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FLUCTUATIONS OF WIG �THE INDEX OF WARSAW STOCK EXCHANGEPRELIMINARY STUDIES�Danuta Makowie
 and Piotr Gna
i«skiInstitute of Theoreti
al Physi
s and Astrophysi
s, Gda«sk UniversityWita Stwosza 57, 80-952 Gda«sk, Polande-mail: fizdm�univ.gda.pl(Re
eived O
tober 13, 2000)A time series that represents daily values of the WIG index (the mainindex of Warsaw Sto
k Ex
hange) over last 5 years is examined. Non-Gaussian features of distributions of �u
tuations, namely returns, over atime s
ale are 
onsidered. Some general properties like exponents of thelong range 
orrelation estimated by averaged volatility and detrended �u
-tuations analysis (DFA) as well as exponents des
ribing a de
ay of tails ofthe 
umulative distributions are found. Closing, the Zipf analysis for theWIG index time series translated into three letter text is presented.PACS numbers: 05.40.Fb, 05.45.Tp, 89.90.+n1. Introdu
tionFinan
ial markets are 
omplex dynami
al systems with many intera
tingelements: individual investors, mutual funds, brokerage �rms, banks fromone side and bonds, sto
ks, futures, options from the other side. Intera
tionsbetween elements lead to transa
tions mediated by the sto
k ex
hange. Thedetails of ea
h transa
tion are re
orded for analysis. The nature of intera
-tions between di�erent elements 
omprising a �nan
ial market is unknownas well as the way in whi
h external fa
tors a�e
t the market. Therefore, asa starting point one may turn to empiri
al studies to inquire into regularities
alled �empiri
al laws� that may drive �nan
ial markets.In the following we present results of investigations of the WIG index� the index of Warsaw Sto
k Ex
hange. (WIG is an abbreviation of thePolish name.) The WIG index is 
al
ulated as a total return of the weighted� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland September 10�17, 2000.(1487)
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i«skisum of market 
apitalization (a portfolio of the index) of all sto
ks from themain market on
e per trading day after ea
h session. Every three monthsthe portfolio is revised. New sto
ks that entered the market in previousthree months are added and the portfolio weights are 
orre
ted to preservetwo rules: any market 
apitalization of a sto
k takes more than 10% andparti
ipation of one industry sto
ks do not ex
eed 30% of the whole market
apitalization. The Warsaw Sto
k Ex
hange is a young market � the �rstsession took pla
e on the 16th April of 1991 and �ve sto
ks were traded.Now, i.e. on 1 August 2000 the portfolio of the WIG index enumerates 120sto
ks of the main market and 61 sto
ks are traded on the parallel market.In this presentation we study a time series of returns of the WIG indexfor the period of 5 last years: from September 1995 to August 2000. Thus weobserve the emerging market in its se
ond phase of development. Thereforewe 
an assume that the market is stationary (see [1℄ for emerging marketstudies).The presentation is organized as follows:In Se
tion 2, we introdu
e a time series 
onsidered and give a de�nitionfor returns � one of the basi
 notions in a study of �nan
ial markets.In Se
tion 3, we perform tests to estimate strength and 
hara
ter of long-range 
orrelation of Warsaw market. We �nd an instan
e of the stronglyantypersistant random walk o

urring in the time horizon longer than threemonths.In Se
tion 4, we dis
uss properties of probability density fun
tions ofreturns. We show that the 
entral part of distribution of WIG index returnsis well �tted by a Lévy distribution. Some time s
aling is therefore provided.The asymptoti
 behavior of the distribution of returns shows faster de
aythan predi
ted by a Lévy distribution. Hen
e, our result 
on�rms Mantegnaand Stanley proposition [2, 3℄ of a trun
ated Lévy distribution as a modelfor the distribution of returns. The exponential trun
ation ensures the ex-isten
e of a �nite se
ond moment what 
on
ludes, by limit theorems, thatthe asymptoti
 distribution of returns is a Gaussian distribution.The next se
tion, Se
tion 5, we translate the time series of WIG indexvalues into a text [4, 5℄. The Zipf [5, 6℄ analysis drives to the observationthat non trivial 
orrelation exist between su

essive daily �u
tuations, sothat some predi
tions are possible.2. Data in studyWe analyze the values of the WIG index for the period of almost 5 years:from 1st September 1995 to 31st July 2000. The data have been re
orded atea
h trading day. So that our basi
 data set 
onsists of 1224 values. In Fig. 1we present a time series 
orresponding to daily values of the WIG index.



