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Stochastic resonance is investigated in a chain of unidirectionally cou-
pled threshold elements driven by independent noises and a plane travel-
ling wave. Both stochastic resonance in an individual element embedded
in the chain, characterized by a maximum of the signal-to-noise ratio for
nonzero noise intensity, and stochastic resonance with spatiotemporal sig-
nal, characterized by a maximum of a spatiotemporal input—output corre-
lation function, are observed. Both kinds of stochastic resonance can be
enhanced due to proper coupling, although this effect is weaker than for
bidirectional coupling and occurs for a smaller range of wavelengths of the
plane wave. The enhancement is related to a maximum spatiotemporal
synchronization among elements with the same phase of the periodic signal
at input.

PACS numbers: 05.40.—a, 05.45.Ra

1. Introduction

Stochastic Resonance (SR) [1] is a phenomenon in which noise plays a
constructive role by increasing the degree of periodicity of a properly de-
fined output signal in a system driven by a combination of a periodic in-
put signal and noise (for review see [2,3]). A commonly used measure of
SR is the output Signal-to-Noise Ratio (SNR) which shows a maximum as
a function of the input noise intensity. Most models of SR are based on
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bistable dynamical systems [4-6] and both dynamical [7] and non-dynamical
[8-11] threshold-crossing systems. SR has been also investigated in spa-
tially extended systems [12-26] (for review see [12]), usually in systems of
coupled elements with noise uncorrelated in space and time and the input
signal uniform in space and periodic in time, e.g. chains of diffusively cou-
pled stochastic bistable oscillators [13,14], coupled map lattices [15] and the
Ising model [19-22]. In such systems it was found that an optimum value of
coupling and optimum noise strength exist such that the maximum of the
SNR in every element is significantly enhanced over that in an uncoupled
element. This phenomenon is called array enhanced SR [13] and it is related
to maximum spatiotemporal synchronization of the elements with the input
periodic signal and among themselves.

Recently, SR in spatially extended systems has been also studied with the
input signal periodic in space [22, 23] and both in space and time
[23-26]. In particular, we investigated a chain of coupled threshold ele-
ments with bidirectional symmetric coupling, driven by a plane travelling
wave and spatiotemporal noise [26]. Such elements are known to exhibit
SR [8-11] and can be used for qualitative simulations of SR in biological
neuron models [11]. Apart from the enhancement of SR in an individual
element embedded in the chain we demonstrated SR with spatiotemporal
signal, characterized by a maximum of a spatiotemporal input—output cor-
relation function, and its enhancement due to proper coupling for a wide
range of the spatial wavelengths of the input signal. We also showed that
for large wavelengths the enhancement of both kinds of SR coincides with
the maximum of spatiotemporal synchronization among elements with the
same phase of the periodic signal at input. In this paper we report on similar
phenomena in a chain of threshold elements with unidirectional coupling.

2. The system and methods of analysis

We investigate a chain of N coupled threshold elements denoted as i,
1=20,1,2... N — 1 with two-state output 0 or 1. The coupling is typical of
artificial neural networks, unidirectional and constrained to nearest neigh-
bours. The time steps n = 0,1,2... are discrete. The chain is driven by a
plane travelling wave with amplitude A, frequency ws, period Ts = 27 /ws,
wave vector k and wavelength A = 27/k. Besides, the elements are driven
by independent white Gaussian noises 7]7(5) with variance D. The system
dynamics is given by

mfﬁrl = P [A sin (wsn — ki + ¢) + 777(11') + wxfj’l) —|
Q’I}%O) = m(Nfl) (1)
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where ng) is the output of the element 4 at time n, @ (-) is the Heaviside
step function, ¢ is the initial phase, w is the coupling strength and b is
the threshold. The periodic signal is assumed as subthreshold with A < b,
and the length of the chain N is an integer multiple of the wavelength,
i.e. N = N'\.

In this paper SR in an individual element embedded in the chain, SR
with spatiotemporal signal and the spatiotemporal synchronization between
equivalent elements are investigated. As a measure of SR in an individ-
ual element we take the SNR in the middle element of the chain, obtained
from the power spectral density S (w) of its output signal and defined as
SNR = 10log [Sp (ws) /SN (ws)]. Here Sp (ws) = S (ws) — Sn (ws) is the
height of the peak at w = ws and Sy (w;) is the noise background in the
vicinity of ws. In our numerical simulations the SNR is normalized to the
frequency bandwidth Af = 27 12Hz.

