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FLUCTUATIONS OF WIG �THE INDEX OF WARSAW STOCK EXCHANGEPRELIMINARY STUDIES�Danuta Makowie and Piotr Gnai«skiInstitute of Theoretial Physis and Astrophysis, Gda«sk UniversityWita Stwosza 57, 80-952 Gda«sk, Polande-mail: fizdm�univ.gda.pl(Reeived Otober 13, 2000)A time series that represents daily values of the WIG index (the mainindex of Warsaw Stok Exhange) over last 5 years is examined. Non-Gaussian features of distributions of �utuations, namely returns, over atime sale are onsidered. Some general properties like exponents of thelong range orrelation estimated by averaged volatility and detrended �u-tuations analysis (DFA) as well as exponents desribing a deay of tails ofthe umulative distributions are found. Closing, the Zipf analysis for theWIG index time series translated into three letter text is presented.PACS numbers: 05.40.Fb, 05.45.Tp, 89.90.+n1. IntrodutionFinanial markets are omplex dynamial systems with many interatingelements: individual investors, mutual funds, brokerage �rms, banks fromone side and bonds, stoks, futures, options from the other side. Interationsbetween elements lead to transations mediated by the stok exhange. Thedetails of eah transation are reorded for analysis. The nature of intera-tions between di�erent elements omprising a �nanial market is unknownas well as the way in whih external fators a�et the market. Therefore, asa starting point one may turn to empirial studies to inquire into regularitiesalled �empirial laws� that may drive �nanial markets.In the following we present results of investigations of the WIG index� the index of Warsaw Stok Exhange. (WIG is an abbreviation of thePolish name.) The WIG index is alulated as a total return of the weighted� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland September 10�17, 2000.(1487)



1488 D. Makowie, P. Gnai«skisum of market apitalization (a portfolio of the index) of all stoks from themain market one per trading day after eah session. Every three monthsthe portfolio is revised. New stoks that entered the market in previousthree months are added and the portfolio weights are orreted to preservetwo rules: any market apitalization of a stok takes more than 10% andpartiipation of one industry stoks do not exeed 30% of the whole marketapitalization. The Warsaw Stok Exhange is a young market � the �rstsession took plae on the 16th April of 1991 and �ve stoks were traded.Now, i.e. on 1 August 2000 the portfolio of the WIG index enumerates 120stoks of the main market and 61 stoks are traded on the parallel market.In this presentation we study a time series of returns of the WIG indexfor the period of 5 last years: from September 1995 to August 2000. Thus weobserve the emerging market in its seond phase of development. Thereforewe an assume that the market is stationary (see [1℄ for emerging marketstudies).The presentation is organized as follows:In Setion 2, we introdue a time series onsidered and give a de�nitionfor returns � one of the basi notions in a study of �nanial markets.In Setion 3, we perform tests to estimate strength and harater of long-range orrelation of Warsaw market. We �nd an instane of the stronglyantypersistant random walk ourring in the time horizon longer than threemonths.In Setion 4, we disuss properties of probability density funtions ofreturns. We show that the entral part of distribution of WIG index returnsis well �tted by a Lévy distribution. Some time saling is therefore provided.The asymptoti behavior of the distribution of returns shows faster deaythan predited by a Lévy distribution. Hene, our result on�rms Mantegnaand Stanley proposition [2, 3℄ of a trunated Lévy distribution as a modelfor the distribution of returns. The exponential trunation ensures the ex-istene of a �nite seond moment what onludes, by limit theorems, thatthe asymptoti distribution of returns is a Gaussian distribution.The next setion, Setion 5, we translate the time series of WIG indexvalues into a text [4, 5℄. The Zipf [5, 6℄ analysis drives to the observationthat non trivial orrelation exist between suessive daily �utuations, sothat some preditions are possible.2. Data in studyWe analyze the values of the WIG index for the period of almost 5 years:from 1st September 1995 to 31st July 2000. The data have been reorded ateah trading day. So that our basi data set onsists of 1224 values. In Fig. 1we present a time series orresponding to daily values of the WIG index.



