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QUANTUM DYNAMICAL MAPSAND RETURN TO EQUILIBRIUM�W.A. MajewskiInstitute of Theoreti
al Physi
s, Gda«sk UniversityWita Stwosza 57, 80-952 Gda«sk(Re
eived O
tober 30, 2000)Let (A; fTtg; !) be a dynami
al system. Assume the detailed balan
e
ondition for (fTtg; !). We prove, under the new form of the spe
tral 
on-dition, the property of return to equilibrium for the 
onsidered dynami
alsystem.PACS numbers: 05.30.�d, 03.65.Db1. Introdu
tionLet A be a C�-algebra with identity, and let Tt : A! A be a semigroupof linear sto
hasti
 maps. Thus, Tt obeys(i) Tt is positive: Tt(A�A) � 0 for all A 2 A.(ii) Tt(1) = 1:(iii) Ts Æ Tt = Ts+t; t; s � 0:Moreover, we shall 
onsider, for simpli
ity, the uniformly 
ontinuous dy-nami
al semigroup Tt. In nonequilibrium, isothermal quantum statisti
alme
hani
s we have usually a faithful state !. Thus it is natural to 
onsiderthe following dynami
al system (A; fTtg; !). We assume (fTtg; !) satis�esdetailed balan
e 
ondition (we denote it brie�y by DBC). It involves the
on
ept of mi
ros
opi
 reversibility, whi
h was expressed in the followingway: there exists an anti-linear Jordan automorphism � of A of order two(that is, �2 = id) su
h that!(�(A)�(B)) = !(�(AB)); for A;B 2 A; (1)� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.(1467)



1468 W.A. Majewskiand !(A�B) = ! (�(B�)�(A)) : (2)Then we say that a sto
hasti
 map on A obeys detailed balan
e if for allA;B 2 A we have ! (A�T (B)) = ! (�(B�)T (�(A))) ; (3)for details see [8�11℄.We remind that DBC implies time invarian
e of the state !, i.e., ! ÆTt(�) = !(�).The Gelfand�Naimark�Segal 
onstru
tion then gives a representation �!of A on a Hilbert spa
e H!, with 
y
li
 ve
tor 
!, su
h that h
!; �!(A)
!i= !(A). The a
tion of Tt on A indu
es an a
tion on the dense set �!(A)
!� H!, whi
h we denote by �!(Tt) and whi
h is de�ned by�!(Tt)�!(A)
! = �!(TtA)
!: (4)Under the above assumptions �!(Tt) is a one parameter semigroup of
ontra
tions (
f. [9, 11℄). The aim of this note is to dis
uss, for a large
lass of dynami
al systems, the interplay between spe
tral properties of thein�nitesimal generator of fTtg and the return to equilibrium. It is worthpointing out that our arguments are based on the theory of J -self-adjointmaps. Finally, some illustrative examples of J -symmetri
 maps will be givenin Se
tion 3.2. Spe
tral properties and return to equilibriumLet us 
onsider a system (A; Tt; !) satisfying DBC. As, by our assump-tion Tt is uniformly 
ontinuous dynami
al semigroup, Tt indu
es on theHilbert spa
e of Gelfand-Segal 
onstru
tion H! the uniformly 
ontinuous,J -selfadjoint semigroup T!t � �!(Tt), i.e. (T!t )� = J T!t J where J is thefollowing anti-linear 
onjugationJ �!(A)
! = �!(�(A))
! : (5)Let us re
all (
f. [5℄) that a J -selfadjoint operator has the empty residualspe
trum. Let A be the in�nitesimal generator of T!t . We 
onsider � 2�a(A), where �a(A) is the approximate spe
trum of A, (
f. [2℄), i.e. � 2�a(A) i� there exits a sequen
ef ng � H! su
h that k(��A) nk ! 0: (6)



Quantum Dynami
al Maps and Return to Equilibrium 1469We emphasize that although (6) is very similar to the Weyl 
riterion forselfadjoint operators we are dealing with in�nitesimal generators of dynam-i
al semigroups, so, in general, with 
losed operators.We say that � is a point in the normal approximate spe
trum of A,� 2 �na (A), if there exists a sequen
e f ng � H su
h thatk(��A) nk ! 0 and k(��A)� nk ! 0: (7)Observation 1 Let A be the in�nitesimal generator of Tt and let us assumethat � is in �a(A)\iR. Then � 2 �na (A).Proof: Put �B�ReA = 12(A� + A). The 
ondition of dissipativeness of Aimplies (x;Bx) � 0 for ea
h x 2 H. Moreover,ReA�0� Re (A� i�0) = 12 (A+A�)for �0 2 R. The assumption of Observation 1 impliesj(A� n;  n)j�kA� nk ! 0Consequently, (ReA� n;  n)! 0as n!1. Let E be the positive square-root of �ReA�. ThenkE nk2 = (E2 n;  n) = �(ReA� n;  n)! 0as n!1. Therefore,kReA� nk = kE2 nk � kEkkE nk ! 0:Finally, let us remarkkA�� nk = k(A�� +A�) n �A� nk� k(A�� +A�) nk+ kA� nk ! 0 : }Similar properties of normal approximate spe
trum are des
ribed in [3℄.Let us write A in the form A = iH �D ; (8)i.e. A is the sum of the Hamiltonian and the dissipative parts.