As a measure of SR with spatiotemporal signal we take the correlation
function between the spatiotemporal periodic input signal and the output
signal

Nl () 4 g iy
1 i i <acn sin (wsn — ki + ¢)>
CZWZC(), cW = )

) [(G)) )]

where the angular brackets denote the time average. The functions C®) are
obtained under the assumption that the mean value of the periodic signal
at the input of every element is zero and the mean value of the square of
this signal is A?/2.

As a measure of spatiotemporal synchronization in the chain we take
the mutual correlation function between elements, averaged over all pairs of
elements with the same phase of the periodic signal at inputs

Crut = NN, Z Cm;ft )
{i.i}

g o)) ()

Ty - e [y - Y]

where in the case k # 0 the sum extends over all pairs of elements such that
li—j| = mA, m = 0,1,2... N', and in the case kK = 0 — over all pairs.
Cmut 18 at a maximum when the character of the plane travelling wave is
best reflected in the activity of the elements of the chain [26].
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3. Simplified adiabatic theory

In this section, in a manner analogous to our previous studies [24-26],
an extension of the theory of SR in threshold elements with discrete time [10]
to the case of a chain of unidirectionally coupled elements is presented.
From this theory, the quantities SNR and C can be evaluated semi-
analytically provided the time-dependent probability that ng ) = 1, denoted
as Pr (:m(f ) = 1), is known. This probability is obtained here under certain
simplifying assumptions.

The starting point is the equation for the complete probability that
x%z )— 1. Then:

xﬁf‘l) = 1) Pr (iﬁgli_l) = 1)

2D = 0) Pr (x,(j*U - 0) . @)

Pr (ng_)i_l = 1) = Pr (xgil =1

+ Pr (mfﬁl =1

The conditional probabilities can be evaluated analytically as

x(ifl):ﬁ>:0.5 | erf b—wdg1 —Asin (wsn—ki+¢) ’
" 2D?

(5)
where 3 € {0,1} and d3; is the Kronecker delta. In order to solve Eq. (4)

for Pr (:E?(f ) = 1) the following assumptions are made. First, only the adia-

Pr (x(i) =1

batic limit ws — 0 is considered. Then it is possible to assume on the
lhs of Eq. (4) Pr (ng_)i_l = 1) = Pr (am(f) = 1). Second, since the input
signal is periodic both in space and time it is also possible to assume

that Pr (x%i_l) = 1) = Pr (xfflk/ws = 1). Taking also into account that

Pr (ng) = 0) =1—-Pr (x%z) = 1) Eq. (4) can be then rewritten as:

Pr (m,(f) = 1) = ZPr (mfﬁrl =1
B

x 050 = (-1 Pr (2, =1)] - (6)

2D = g)

The above difference equation can be efficiently solved numerically using the
iterative method of Ref. [26]. At a first step the solution is assumed as for
an uncoupled element,

Pr (:E%Z) = 1) :0.5{1 —erf <b—Asm(w;l’r)L?— kz—i—qﬁ))} )
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then it is inserted on the rhs of Eq. (6) which yields a new approximate
solution and a whole procedure is repeated up to a moment when the con-
secutive iterated solutions do not change significantly. The solution, and
what follows the SNR and €@, do not depend on i.

According to Ref. [10] the SNR can be evaluated from Pr (ng) = 1) as

P 2
SNR = 101log _ 1] _ , (7)
<Pr (m,(f) = 1) — Pr? (m,(f) = 1)) Af
where P, is the first Fourier coefficient of Pr (:E?(f ) = 1) with respect to time
Ts—1 _
P =1;'Y Pr <x§;) - 1) exp (—iwsn) | 8)
n=0

and the bar denotes the time average over Ts. However, it should be pointed
out that Eq. (7) is exact only in the case of an uncoupled threshold element
driven by a sum of a periodic signal and white noise [10]. Thus in our case
Eq. (7) is only approximate since the total random input to element i in

(4) (i=1).