Flutuations of WIG : : : 1489Together, we plot the WIG index detrended by the in�ation rate. Beause ofhigh variety in time it is di�ult to give an estimation of satisfatory qualityfor the total trend. Rough alulations for the series of the detrended WIGindex suggest the trend is neither upwards nor downwards. The total trendover the last �ve years is horizontal.
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GHWUHQGHG�YDOXH�RI��:,*��LQGH[����6�W��LQIODWLRQB�UDWHFig. 1. Daily values of the WIG index in time. We display both the value of theWIG index (blak dots) and the index detrended by in�ation to the August 2000of Polish zloty (empty dots).To test the nature of the stohasti proess underlying the hanges inthe WIG index value we investigate the time series of returns on varyingtime sales �t. Returns are the basi quantities that are widely studied ineonomi analysis, see [3,7,8℄ for a literature olletion. For a time series S(t)of pries or market index values, a time series of returns G(�t; t) over a timesale �t is obtained as the suessive di�erenes of the natural logarithm ofprie, [8℄ G(�t; t) = lnS(t+�t)� lnS(t) : (1)A normalized to the variane 1 series of returns g(�t; t) isg(�t; t) = G(�t; t)� hG(�t; t)iTv(�t) ; (2)where v2(�t) is the time averaged variane,v2(�t) = hG2(�t; t)iT � hG(�t; t)i2Tand h: : :iT denotes an average over the entire length of a time series. A dailyseries of g(1; t) together with examples of time series when the data set issampled at 5; 10 and 20 trading days are shown in Fig. 2.
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Fig. 2. Sequenes of (a) one-day, (b) 5-day (a week), () 10-day, (d) 20-day(a month) returns extrated from the WIG index data.3. Long-time orrelationA ommonly used and e�ient test in deteting the presene of long-range orrelation is based on investigation the standard deviation of returnsas a funtion of di�erent time horizon �t. This funtion is alled the timeaveraged volatility and is denoted v(�t), [8℄. (In eonomis, the volatility



Flutuations of WIG : : : 1491of a ertain stok is a measure how muh a prie is likely to �utuate at agiven time. It an also be related to the amount of information arriving atany time. Suh an instantaneous volatility an be alulated as the loalaverage of the amplitude of the returns, [3℄.)The volatility dependene on the time sale �t allows to determine anexponent Æ of a power-law behaviorv(�t) � �tÆ : (3)For a random walk Æ = 0:5. In mature markets the exponent Æ takes valuelarger than but lose to 0:5 what indiates absene of orrelation for the dailyand monthly returns [8℄ or a walk with a weak persistent harater [3, 7℄.Fig. 3(a) is the log�log plot of the volatility of the WIG index returnsagainst time to extrat the exponent Æ. It shows that initially for two to �vedays, the exponent takes the value Æ = 0:553 what implies a slightly persis-tent walk. Then, for a time period of few further days, the exponent swithesto Æ = 0:464 what an be reognized as slightly antypersistent (zigzag) walk.If longer intervals are onsidered suh as one or two month time, the volatil-ity grows with Æ = 0:557. (In brakets the Pearson r2 orrelation oe�ientis shown to give the preision of the linear dependene.) Finally, on the timesale of three or more months, one observes Æ = 0:269(!).For veri�ation the last value we have performed a similar analysis for aseries of returns obtained from the data of other indies of the Warsaw StokExhange and some partiular stoks. These results are shown in Figs 3(b),(), (d). The WIG20 (twenty largest �rms aording to market apitaliza-tion) index exhibits the same features as the WIG index. The WIRR index(the index of the parallel market) and the pries of some partiular stoks donot hange the harater of orrelation on the three-month sale. Instead, weobserve the ampli�ation of the non-random walk features. One an notiethe presene of strong long-range orrelation in the most of the time series.We think that the rapid hange in the trend of �utuations of the WIG andWIG20 indies is e�eted by orretions made in alulating proedure forthese indies. Every three months the WIG and WIG20 indies formulasare hanged.In Fig. 4 one an �nd a plot of the exponent � arising from the De-trended Flutuation Analysis (DFA) method [9℄. Again, one an notieswithing from the persistent random walk taking plae in the �rst weektime to antypersistant walk emerging in the seond week. The growing er-rors of regression �ts, measured by the Pearson r2 orrelation oe�ient, donot allow us to present �s for returns over the longer time horizon.
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Fig. 3. Log�log plot of the time averaged volatility as a funtion of the time sale�t of returns of (a) WIG index, (b) WIG20 index, () WIRR index, (d) seletedstoks. Notie, the rapid hange of the orrelation trend after three months inase the WIG and WIG20 indies whih is not observed when the WIRR index orpartiular stok pries are onsidered.
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Fig. 4. Multifratality analysis by DFA method. The value of the index � isalulated for a time series that was reated by merging one after one, all pikedup series generated from our data set. So that, we merge two time sequenesof G(2; t), three time sequenes of G(3; t), et., to deal with a time series of thereasonable length for DFA studies.