1470 W.A. MajewskiRemark 2 In general, under DBC, Raggio ( [13℄) proved that the generatorL of Tt is of the form L = Æ + 	 where Æ is the generator of one parametergroup of �-automorphism while 	 is the generator of the uniform 
ontinu-ous semigroup. Thus, the de
omposition (8) is a genuine property of the
onsidered 
lass of dynami
al systems.Observation 3 Let us assume that i� 2 �na (A)\iR. Then � 2 �a(A�
D),where 
 is a real parameter, i.e. �a(A)\iR exhibits the stability with respe
tto perturbations by D.Proof: Let us take f ng as in (7) and let us note that for �; � 2 R,k[i(���)H�(�+�)D�i(���)�℄ nk = k�(A�i�) n+�(A�i�)� nk (9)� j�jk(A � i�) nk+ j�jk(A � i�)� nk ! 0 (10)In parti
ular, for � 6= �k(A� 2��� �D � i�) nk ! 0 :Consequently, for 
 = 2���� , the Observation follows. }Observation 4 Let us assume i� 2 �na (A). Then 0 2 �a(D).Proof: 2kD nk = k(iH �D � i�� iH �D + i�) nk� k(A� i�) nk+ k(A� i�)� nk ! 0 : }Theorem 5 The following 
onditions are equivalent: (i) i� 2 �a(A)\iR;(ii) � 2 �a(H) and 0 2 �a(D) with the possibility of 
hoi
e of the samesequen
e f ng for 0 and given �.Proof: ) It is enough to apply Observations 1, 3 and 4. ( Let us observek(i��A) nk = k(i�� iH) n + (�D) nk� k(��H) nk+ kD nk ! 0 : }Denote by Na(D) the set of all sequen
es f ng, with  n 2 H (n =1; 2; :::), su
h that k nk = 1, kD nk ! 0. In what follows, Na(D) willbe 
alled the approximate kernel of D. Let Ha(H) denote the set of allapproximate eigenve
tors of the Hamiltonian part H of A 
orresponding to0, i.e., the set of all sequen
es f ng 2 H, (k nk = 1) su
h that kH nk ! 0.



Quantum Dynami
al Maps and Return to Equilibrium 1471De�nition 6 Spe
tral ConditionNa(D) � Ha(H) : (11)Corollary 7 Let Tt be J -selfadjoint, 
ompletely non unitary, uniformly
ontinuous semigroup of 
ontra
tions on a Hilbert spa
e H, with generatorA. Let us assume the Spe
tral Condition. Then, �(A)\iR is equal to f0g.Proof: Let i�0 be in �(A)\iR. Then the assumptions of Corollary implythat i�0 2 �a(A)\iR. On the other hand, an appli
ation of Theorem 5 gives�0 2 �a(H) where H is the Hamiltonian part of A. Then an appli
ation ofthe Spe
tral Condition and Theorem 5 
ompletes the proof of Theorem.}We shall needDe�nition 8 The semigroup Vt on H is strongly stable if as t ! 1kVtfk ! 0 for all f 2 H:Let us re
all (
f. [6℄)Theorem 9 Let the semigroup Vt be a 
ontra
tion semigroup on H. H hasa maximal 
losed subspa
e H1 on whi
h Vt is (i.e. restri
ts to) a unitarysemigroup. The restri
tion of Vt on H?1 is a 
ompletely non unitary semi-group. Moreover, both Vt and V �t are strongly stable on H?1 if and only ifP = Q is a proje
tion, wherePf = limt!+1V �t Vtf = limt!+1VtV �t f = Qf (12)for f 2 H. The range of P = Q is then H1.Remarks 10(i) The limits in (12) exist (
f. [4℄).(ii) A 
ondition leading to a semigroup strongly stable onH?1 was also studiedin ( [10℄).Theorem 11 (see [1℄) Let Vt be a bounded C0-semigroup with generatorA. Assume that �r(A)\iR = ;, where �r(A) denotes the residual part ofthe spe
trum of A. If �(A)\iR is 
ountable, then Vt is strongly stable C0-semigroup.



