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We present analytical and numerical studies of a chaotic model of a
kicked magnetic moment (spin) in the presence of anisotropy and damp-
ing. There is an influence of the fractal structure of attractors and basins
of attraction on mean transient lifetimes near chaotic crises and on noise-
free stochastic resonance in this system. The observed oscillations of aver-
age transient times emerging on the background of the well-known power
scaling law can be explained by simple geometric models of overlapping
fractal sets. Using as the control parameter the amplitude of magnetic
field pulses one finds that such measures of stochastic resonance as the
input—output correlation function or the signal-to-noise ratio show multi-
ple maxima characteristic of stochastic multiresonance. A simple adiabatic
theory which takes into account the fractal structures of this model well
explains numerical simulations.

PACS numbers: 05.40.+j, 05.45.+b

1. Introduction

Two-dimensional maps are comfortable tools in the study of deterministic
chaos and related nonlinear phenomena, since their dynamics is both rich
enough to model complex behavior of physical systems and simple enough
to allow fast numerical simulations and analytical treatment. In this paper
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we use such maps to investigate two related phenomena: crises and noise-
free stochastic resonance. A boundary crisis occurs in chaotic systems if
a chaotic attractor touches, at a critical value ¢g. of the control parameter
q, a stable manifold of an unstable periodic orbit forming a boundary of
the basin of attraction [1,2]. As the control parameter is further increased
the attractor undergoes an abrupt change, i.e., the phase trajectory can
penetrate other regions of the parameter space; and the mean transient
time (7) during which the trajectory initiated at a generic point within the
former basin of attraction remains close to the precritical attractor obeys
the scaling law (1) o< (¢ — ¢c)", where 7 is a critical exponent [1,2]. On the
other hand, Stochastic Resonance (SR) [3-10] is a phenomenon occurring
in certain systems driven by a combination of noise and periodic signal,
whose essence is that the input noise intensity can be tuned to maximize
the degree of periodicity of a properly defined output signal. Noise-free SR
is a related phenomenon occurring in chaotic periodically driven systems in
which, in the absence of external noise, the internal chaotic dynamics can be
changed by varying the control parameter so that the periodic signal is best
transmitted [11-18]. It is well known that noise-free SR can be observed in
systems with crises due to the presence of a characteristic time (7) which
can be varied with ¢ to match the period of the external drive [11,14].

In this paper we focus on the effect of the fractal structure of precriti-
cal attractors and their basins of attraction on both above-mentioned phe-
nomena. Such a structure may result in the appearance of considerable
oscillations of the mean transient time as a function of the control parame-
ter, superimposed on the basic trend given by the above-mentioned scaling
law [19,20]. As a result a periodic signal applied to the system can be
equally well transmitted for many different values of the control param-
eter [21]: e.g., the correlation function between the input (periodic) and
output signals becomes a complicated function of ¢ with multiple strong
maxima. This is a noise-free counterpart of the effect known as stochas-
tic multiresonance [7,22,23| which occurs in certain systems with external
noise. Here we present results obtained using a map which models the mo-
tion of a damped classical magnetic moment driven by pulses of magnetic
field in the presence of anisotropy [19-21,24-26] since in this system the in-
fluence of fractal structures on (7) can be quite strong. We also argue that
noise-free stochastic multiresonance occurs in other systems with less visi-
ble oscillations of the mean transient time. Our investigations are based on
numerical simulations and theoretical calculations. For the latter purpose
we use a model of fractal attractor and fractal basin of attraction proposed
in Refs. [19,20] and the adiabatic theory of noise-free SR in the presence
of such fractal structures presented in Ref. [21]. Theoretical results explain
well both the oscillations of (7) vs ¢ and the multiresonance effect.
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2. The model and methods of analysis

We consider a classical magnetic moment (spin) S, |S| = S in the uni-

axial anisotropy field and external transverse magnetic field B (£) parallel to
the z-axis [19-21,24-26], described by the Hamiltonian

H=-A(S.)>-B(t)S,, (1)

where A > 0 is the anisotropy constant. The motion of the spin is determined
by the Landau-Lifschitz equation with damping term

ds A
E:SXBeﬁ_gsx(SXBeﬁ)a (2)
where Beg = —dH/dS is the effective magnetic field and A > 0 is the
damping parameter. We assume the transverse field in the form of periodic
d-pulses with amplitude B and period 7

B(t)=BY 4(t—n7). (3)
n=1

For such a field Eq. (2) can be integrated and the resulting spin dynamics
can be written as a superposition of two-dimensional maps T4 and Tg. The
map T’y describes the evolution of the spin between kicks and T describes
the motion of the spin during the action of the field pulses

Sn+1 =TB [TA [Sn]] ) (4)

where S, is a spin vector just after the action of the n-th magnetic field
pulse. A full form of this map can be found in Refs. [21,24, 26].

