(1i)) A € 04(H) and 0 € o4(D) with the possibility of choice of the same
sequence {1y} for 0 and given .

Proof: = It is enough to apply Observations 1, 3 and 4. < Let us observe

1A = A)nl| = 1A = iH)3pn + (=D)hn]|
<A = H)hn| + [[D¢pul| = 0.
¢
Denote by N (D) the set of all sequences {9}, with ¢, € H (n =
1,2,...), such that |[¢,] = 1, |D9y|| — 0. In what follows, N,(D) will
be called the approximate kernel of D. Let H,(H) denote the set of all

approximate eigenvectors of the Hamiltonian part H of A corresponding to
0, i.e., the set of all sequences {1, } € H, (||¢n]| = 1) such that | Hiy| — 0.
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Definition 6 Spectral Condition

Nu(D) CHq(H). (11)

Corollary 7 Let Ty be J-selfadjoint, completely non unitary, uniformly
continuous semigroup of contractions on a Hilbert space H, with generator
A. Let us assume the Spectral Condition. Then, o(A)NiR is equal to {0}.

Proof: Let iAo be in o(A)NiR. Then the assumptions of Corollary imply
that iAo € 04(A)NiR. On the other hand, an application of Theorem 5 gives
Ao € 04(H) where H is the Hamiltonian part of A. Then an application of
the Spectral Condition and Theorem 5 completes the proof of Theorem.

&
We shall need

Definition 8 The semigroup V; on H is strongly stable if as t — oo
|\Vifll = O for all f € H.

Let us recall (cf. [6])

Theorem 9 Let the semigroup Vi be a contraction semigroup on H. H has
a mazimal closed subspace Hi on which Vi is (i.e. restricts to) a unitary
semigroup. The restriction of Vi on 'Hf 1s a completely non unitary semi-
group. Moreover, both Vi and V;* are strongly stable on 'H% if and only if
P = Q is a projection, where

Pf= lim V;Vif = lim ViV/f=QJ (12)

for f € H. The range of P = @ 1is then H;.

Remarks 10
(1) The limits in (12) exist (cf. [4]).

(ii) A condition leading to a semigroup strongly stable on Hf was also studied

in ( [10]).

Theorem 11 (see [1]) Let Vi be a bounded Cy-semigroup with generator
A. Assume that o.(A)NiR = (), where o,(A) denotes the residual part of
the spectrum of A. If o(A)NiR is countable, then V; is strongly stable Cy-
SemMigroup.



1472 W.A. MAJEWSKI

Theorems 9, 11 and Corollary 7 yield:

Corollary 12 Let Ty be a J-selfadjoint, uniformly continuous semigroup
of contractions on a Hilbert space H,,, with generator A. Denote by A the
infinitesimal generator of the restriction of T¥ on Hi. Let us assume the
Spectral Condition for A+. Then, limy_,oo (T{*)*T¢ is equal to an orthogonal
projection.

Note that we have actually proved that under the assumption of DBC and
the spectral condition the system (M, (T}),w), where m,(T}) is a com-
pletely positive semigroup on the W*-algebra M = (m,(A))" € B(Hy),
shows signs of return to equilibrium. This can be rephrased as follows. Let
us assume DBC and the spectral condition. Additionally let us assume the
complete positivity of dynamical semigroup. Then the limit

P (4) = lm_p(m,(T)(4)) (13)

exists for A € M and normal states ¢ provided that lim;_, 4 o0 w(A7,(T})(B))
exists for all A in a o-weakly subset of M and B in the largest m,(T)-
invariant W*-subalgebra A/ on which 7, (T}) is equal to a group of automor-
phisms. The assumption of complete positivity is necessary for a character-
ization of N (¢f. [12]). The equality (13) may be proved in much same way
as Theorem in ( [10]) with the spectral condition taking the place of the
asymptotic normality assumption. In other words, as the spectral condition
can be considered as being more intrinsic property of dynamical system we
got the strengthening of the description of return to equilibrium.

3. Examples

In the previous section it was indicated how analysis of J-symmetric
maps can be used for a study of the question concerning the return to equi-
librium. Now, we want to show that J-symmetricity arise naturally, also,
in the elementary Quantum Mechanics. Let H = Lo (R™) be a Hilbert space

associated with a quantum system. On that Hilbert space we consider the
Schrodinger operator S with complex-valued potential V' = Vi +iVs, Vi, V5
real-valued, measurable functions, i.e. S = A + V. Then one can show that
S is a J-self-adjoint operator (cf. [5]), where (in that case) the conjugation
J on H is induced by the complex conjugation on C. It is obvious, that
under the assumption V5 > 0, 1S generates a semigroup on H. To get an in-

teresting example of a class of operators satisfying conditions of the previous
section we recall: Let V5 be a bounded real-valued function on a measure

space (Y,11); Y C R". Define

(Tv,9)(y) = Va(y)g(y), g € La(Y,p). (14)
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Then, o(Ty,) is equal to the essential range of V5. Suppose additionally
that V5 is continuously differentiable, grad Vo # 0 almost everywhere in Y,
then Ty, is spectrally absolutely continuous (cf. [7]). Moreover, let V; be a

locally bounded, positive function such that V;(y) — oo for |y| — oc. The
important point to note here is that the just considered class of functions
contains potentials of oscillators (harmonic, anharmonic, etc.) Then —A +
Vi = H (the sum is taken in the sense of quadratic forms) has only discrete
spectrum (cf. [14]). Clearly, to have a concrete example of such the sum
one can take H to be the Hamiltonian operator associated with a model of
oscillator.

To illustrate the main idea of our analysis let us consider, as an example,
one dimensional oscillator. Thus, H is taken to be H = %(—% + z2).
One can verify that H is a selfadjoint operator, o(H) is pure discrete, and
Hq(H) = 0. Further, let us take as a dissipative perturbation D of H that
given by Ty,. We remind that to get a well defined semigroup we have to
assume Vo > 0. Let us apply Theorem 5 and its corollaries to the pair
(¢H,—D). To this end we assume that i\ € 0,(¢:H — D) NiR. Theorem 5
implies that A € o(H) and 0 € o(D) with the same choice of vectors {1, }.
But the spectrum of H is pure discrete, it does not contain 0, the spectrum
of D is pure continuous so (i4) of Theorem 5 does not hold. Consequently
i\ € 0,(iH — D) N iR and, for example, Theorem 11 implies the strong
stability of the semigroup V; = exp{iHt — Dt}. On the other hand, if
we consider a slightly shifted Hamiltonian part H' = H — 31 then o(H’) is
pure discrete, it contains 0, o(D) is pure continuous, it can contain 0 (with a
suitable choice of the function V5) and therefore the pair (1H', —D) provides
a nice example where the spectral condition is useful.

To conclude this brief discussion one may say that the presented simple
models clearly indicate that the spectral condition presenting some compat-
ibility requirement between fixed points of dissipation and invariant states
of Hamiltonian part of dynamics can be also useful in concrete models of
Quantum Mechanics.

This paper was begun during a visit at King’s College (London). I am
very grateful to Ray Streater for numerous illuminating discussions and im-
portant comments. This work was partially supported by BW 5400-5-0033-0
grant.
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