Eq. (1) consists of a sum of white noise 7’ and non-white noise wzy,

(1)

The correlation function C'=C® can be also evaluated using Pr (xn = )

since

(@) = ((+0) ) =pr (o) = 1),

(2 Asin (wgn — ki + ¢)) = Asin (wsn — ki + ¢) Pr (x%z) = 1) . (9)

4. Results and discussion

The numerical (obtained for the n = 63 element) and theoretical results
for the SNR in an individual element embedded in the chain are shown in
Fig. 1. The numerical results show that for 0 < k£ < w/4 an optimum value
of coupling wep; > 0 exists for which the maximum of the SNR reaches its
highest possible value, i.e. SR in an individual element is enhanced due to
proper coupling (Fig. 1(a),(b)). For k = /2 the SNR decreases for any cou-
pling (Fig. 1(c)). For k = = the SNR increases for w — —o0 and D — oo,
however, without the increase of the maximum of the SNR (Fig. 1(d)). These
results qualitatively resemble the ones obtained for bidirectionally coupled
elements and can be understood using similar arguments concerning the in-
crease of probability of the two coupled elements being in the same state for
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w > 0 and in the opposite states for w < 0 [24-26]. In particular, the effect
of array enhanced SR is present in the model (1), although a significant in-
crease of the SNR due to proper coupling is obtained only for K = 0 and in
other cases this effect is weak. Taking into account the approximate charac-
ter of Eq. (7) the quantitative agreement between theoretical and numerical
results in Fig. 1 is good, and for all k the theory qualitatively predicts the
dependence of the SNR on w. The agreement is better than in the case
of bidirectional coupling [25,26]. E.g., for D — 0, contrary to the latter
case, the theoretical curves never diverge so that the presence of maxima of
the curves SNR wvs D is correctly predicted for any k and w. Hence if for
some k the effect of array enhanced SR occurs it is also correctly predicted.
This is because for unidirectional coupling Eq. (6) is strict, apart from the
adiabatic approximation, while the corresponding equation for a chain with
bidirectional coupling is only approximate [26]. Also the deterministic dy-
namics of Eq. (1), which becomes important for small noise, is simpler than
for a chain with bidirectional coupling and does not cause a disagreement
with the theory of Sec. 3 based only on the stochastic approach.

30+

404

SNR(dB)

Fig.1. The SNR wvs D for various wave vectors k and coupling constants w, and
for the length of the chain N = 128 and period Ts = 128: (a) k=0, (b) k = /4,
(c) k=m/2, (d) k =n. Numerical results are shown with symbols: (O0) w = —1.5,
(A) w = -0.1, (+) w = 1.0, (x) w = 1.5. Theoretical results are shown with
numbered solid lines: (1) w = —1.5, (2) w = —0.1, (3) w = 1.0, (4) w = 1.5.
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The numerical and theoretical results for C' are shown in Fig. 2. The
numerical results show that for any £ and w SR with spatiotemporal signal
occurs, characterized by the presence of the maximum of the curve C vs D.
For k = 0 this kind of SR can be significantly enhanced due to proper
coupling wepy > 0 (Fig. 1(a)), while for £ = /4 and k = 7/2 the quality of
SR is deteriorated by any coupling (Fig. 1(b),(c)) and for £ = 7 SR is most
enhanced for w — —oo. These results are similar to the ones obtained
in a chain with bidirectional coupling apart from the fact that SR with
spatiotemporal signal is not enhanced due to proper positive coupling for
0 < k < m/2[26]. Comparison of Fig. 1(b) and Fig. 2(b) shows that in the
system (1) the enhancement of C' due to coupling need not occur although
the SNR is improved. The agreement between theoretical and numerical
results is very good and again better than in Ref. [25,26]. In particular, the
theoretical curves C vs D for any k and w do not diverge for D — 0 but
show maxima, hence if the enhancement of SR with spatiotemporal signal
for w = wqpt occurs it is correctly predicted (Fig. 2(a)).