The map (4) exhibits a rich variety of chaotic behavior. Let us consider
the map (4) with the parameters S =1, 7 = 27, A = 0.1437002, A = 1 and
treat B as the control parameter. Then, for B slightly below B, = 1.2 two
symmetric chaotic attractors of (4) corresponding to two spin orientations
in the absence of the external field exist (spin “up”, S, > 0 and “down”,
S, < 0) [24,25]. For B > B, these two attractors merge as a result of the
attractor merging crisis [20,24] and a new post-critical attractor (Fig. 1)
consisting of two symmetric parts is born. The system switches chaotically
between these two parts. We are interested in the dependence of the mean
transient time, which in the case of the attractor merging crisis is the time
between consecutive switches [2], on the control parameter. In order to
observe noise-free SR we apply the external periodic signal which modulates
the control parameter B in Eq. (4) so that it becomes time-dependent

B (n) = By + By cos (won) (5)



1504 A. KRAWIECKI ET AL.

1 T
. OF o e d
m : ) .'.
TR I
-1 1
-t 0 m

Fig. 1. Attractor of the spin map (4) with S =1, A =1, 7 = 27, A = 0.1437002,
B, = 1.2 and B = 1.2001 > B.; & is the angle between the projection of the spin
vector on the z-y plane and the z axis.

and observe its transmission through the system as By is varied. We point
out that, contrary to other cases [11, 13|, this periodic signal couples to
Eq. (4) in a complex (non-additive) manner. The system with such time de-
pendence of the control parameter can be described as a dynamical threshold
crossing system and the spin jumps between the two parts of the post-critical
attractor can be treated as threshold crossing events [27]. Thus SR can be
expected to appear in our system as in other dynamical [8,12] and non-
dynamical [9,10] threshold-crossing systems. We define the output signal y,,
as usual in threshold crossing systems, so that one-step long pulses of unit
height correspond to the jumps between the two parts of the post-critical
attractor: y, = 1 if at iteration n the jump occurred and y, = 0 otherwise.
Due to the symmetry of the system with respect to the plane S, = 0 we
can assume that the jump occurs when S, ,_1 and S, , have opposite signs
(Fig. 2). As a simple measure of the noise-free SR we take the correlation
function between the input and output signal

C =

<ynBl COS (won)> (6)
VB2 (42) — (4)?)
where the angular brackets denote the time average, and investigate its de-

pendence on By. The external signal is best transmitted if C' is at a maxi-
mum.
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Fig.2. An example of the time series S, vs n of the spin map (4) with B; = 6-1074
and Ty = 1024. Also a periodic signal proportional to By cos (won) is shown. Note
that the jumps between the states S., < 0 and S, > 0 occur most probably
when the periodic signal is at a maximum.

3. Numerical results
3.1. Crisis in the spin map: oscillations of the mean transient time

In Fig. 3 the dependence of the mean transient time (7) on the control
parameter B obtained from numerical simulations of the spin map is shown.
Above the crisis at B, = 1.2 the power scaling law (7 (B)) o< (B — B.) "
with n ~ 0.707 yields the basic trend of the curve (r) ws B. However,
considerable oscillations superimposed on this trend can be also seen. They
are a combination of two basic kinds of oscillations, the so-called normal and
anomalous ones.

Above the crisis the precritical attractors are turned into chaotic saddles
and their basins into pseudobasins. Just above B, the fractal structure of
these new objects can be assumed as identical with that of their precritical
counterparts. Normal oscillations appear in chaotic systems in which the
precritical basins of attraction do not have a self-similar (fractal) structure.
They are induced by consecutive branches of the fractal chaotic saddle creep-
ing, with increasing control parameter, into the non-fractal basin of another
precritical attractor [20] which results in the modulation of the slope of the
curve (7) vs the control parameter. Anomalous oscillations occur when the
precritical basins of attraction are also fractal sets. Their characteristic fea-
ture is the presence of sections where the curve (7) vs the control parameter
increases against the general trend [19]. Typically their magnitude is larger
than that of normal oscillations; e.g., anomalous oscillations are dominating
in Fig. 3, but traces of the normal oscillations are also visible.
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Fig. 3. The mean transient time (7) vs B — B, for the spin map (4) with parameters
as in Fig. 1; dominating anomalous oscillations can be seen. Solid line — numerical
results; dashed line — theoretical results obtained from the model of Sec. 4.2 with
the parameters § = 0.124, by = 3.115209..., « = 0.00234, v = 0.285, b/a = 3.83,
¢=1.6.