Flu
tuations of WIG : : : 1489Together, we plot the WIG index detrended by the in�ation rate. Be
ause ofhigh variety in time it is di�
ult to give an estimation of satisfa
tory qualityfor the total trend. Rough 
al
ulations for the series of the detrended WIGindex suggest the trend is neither upwards nor downwards. The total trendover the last �ve years is horizontal.
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LQIODWLRQB�UDWHFig. 1. Daily values of the WIG index in time. We display both the value of theWIG index (bla
k dots) and the index detrended by in�ation to the August 2000of Polish zloty (empty dots).To test the nature of the sto
hasti
 pro
ess underlying the 
hanges inthe WIG index value we investigate the time series of returns on varyingtime s
ales �t. Returns are the basi
 quantities that are widely studied ine
onomi
 analysis, see [3,7,8℄ for a literature 
olle
tion. For a time series S(t)of pri
es or market index values, a time series of returns G(�t; t) over a times
ale �t is obtained as the su

essive di�eren
es of the natural logarithm ofpri
e, [8℄ G(�t; t) = lnS(t+�t)� lnS(t) : (1)A normalized to the varian
e 1 series of returns g(�t; t) isg(�t; t) = G(�t; t)� hG(�t; t)iTv(�t) ; (2)where v2(�t) is the time averaged varian
e,v2(�t) = hG2(�t; t)iT � hG(�t; t)i2Tand h: : :iT denotes an average over the entire length of a time series. A dailyseries of g(1; t) together with examples of time series when the data set issampled at 5; 10 and 20 trading days are shown in Fig. 2.
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Fig. 2. Sequen
es of (a) one-day, (b) 5-day (a week), (
) 10-day, (d) 20-day(a month) returns extra
ted from the WIG index data.3. Long-time 
orrelationA 
ommonly used and e�
ient test in dete
ting the presen
e of long-range 
orrelation is based on investigation the standard deviation of returnsas a fun
tion of di�erent time horizon �t. This fun
tion is 
alled the timeaveraged volatility and is denoted v(�t), [8℄. (In e
onomi
s, the volatility



Flu
tuations of WIG : : : 1491of a 
ertain sto
k is a measure how mu
h a pri
e is likely to �u
tuate at agiven time. It 
an also be related to the amount of information arriving atany time. Su
h an instantaneous volatility 
an be 
al
ulated as the lo
alaverage of the amplitude of the returns, [3℄.)The volatility dependen
e on the time s
ale �t allows to determine anexponent Æ of a power-law behaviorv(�t) � �tÆ : (3)For a random walk Æ = 0:5. In mature markets the exponent Æ takes valuelarger than but 
lose to 0:5 what indi
ates absen
e of 
orrelation for the dailyand monthly returns [8℄ or a walk with a weak persistent 
hara
ter [3, 7℄.Fig. 3(a) is the log�log plot of the volatility of the WIG index returnsagainst time to extra
t the exponent Æ. It shows that initially for two to �vedays, the exponent takes the value Æ = 0:553 what implies a slightly persis-tent walk. Then, for a time period of few further days, the exponent swit
hesto Æ = 0:464 what 
an be re
ognized as slightly antypersistent (zigzag) walk.If longer intervals are 
onsidered su
h as one or two month time, the volatil-ity grows with Æ = 0:557. (In bra
kets the Pearson r2 
orrelation 
oe�
ientis shown to give the pre
ision of the linear dependen
e.) Finally, on the times
ale of three or more months, one observes Æ = 0:269(!).For veri�
ation the last value we have performed a similar analysis for aseries of returns obtained from the data of other indi
es of the Warsaw Sto
kEx
hange and some parti
ular sto
ks. These results are shown in Figs 3(b),(
), (d). The WIG20 (twenty largest �rms a