Flutuations of WIG : : : 14934. Probability density funtionOne of the key aspet in determining stohasti evolution of the valueof a given �nanial asset is the shape of the probability density funtion(pdf) of its returns. Fig. 5(a) shows on the semi-log plot the pdf of one-dayreturns G(�t = 1). Searhing for properties of experimental pdf of returnswe �t the data to the Gaussian and Lorentzian distributions.
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Fig. 5. (a) Linear-log plot of the empirial probability density funtion for �t = 1returns G(1) of the WIG index. The best �t urve to a Gaussian distributionis 26:7 expf�0:5(x�0:00110:014 )2g: The best �t urve to a Lorenztian distribution is30:11+( x�0:0012)0:012 )2 . (b) Kurtosis and skewness of the returns of WIG index. A positivevalue of kurtosis indiates a slow asymptoti deay. The `leptokurti' harater ofthe distribution of the data implies that using a Gaussian one systematially un-derestimates the probability of large �utuations. The negative skewness says thata distribution is asymmetri around its mean and the negative tail of a distributionis larger than the positive one.The rough analysis of Gaussianness of an empirial pdf an be done byonsidering the kurtosis � the fourth normalized umulant. The kurtosisequals to 0 for a Gaussian distribution. When the kurtosis is positive � aleptokurti distribution, the orresponding distribution density has a marketpeak around the mean and rather `thik' tails. Conversely, when the kur-tosis is negative, the distribution density has a �at top and very thin tails.Therefore, the kurtosis is onsidered as a measure of a distane between anempirial data distribution and a Gaussian urve. The leptokurti haraterof a stok prie returns as well as stok index returns has been reported byseveral authors sine Mandelbrot observation in 60-ties, [10℄.Fig. 5(b) shows values of the kurtosis for returns over the time sale. Theleptokurti harater of distributions of the WIG index returns is evidentwhen the distribution of returns over a time sale shorter than two weeks(10 trading days) is onsidered. Over a time sale of two, three months oneshould observe the hange of the pdf shape to the opposite �at harater.



1494 D. Makowie, P. Gnai«skiIn Fig. 6(a) the probability density funtions for returns, namely G(�t),over di�erent time sales�t are shown. The typial spreading is observed, asif a random walk is examined. Having disagreement between the empirialpdf and a Gaussian distribution though supposing stability of distributions,we searh for a symmetrial Lévy distribution,P�(x) = 1� 1Z0 e�jqj� os(qx)dx : (4)To �nd the most appropriate stable Lévy pdf we alulate the probabilityof return to the origin, i.e. ProbfG(�t) = 0g, as it is usually proposed[3, 8℄. Plotting ProbfG(�t) = 0g against di�erent time sales �t on thelog�log plot, we an observe two time regimes with slightly di�erent power-law behavior, see Fig. 6(b). The returns of few days time sale lead to theexponent value 0:676 while the returns of few weeks time sale provide 0:578for the exponent. The index � of a Lévy distribution is the inverse of theexponent and thereby we get �days = 1:470 and �weeks = 1:730. Both valuesare well inside the Lévy stable range 0 � � < 2. It is known that the valueof � for stok markets falls between 1.5 and 1.7 and is lower for more volatilemarkets [3,11℄ and on the time sales longer than few days one should expeta onvergene to Gaussian behavior [8℄. Hene, aording to our results theWarsaw stok market is highly volatile and this volatility slows down theonvergene to Gaussian behavior.The stable distributions are self-similar � the distributions of returnsfor various hoies of �t have the similar funtional form. Having valueof �, we resale our empirial pdfs to observe data ollapse, see Fig. 6().Applying suitable saling to di�erent pdfs we �nd two separated areas withollapsing data. One area orresponds to returns with few days time saleand the other to returns of few weeks time horizon.Searhing for the breakdown of a Lévy desription in empirial pdfs, rareevents are usually onsidered. The probability of rare events are estimatedby studying properties of the umulative distribution of the normalized re-turns g(t) [3,8℄. The umulative probability distribution F (g) of observing ahange g or larger in a series of returns was found to be power-law for largevalues of g, both for positive and negative values of g with exponent �,F (g) = Prob fg > xg � g�� (5)what implies the following asymptoti behavior of pdfs,P (x) � 1x1+� ; jxj large enough :
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Fig. 6. (a) Probability density funtion of returns G(�t) measured at di�erent timehorizons: �t = 1; 2; 3 and 10; 15; 21 days. (b) Probability of return to the origin measuredas a funtion of the time interval �t. A Lévy distribution has a slope � 0:5, a Gaussiandistribution has a slope = 0.5. () Probability density funtions of the returns plotted inresaled units. Pdfs of short time sale returns are resaled with �days and pdfs of returnsof weeks time sale with �weeks.