3.2. An example of noise-free stochastic multiresonance

In Fig. 4 typical curves C ws By are shown for slowly varying input
signals with different amplitudes B;. Jumps between symmetric parts of the
postcritical attractor are observed for By > B. — By. Within the range of
By shown in Fig. 4 the curves exhibit several strong maxima, so the noise-
free stochastic multiresonance is found. These maxima are accompanied
by numerous tiny local maxima. We also checked that other measures of
SR, like the most popular signal-to-noise ratio (SNR), also exhibit a multi-
peaked structure as By is varied [21]. It can be shown that there is a direct
correspondence between certain segments of the two curves: () vs B and C
vs By + B [21]. This relationship indicates that the occurrence of noise-free
stochastic multiresonance and complicated dependence of the correlation
function on the control parameter in our model is a result of the fractal
structure of precritical attractors and their basins of attraction.

4. Theoretical results
4.1. A model of the fractal chaotic saddle and the pseudobasin

Let us consider a model of a fractal chaotic saddle overlapping a pseu-
dobasin of another, e.g., symmetric chaotic saddle [19,20]. This model in-
corporates the important topological properties of the two overlapping sets.
The control parameter, which in the spin map (4) should be identified with
B — B, will be denoted as ¢q. The time-dependent control parameter will
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Fig.4. The correlation function C' wvs By for the signal y,, from the spin map (4)
with parameters as in Fig. 1 and Ty = 1024: (a) B; =1-107%, (b) B; =3-10"%,
(¢) By =6-10"%, (d) B; = 1.5-103. Solid lines — numerical results; dashed lines
— theoretical results obtained from the theory of Sec. 4.3 with the parameters as
in Fig. 3.

be denoted as g (n) = qo + q1 cos(won), where gy should be identified with
By — B and ¢ with B; (cf. Eq. (5)).

Let us start with the case of time-independent control parameter ¢. We
assume the model of the chaotic saddle A as a family of K + 2 parabolic
segments Ay (Fig. 5)

K+1 K+1
A=J A= {(x,y) ry=—a* = (1= 1) ad +Q}, (7)
k=0 k=0

where ¢ and « are model parameters. The invariant measure is uniformly
distributed along the segments and its relative density on the segment Ay
is assumed as fiy = (1 —79)7* for 0 < k < K and figy1 = v5+1, where
0 < v < 1 is another model parameter. The model of the pseudobasin is
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Fig.5. The model of a fractal chaotic saddle with a = 1 and ¢ = 0 (7) entering the
pseudobasin of attraction of the other saddle (8).
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assumed as a family of L + 2 stripes B; (Fig. 5)

L+1 L+1
B=B=U{@v:1=dwu) (Bo-ps) <y<po}.
=0 =0

where 3, b and bg are again model parameters.

The crisis occurs at g = 0 when the uppermost parabolic segment of
the saddle A touches the lowermost stripe of the pseudobasin B. All model
parameters are determined by the fractal structure of the saddles and pseu-
dobasins of the system under study and can be assessed from magnified plots
of the collision region between the chaotic saddles and pseudobasins [19,20].
In order to model the case with the time-dependent control parameter, ¢
should be replaced with ¢ (n) in Egs. (7), (8).

4.2. Theoretical evaluation of the mean transient time

From the model of Sec. 4.1 the mean transient time can be evaluated as
(1 (q)) = p~'(q), where p(q) is the probability of jump between the sym-
metric parts of the post-critical attractor. This probability is proportional
to the measure p(q) of the overlap of the saddle and the pseudobasin of
the other saddle [1,2|. The latter measure is a sum of overlap measures
uxi (q) between the individual parabolic segments Ay of the chaotic saddle
and the stripes B; of the pseudobasin. In turn, the quantity ug; (q) is just
the length of the segment Ay contained inside the stripe B and multiplied
by the relative measure density jig, thus we obtain

K+1L+1

p(0)=Cp(a)=C> D mr(a) (9)

k=0 (=0
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where ( is the proportionality constant, and
fiki (@) = i ((1 — 0,0+1) (ﬂlb - ﬂle) ,Q) — Pk (515, Q) . (10)
In Eq. (10) pg (c,q) denotes the measure of the overlap of the segment Ay

and a half-plane ¢ > ¢ which, for small ¢ — (1 — 6, x11) ack — ¢, can be
approximated as

p (€, q) = ﬂk\/q — (1 = 0k, k1) ack —c © (q —a(l=6pr41) b - C) ;

(11)
where O (-) denotes the Heaviside function.

Choosing properly the model parameters (their values are given below
Fig. 3) one can reproduce the complicated dependence of the mean transient
time on the control parameter with high accuracy (Fig. 3). In particular, the
anomalous and normal oscillations of (7 (q)) are reproduced. Using certain
simplifications of the above model it is possible to obtain simple analytic
expressions for the period and magnitude of normal oscillations [20] and
for the period and maximum height of anomalous oscillations [19,20] which
agree well with numerical results.