ording to market 
apitaliza-tion) index exhibits the same features as the WIG index. The WIRR index(the index of the parallel market) and the pri
es of some parti
ular sto
ks donot 
hange the 
hara
ter of 
orrelation on the three-month s
ale. Instead, weobserve the ampli�
ation of the non-random walk features. One 
an noti
ethe presen
e of strong long-range 
orrelation in the most of the time series.We think that the rapid 
hange in the trend of �u
tuations of the WIG andWIG20 indi
es is e�e
ted by 
orre
tions made in 
al
ulating pro
edure forthese indi
es. Every three months the WIG and WIG20 indi
es formulasare 
hanged.In Fig. 4 one 
an �nd a plot of the exponent � arising from the De-trended Flu
tuation Analysis (DFA) method [9℄. Again, one 
an noti
eswit
hing from the persistent random walk taking pla
e in the �rst weektime to antypersistant walk emerging in the se
ond week. The growing er-rors of regression �ts, measured by the Pearson r2 
orrelation 
oe�
ient, donot allow us to present �s for returns over the longer time horizon.
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Fig. 3. Log�log plot of the time averaged volatility as a fun
tion of the time s
ale�t of returns of (a) WIG index, (b) WIG20 index, (
) WIRR index, (d) sele
tedsto
ks. Noti
e, the rapid 
hange of the 
orrelation trend after three months in
ase the WIG and WIG20 indi
es whi
h is not observed when the WIRR index orparti
ular sto
k pri
es are 
onsidered.
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Fig. 4. Multifra
tality analysis by DFA method. The value of the index � is
al
ulated for a time series that was 
reated by merging one after one, all pi
kedup series generated from our data set. So that, we merge two time sequen
esof G(2; t), three time sequen
es of G(3; t), et
., to deal with a time series of thereasonable length for DFA studies.
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tuations of WIG : : : 14934. Probability density fun
tionOne of the key aspe
t in determining sto
hasti
 evolution of the valueof a given �nan
ial asset is the shape of the probability density fun
tion(pdf) of its returns. Fig. 5(a) shows on the semi-log plot the pdf of one-dayreturns G(�t = 1). Sear
hing for properties of experimental pdf of returnswe �t the data to the Gaussian and Lorentzian distributions.
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Fig. 5. (a) Linear-log plot of the empiri
al probability density fun
tion for �t = 1returns G(1) of the WIG index. The best �t 
urve to a Gaussian distributionis 26:7 expf�0:5(x�0:00110:014 )2g: The best �t 
urve to a Lorenztian distribution is30:11+( x�0:0012)0:012 )2 . (b) Kurtosis and skewness of the returns of WIG index. A positivevalue of kurtosis indi
ates a slow asymptoti
 de
ay. The `leptokurti
' 
hara
ter ofthe distribution of the data implies that using a Gaussian one systemati
ally un-derestimates the probability of large �u
tuations. The negative skewness says thata distribution is asymmetri
 around its mean and the negative tail of a distributionis larger than the positive one.The rough analysis of Gaussianness of an empiri
al pdf 
an be done by
onsidering the kurtosis � the fourth normalized 
umulant. The kurtosisequals to 0 for a Gaussian distribution. When the kurtosis is positive � aleptokurti
 distribution, the 
orresponding distribution density has a marketpeak around the mean and rather `thi
k' tails. Conversely, when the kur-tosis is negative, the distribution density has a �at top and very thin tails.Therefore, the kurtosis is 
onsidered as a measure of a distan
e between anempiri
al data distribution and a Gaussian 
urve. The leptokurti
 
hara
terof a sto
k pri
e returns as well as sto
k index returns has been reported byseveral authors sin
e Mandelbrot observation in 60-ties, [10℄.Fig. 5(b) shows values of the kurtosis for returns over the time s
ale. Theleptokurti
 
hara
ter of distributions of the WIG index returns is evidentwhen the distribution of returns over a time s
ale shorter than two weeks(10 trading days) is 
onsidered. Over a time s
ale of two, three months oneshould observe the 
hange of the pdf shape to the opposite �at 
hara
ter.
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, P. Gna
i«skiIn Fig. 6(a) the probability density fun
tions for returns, namely G(�t),over di�erent time s
ales�t are shown. The typi
al spreading is observed, asif a random walk is examined. Having disagreement between the empiri
alpdf and a Gaussian distribution though supposing stability of distributions,we sear
h for a symmetri
al Lévy distribution,P�(x) = 1� 1Z0 e�
jqj� 
os(qx)dx : (4)To �nd the most appropriate stable Lévy pdf we 
al
ulate the probabilityof return to the origin, i.e. ProbfG(�t) = 0g, as it is usually proposed[3, 8℄. Plotting ProbfG(�t) = 0g against di�erent time s
ales �t on thelog�log plot, we 
an observe two time regimes with slightly di�erent power-law behavior, see Fig. 6(b). The returns of few days time s
ale lead to theexponent value 0:676 while the returns of few weeks time s
ale provide 0:578for the exponent. The index � of a Lévy distribution is the inverse of theexponent and thereby we get �days = 1:470 and �weeks = 1:730. Both valuesare well inside the Lévy stable range 0 � � < 2. It is known that the valueof � for sto
k markets falls between 1.5 and 1.7 and is lower for more volatilemarkets [3,11℄ and on the time s
ales longer than few days one should expe
ta 
onvergen
e to Gaussian behavior [8℄. Hen
e, a