19 0.4

Fig.2. C' wvs D for various wave vectors k and coupling constants w, and for the
length of the chain N = 128 and period Ts = 128: (a) £k = 0, (b) k = 7/4,
(c) k=m/2, (d) k =n. Numerical results are shown with symbols: (O0) w = —1.5,
(A) w = -0.1, (+) w = 1.0, (x) w = 1.5. Theoretical results are shown with
numbered solid lines: (1) w = —1.5, (2) w = —0.1, (3) w = 1.0, (4) w = 1.5.
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The numerical curves Cpyt vs D are shown in Fig. 3. It can be seen that
these curves for all k exhibit maxima for nonzero noise intensity. The pres-
ence of these maxima provides evidence for the noise-induced order which
emerges in the system due to the cooperative influence of the spatiotemporal
subthreshold periodic signal and noise. This order results in the maximum
spatiotemporal synchronization among elements with the same phase of the
periodic signal at inputs. In the most ordered state the character of the
plane travelling wave is best reflected in the activity of the elements of the
chain [26]. For 0 < k < 7/4 an optimum value of coupling exists for which
the maximum of Cp,s reaches the highest possible value (Fig. 3(a),(b)), while
for k = m/2 the maximum of Cp,,; decreases with any coupling (Fig. 3(c))
and for £ = m the values of Ci,,t increase for w — 0, but with no visi-
ble increase of the maximum (Fig. 3(d)). For longwave input signals with
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Fig.3. Numerical curves Cpy¢ vs D for various wave vectors k and coupling con-
stants w, and for the length of the chain N = 128 and period T = 128: (a) k = 0,
b)k=n/4,(c) k=7/2, (d) k==; (O) w=-1.5, (A) w=-0.1, (+) w = 1.0,
(x) w=1.5.

0 < k < m/4 the values of the optimum coupling coincide with the ones for
which SR in an individual element is most pronounced, but the locations
of the maxima of the curves Cpy; vs D and SNR wvs D for w = wepy do
not coincide (¢f. Fig. 3(a),(b) and Fig. 1(a),(b)).This situation is slightly
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different from what is observed in the case of array enhanced SR with the
input signal uniform in space [13-15] or longwave signal periodic in space and
time in a chain of coupled threshold elements with bidirectional coupling [26].
In these cases the enhancement of SR in an individual element is always
connected with the maximum spatiotemporal synchronization in the system
and thus also the locations of the maxima of the two above-mentioned curves
coincide. Also for shortwave input signals with & = 7/2 the locations of the
maxima of the curves C' vs D and Cpy vs D do not perfectly coincide
(cf. Fig. 3(c) and Fig. 2(c)), while for a chain with bidirectional coupling the
maximum spatiotemporal synchronization in such a case is connected with
the enhancement of SR with spatiotemporal signal [26].

5. Summary and conclusions

In this paper we investigated SR in a chain of unidirectionally coupled
threshold elements driven by a plane travelling wave and independent noises.
Two kinds of SR were studied: SR in an individual element embedded in
the chain and SR with spatiotemporal signal, characterized by a local and
global measure of periodicity of the output signal, respectively. It was shown
that both kinds of SR can be enhanced due to proper coupling, i.e. a coun-
terpart of the array enhanced SR effect for spatiotemporal periodic signals
was observed. However, this enhancement is in general weaker and occurs
for a smaller range of wavelengths of the input signal than in a chain with
bidirectional coupling. It was also shown that the enhancement of SR in an
individual element is related to maximum synchronization among elements
with the same phase of the periodic signal at inputs. Although the differ-
ences between the results of this paper and the ones of Refs [13-15,26] seem to
be of minor importance they suggest that in the systems with asymmetric
coupling the relationship between the concept of spatiotemporal synchro-
nization and the two kinds of SR can be more complex than in the systems
with symmetric coupling.

The results of this paper and our recent works [23-26] prove that chains
of coupled threshold elements can be used efficiently for investigation of var-
ious aspects of SR in spatially extended systems. The present results show
that the possibility of the ocurrence of SR with spatiotemporal signal or ar-
ray enhanced SR is independent of the symmetry of connections between the
neighbouring elements in the chain, though quantitative differences in these
phenomena can appear depending on this symmetry. This independence
opens a way to investigate these phenomena in systems with the structure
of connections closer to that in typical artificial neural networks. Besides,
chains of unidirectionally coupled elements are more often employed for the
signal transmission along the chain than for the signal detection. In a chain



1484 A. KRAWIECKI, A. SUKIENNICKI, R.A. KOSINSKI

of coupled bistable stochastic oscillators it was shown that the signal trans-
mission can also benefit from external noise; this phenomenon is called array
enhanced signal transmission [27]. The results of this paper show that a
chain of threshold elements with unidirectional coupling can be also used
for the signal detection, as a typical spatially extended stochastic resonator.
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