4.83. Theoretical evaluation of the correlation function

In the case of the time-dependent control parameter ¢ (n) = qgtq; cos(won)
the jump probability p (g (n)) = p(n) becomes also time-dependent. Then,
in the continuous time approximation, and taking into account that y2 = yp,
it can be easily shown that

To
(yn By cos (won)) = Ty * /p (t) By cos (wot) dt = B1P1(q0) ,  (12)

o

To
(W2) = (ya) = Ty / p(t)dt = pa). (13)
0

where Ty = 27 /wy is the period of external signal, P; is the first Fourier
coefficient, and P is the mean value over Ty of p (¢). If the external periodic
signal is slowly varying in time, the adiabatic approximation can be used [6]
in which the time-dependent jump probability can be obtained from our
model by replacing ¢ with ¢ (n) in Egs. (9)—(11). Then, the quantities P;
and p can be evaluated analytically, and the resulting expressions are double
sums similar to that in Eq. (9), containing complicated combinations of
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elliptic integrals of the first and second kind. The complete expressions for
Py and P can be found in Ref. [21].

Choosing the same set of model parameters which enabled us to fit the
theoretical and numerical curves of the mean transient time wvs the control
parameter in Sec. 4.2 we obtained the theoretical curves C' wvs ¢y shown
in Fig. 4. In Figs. 4(b)—(d), i.e., for larger values of the amplitude By,
the agreement between the theoretical and numerical results is good. Not
only the multiresonance effect is found, ¢.e., the maximization of the input—
output correlation function for many values of the control parameter, but
also the location and height of the maxima of C' are predicted quite well. In
Fig. 4(a) only qualitative agreement between the theoretical and numerical
curves can be seen. This is connected with the fact that in our model (7), (8)
we neglect further splitting of the parabolic segments and stripes with small
indices k and [, respectively. This splitting, however, occurs in a real system
and causes the increase of the number of maxima of C and shift of their
location in comparison with the theoretical prediction. The above results
thus prove that the appearance of noise-free stochastic multiresonance is a
direct consequence of the fractal structure of precritical attractors and their
basins. They also show that for slowly varying periodic signals this effect
can be at least qualitatively explained using the adiabatic approximation for
the time-dependent probabilities p (n).

5. Discussion and conclusions

In this paper we discussed two effects connected with the influence of the
fractal structure of precritical attractors and their basins of attraction on
the dynamics of system near crises: oscillations of the mean transient time
and noise-free stochastic multiresonance. The former effect has long been
known [2,28], however, it has been treated as a rather small deviation from
the basic power scaling of (7) and not studied in detail. Only recently ana-
lytic theory of this effect has been elaborated by two of us [19,20]. Our fur-
ther work has shown that if SR is investigated in a system close to crisis, the
fractality of precritical attractors and their basins leads to a more spectacu-
lar effect of noise-free stochastic multiresonance, which cannot be treated as
a small deviation from the typical picture of SR with a single maximum of C
or SNR [21]. It should be emphasized that both effects appear naturally in
our system, while, e.g., the appearance of stochastic multiresonance in a sys-
tem with noise required a purposeful construction of a multistable potential
[22,23].

The fine structure of precritical attractors and their basins is best re-
flected in the numerous maxima of C for a very small amplitude of the
periodic signal (Fig. 4(a)). As By is increased the details of the fractal struc-
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ture smaller than ca. 2B are averaged and the curve C' vs By is smoothed
out. For small By, tiny (i.e., on the order of By) changes of the control
parameter By lead to dramatic changes of C, i.e., of the quality of signal
transmission. This important effect usually cannot be found in typical sys-
tems with SR where the maxima of C or the SNR are smooth and soft
(including chaotic one-dimensional maps in which noise-free SR can be ob-
served [11-13]). Hence large sensitivity of SR to small changes of the control
parameter can be considered as typical of systems with oscillations of the
mean transient time.

In our study of SR in this work we used as a measure the input—output
correlation function instead of the most popular SNR. It can be shown that
also the SNR exhibits multiple maxima as the control parameter is var-
ied [21]. We observed better agreement between numerical and theoretical
curves C vs By than SNR ws By. This is probably since in order to evaluate
C using the theory of Sec. 4.3 only the adiabatic approximation is needed,
while in order to evaluate the SNR analytically one should make additional
assumptions concerning the statistical independence of the jumps between
symmetric parts of the postcritical attractor [10,21].

So far, we have discussed noise-free stochastic multiresonance only in a
system with fractal basins of precritical attractors. However, the presence
of strong anomalous oscillations of (7) is not a necessary condition for the
occurrence of many maxima of the correlation function or the SNR. Our
preliminary results obtained in systems in which normal oscillations of the
mean transient time are dominating confirm this conclusion; a full account
of these results will be published elsewhere. Since oscillations of the mean
transient time are often observed in systems with crises [2, 28| noise-free
stochastic multiresonance should be also observable in many such systems,
including experimental ones with continuous time.
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