ording to our results theWarsaw sto
k market is highly volatile and this volatility slows down the
onvergen
e to Gaussian behavior.The stable distributions are self-similar � the distributions of returnsfor various 
hoi
es of �t have the similar fun
tional form. Having valueof �, we res
ale our empiri
al pdfs to observe data 
ollapse, see Fig. 6(
).Applying suitable s
aling to di�erent pdfs we �nd two separated areas with
ollapsing data. One area 
orresponds to returns with few days time s
aleand the other to returns of few weeks time horizon.Sear
hing for the breakdown of a Lévy des
ription in empiri
al pdfs, rareevents are usually 
onsidered. The probability of rare events are estimatedby studying properties of the 
umulative distribution of the normalized re-turns g(t) [3,8℄. The 
umulative probability distribution F (g) of observing a
hange g or larger in a series of returns was found to be power-law for largevalues of g, both for positive and negative values of g with exponent �,F (g) = Prob fg > xg � g�� (5)what implies the following asymptoti
 behavior of pdfs,P (x) � 1x1+� ; jxj large enough :
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Fig. 6. (a) Probability density fun
tion of returns G(�t) measured at di�erent timehorizons: �t = 1; 2; 3 and 10; 15; 21 days. (b) Probability of return to the origin measuredas a fun
tion of the time interval �t. A Lévy distribution has a slope � 0:5, a Gaussiandistribution has a slope = 0.5. (
) Probability density fun
tions of the returns plotted inres
aled units. Pdfs of short time s
ale returns are res
aled with �days and pdfs of returnsof weeks time s
ale with �weeks.
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i«skiThe value of � 
hanges when one moves the interval of g. Our estimatesare, Figs 7(a) and (b):for g 2 (0:3; 0:9) : � = � 0:76 positive tail ,0:69 negative tail ,for g 2 (0:9; 1:6) : � = � 2:03 positive tail ,1:83 negative tail ,for g > 1:6 : � = � 3:88 positive tail ,3:06 negative tail .
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Fig. 7. (a) Log�log plot of the 
umulative distribution of normalized WIG returnsfor �t = 1 day (negative tails). (b) Log�log plot of the 
umulative distribution ofnormalized WIG returns for �t = 1 day (positive tails).The presented results are 
onsistent with the apparent power-law behav-ior in tails found for daily returns for sto
k market indi
es su
h as NIKKEI:� � 3:05, Hang-Seng: � � 3:03 or S&P500: � � 3:34, [8, 12℄. Moreover,sin
e � > 2 when g > 1:6, hen
e it is outside the Lévy stable regime, our in-vestigations lead to the 
on
lusion that the se
ond moment of �u
tuations ofthe WIG index is �nite and one should expe
t the 
onvergen
e to a Gaussiandistribution be
ause of the 
entral limit theorem. One should noti
e thatthe value for � found by study the asymptoti
 nature of the distribution isdi�erent from the value obtained when the 
enter part of the distribution is
onsidered. This e�e
t is usually related to the slow de
ay of the volatility
orrelation [8, 13℄.



Flu
tuations of WIG : : : 14975. Zipf plot of WIG indexThe original Zipf analysis [6℄ 
onsists in 
ounting the number of words ofa 
ertain type appearing in a text, 
al
ulating the frequen
y of o

urren
ef of ea
h word in a given text, and sorting out the words a

ording to theirfrequen
y, i.e. a rank R is assigned to ea
h word, namely, R = 1 for themost frequent one. A power lawf � R�� (6)with an exponent � is sear
hed for on a log�log plot.The similar analysis 
an be done to any series of data when one translatesthe data into a text [4℄. In the following we translated the WIG index timeseries into a text based on two alphabets. The �rst text is obtained bytransforming data into binary sequen
es by repla
ing up and down daily�u
tuations by a 
hara
ter u and d, respe
tively. Another transformation:u for large up d for large down �u
tuations and s for small �u
tuations ofboth kinds below a given threshold, leads to a three-letter text.In Fig. 8 we show the Zipf plot for words 
onsisting of n = 4; 5 let-ters of both texts obtained from the time series of WIG index values. Theprobability of a single letter to be found in the text examined is as follows:P (u) = 0:533 and P (d) = 0:467 when the two-letter alphabet is 
onsideredand if we deal with three letter alphabet then depending on the value of thethreshold s we obtain:s = 2% 1% 0:6% 0:2% 0:1%d 0:103 0:234 0:316 0:406 0:441s 0:774 0:510 0:318 0:119 0:059u 0:123 0:255 0:366 0:475 0:500The data plotted are the e�e
tive frequen
ies P=P 0, i.e. the apparentprobability P of a word divided by its expe
ted probability of o