1472 W.A. MajewskiTheorems 9, 11 and Corollary 7 yield:Corollary 12 Let T!t be a J -selfadjoint, uniformly 
ontinuous semigroupof 
ontra
tions on a Hilbert spa
e H!, with generator A. Denote by A? thein�nitesimal generator of the restri
tion of T!t on H?1 . Let us assume theSpe
tral Condition for A?. Then, limt!1(T!t )�T!t is equal to an orthogonalproje
tion.Note that we have a
tually proved that under the assumption of DBC andthe spe
tral 
ondition the system (M; �!(Tt); !), where �!(Tt) is a 
om-pletely positive semigroup on the W �-algebra M � (�!(A))00 � B(H!),shows signs of return to equilibrium. This 
an be rephrased as follows. Letus assume DBC and the spe
tral 
ondition. Additionally let us assume the
omplete positivity of dynami
al semigroup. Then the limit'+(A) = limt!+1'(�!(Tt)(A)) (13)exists forA 2M and normal states ' provided that limt!+1 !(A�!(Tt)(B))exists for all A in a �-weakly subset of M and B in the largest �!(T )-invariant W �-subalgebra N on whi
h �!(Tt) is equal to a group of automor-phisms. The assumption of 
omplete positivity is ne
essary for a 
hara
ter-ization of N (
f. [12℄). The equality (13) may be proved in mu
h same wayas Theorem in ( [10℄) with the spe
tral 
ondition taking the pla
e of theasymptoti
 normality assumption. In other words, as the spe
tral 
ondition
an be 
onsidered as being more intrinsi
 property of dynami
al system wegot the strengthening of the des
ription of return to equilibrium.3. ExamplesIn the previous se
tion it was indi
ated how analysis of J -symmetri
maps 
an be used for a study of the question 
on
erning the return to equi-librium. Now, we want to show that J -symmetri
ity arise naturally, also,in the elementary Quantum Me
hani
s. Let H � L2(Rn) be a Hilbert spa
easso
iated with a quantum system. On that Hilbert spa
e we 
onsider theS
hrödinger operator S with 
omplex-valued potential V = V1 + iV2, V1; V2real-valued, measurable fun
tions, i.e. S � �+ V . Then one 
an show thatS is a J -self-adjoint operator (
f. [5℄), where (in that 
ase) the 
onjugationJ on H is indu
ed by the 
omplex 
onjugation on C. It is obvious, thatunder the assumption V2 � 0, iS generates a semigroup on H. To get an in-teresting example of a 
lass of operators satisfying 
onditions of the previousse
tion we re
all: Let V2 be a bounded real-valued fun
tion on a measurespa
e (Y; �); Y � Rn. De�ne(TV2g)(y) = V2(y)g(y); g 2 L2(Y; �): (14)



Quantum Dynami
al Maps and Return to Equilibrium 1473Then, �(TV2) is equal to the essential range of V2. Suppose additionallythat V2 is 
ontinuously di�erentiable, gradV2 6= 0 almost everywhere in Y ,then TV2 is spe
trally absolutely 
ontinuous (
f. [7℄). Moreover, let V1 be alo
ally bounded, positive fun
tion su
h that V1(y) ! 1 for jyj ! 1. Theimportant point to note here is that the just 
onsidered 
lass of fun
tions
ontains potentials of os
illators (harmoni
, anharmoni
, et
.) Then ��+V1 � H (the sum is taken in the sense of quadrati
 forms) has only dis
retespe
trum (
f. [14℄). Clearly, to have a 
on
rete example of su
h the sumone 
an take H to be the Hamiltonian operator asso
iated with a model ofos
illator.To illustrate the main idea of our analysis let us 
onsider, as an example,one dimensional os
illator. Thus, H is taken to be H = 12 (� d2dx2 + x2).One 
an verify that H is a selfadjoint operator, �(H) is pure dis
rete, andHa(H) = ;. Further, let us take as a dissipative perturbation D of H thatgiven by TV2 . We remind that to get a well de�ned semigroup we have toassume V2 � 0. Let us apply Theorem 5 and its 
orollaries to the pair(iH;�D). To this end we assume that i� 2 �a(iH �D) \ iR. Theorem 5implies that � 2 �(H) and 0 2 �(D) with the same 
hoi
e of ve
tors f ng.But the spe
trum of H is pure dis
rete, it does not 
ontain 0, the spe
trumof D is pure 
ontinuous so (ii) of Theorem 5 does not hold. Consequentlyi� 62 �a(iH � D) \ iR and, for example, Theorem 11 implies the strongstability of the semigroup Vt = expfiHt � Dtg. On the other hand, ifwe 
onsider a slightly shifted Hamiltonian part H 0 = H � 121 then �(H 0) ispure dis
rete, it 
ontains 0, �(D) is pure 
ontinuous, it 
an 
ontain 0 (with asuitable 
hoi
e of the fun
tion V2) and therefore the pair (iH 0;�D) providesa ni
e example where the spe
tral 
ondition is useful.To 
on
lude this brief dis
ussion one may say that the presented simplemodels 
learly indi
ate that the spe
tral 
ondition presenting some 
ompat-ibility requirement between �xed points of dissipation and invariant statesof Hamiltonian part of dynami
s 
an be also useful in 
on
rete models ofQuantum Me
hani
s.This paper was begun during a visit at King's College (London). I amvery grateful to Ray Streater for numerous illuminating dis
ussions and im-portant 
omments. This work was partially supported by BW 5400-5-0033-0grant.
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