1496 D. Makowie, P. Gnai«skiThe value of � hanges when one moves the interval of g. Our estimatesare, Figs 7(a) and (b):for g 2 (0:3; 0:9) : � = � 0:76 positive tail ,0:69 negative tail ,for g 2 (0:9; 1:6) : � = � 2:03 positive tail ,1:83 negative tail ,for g > 1:6 : � = � 3:88 positive tail ,3:06 negative tail .
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Fig. 7. (a) Log�log plot of the umulative distribution of normalized WIG returnsfor �t = 1 day (negative tails). (b) Log�log plot of the umulative distribution ofnormalized WIG returns for �t = 1 day (positive tails).The presented results are onsistent with the apparent power-law behav-ior in tails found for daily returns for stok market indies suh as NIKKEI:� � 3:05, Hang-Seng: � � 3:03 or S&P500: � � 3:34, [8, 12℄. Moreover,sine � > 2 when g > 1:6, hene it is outside the Lévy stable regime, our in-vestigations lead to the onlusion that the seond moment of �utuations ofthe WIG index is �nite and one should expet the onvergene to a Gaussiandistribution beause of the entral limit theorem. One should notie thatthe value for � found by study the asymptoti nature of the distribution isdi�erent from the value obtained when the enter part of the distribution isonsidered. This e�et is usually related to the slow deay of the volatilityorrelation [8, 13℄.



Flutuations of WIG : : : 14975. Zipf plot of WIG indexThe original Zipf analysis [6℄ onsists in ounting the number of words ofa ertain type appearing in a text, alulating the frequeny of ourrenef of eah word in a given text, and sorting out the words aording to theirfrequeny, i.e. a rank R is assigned to eah word, namely, R = 1 for themost frequent one. A power lawf � R�� (6)with an exponent � is searhed for on a log�log plot.The similar analysis an be done to any series of data when one translatesthe data into a text [4℄. In the following we translated the WIG index timeseries into a text based on two alphabets. The �rst text is obtained bytransforming data into binary sequenes by replaing up and down daily�utuations by a harater u and d, respetively. Another transformation:u for large up d for large down �utuations and s for small �utuations ofboth kinds below a given threshold, leads to a three-letter text.In Fig. 8 we show the Zipf plot for words onsisting of n = 4; 5 let-ters of both texts obtained from the time series of WIG index values. Theprobability of a single letter to be found in the text examined is as follows:P (u) = 0:533 and P (d) = 0:467 when the two-letter alphabet is onsideredand if we deal with three letter alphabet then depending on the value of thethreshold s we obtain:s = 2% 1% 0:6% 0:2% 0:1%d 0:103 0:234 0:316 0:406 0:441s 0:774 0:510 0:318 0:119 0:059u 0:123 0:255 0:366 0:475 0:500The data plotted are the e�etive frequenies P=P 0, i.e. the apparentprobability P of a word divided by its expeted probability of ourreneP 0 if there is no orrelation [5℄. The Zipf plot using P=P 0 is expeted to behorizontal for random sequenes.The value of � hanges depending on the way in whih a time series istransferred into a text:Two-letter alphabet:4-letter words 0:15 (r2 = 0:84)5-letter words 0:18 (r2 = 0:83)Three-letter alphabet:4-letter words:s 2% 1% 0:6% 0:2% 0:1%� 0:86 0:35 0:24 0:30 0:64(r2) (0:94) (0:98) (0:91) (0:98) (0:97)
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