urren
eP 0 if there is no 
orrelation [5℄. The Zipf plot using P=P 0 is expe
ted to behorizontal for random sequen
es.The value of � 
hanges depending on the way in whi
h a time series istransferred into a text:Two-letter alphabet:4-letter words 0:15 (r2 = 0:84)5-letter words 0:18 (r2 = 0:83)Three-letter alphabet:4-letter words:s 2% 1% 0:6% 0:2% 0:1%� 0:86 0:35 0:24 0:30 0:64(r2) (0:94) (0:98) (0:91) (0:98) (0:97)
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^G�X`�IRXU�OHWWHU�ZRUGV

^G�X`�ILYH�OHWWHU�ZRUGV

^G�V ���X`�IRXU�OHWWHU�ZRUGV

^G�V �����X`�IRXU�OHWWHU�ZRUGV

^G�V �����X`�IRXU�OHWWHU�ZRUGV

^G�V ���X`�ILYH�OHWWHU�ZRUGV

^G�V �����X`�ILYH�OHWWHU�ZRUGV

^G�V �����X`�ILYH�OHWWHU�ZRUGVFig. 8. Zipf plots for respe
tively the u; d and s; u; d sequen
es obtained from theseries of WIG returns of Fig. 1. The length of analyzed pattern is n = 4; 5.5-letter words:� 1:16 0:41 0:26 0:37 0:79(r2) (0:95) (0:95) (0:91) (0:90) (0:98)The lowest value is observed when probabilities of parti
ular letters areapproximately equal to ea
h other and this happen when the bias s = 0:6%.The value of � in this 
ase is distinguishable di�erent from zero, hen
e, nontrivial 
orrelation exist between su

essive daily �u
tuations of the WIGindex returns. Feeling tempted to make some predi
tions we sear
h for norisk sequen
es of events, i.e. for the 
onditional probability equal to almostone that after a sequen
e of four events the �fth even o

urs. We have foundone of su
h an event: Prob(djssud) � 1 if s = 0:6% is 
onsidered. The setof su
h events strongly depends on the threshold value. Therefore we thinkthat this analysis should be done for pri
e of a sto
k instead of market index.6. Con
lusionIt appears that some tools of statisti
al physi
s whi
h were developedto study 
riti
al phenomena in 
omplex systems 
an be su

esfully appliedin rather distant from physi
s dis
iplines like medi
ine, geneti
s, so
iology,politi
s or e
onomy. Many physi
ists have been attra
ted to interdis
iplinaryinvestigations 
olle
tively 
alled exoti
 statisti
al physi
s [14℄. Additional
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itement 
omes along when one turns its interest into e
onophysi
s sin
eone 
an learn not only how the e
onomi
 system works but also how to usethis knowledge to make money [15℄. The authors of this presentation seemto be typi
al vi
tims of su
h prospe
ts. The main purpose of the presentedpaper is to apply standard analysis of experimental e
onophysi
s to WarsawSto
k Ex
hange index to dis
over how to su

eed on the Polish sto
k market.Our 
on
lusion that Warsaw Sto
k Ex
hange is volatile is not surprising.The Polish sto
k market, as it happens in all 
ountries that 
hange theire
onomi
 systems, is small one, therefore, it is in an extremely fragile state.The absen
e of a general positive trend in time series of the WIG indexsuggests that spe
ulations are the only way to get an in
ome or growth.However, we have to emphasize that our 
on
lusion is only preliminary. Thedata set 
onsidered by us is rather limited; moreover, we do not exploreand 
arry out all possible tests. We do not perform Hurst analysis of thedata nor we study long-range dependen
es whi
h emerge when the timedependent volatility is being investigated. The 
ross 
orrelation betweendi�erent sto
ks also has not been 
onsidered here. Hen
e there is a need forfurther investigations to verify our initial �ndings.This work was partially supported by Gda«sk University grant BW 5400-5-0033-0. REFERENCES[1℄ Z. Palágyi, R. N. Mantegna, Physi
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