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INFLUENCE OF FRACTAL STRUCTURESON CHAOTIC CRISESAND STOCHASTIC RESONANCE�A. Krawie
kia, S. Matyja±kiewi
za;b, K. Ka
perski
;aand J.A. Hoªysta;b;
aFa
ulty of Physi
s, Warsaw University of Te
hnologyKoszykowa 75, 00-662 Warsaw, PolandbInstitute of Physi
s, Humboldt University at BerlinInvalidenstraÿe 110, D-10115 Berlin, Germany
Max Plan
k Institute for the Physi
s of Complex SystemsNöthnitzerstraÿe 38, D-01187 Dresden, Germany(Re
eived De
ember 1, 2000)We present analyti
al and numeri
al studies of a 
haoti
 model of aki
ked magneti
 moment (spin) in the presen
e of anisotropy and damp-ing. There is an in�uen
e of the fra
tal stru
ture of attra
tors and basinsof attra
tion on mean transient lifetimes near 
haoti
 
rises and on noise-free sto
hasti
 resonan
e in this system. The observed os
illations of aver-age transient times emerging on the ba
kground of the well-known powers
aling law 
an be explained by simple geometri
 models of overlappingfra
tal sets. Using as the 
ontrol parameter the amplitude of magneti
�eld pulses one �nds that su
h measures of sto
hasti
 resonan
e as theinput�output 
orrelation fun
tion or the signal-to-noise ratio show multi-ple maxima 
hara
teristi
 of sto
hasti
 multiresonan
e. A simple adiabati
theory whi
h takes into a

ount the fra
tal stru
tures of this model wellexplains numeri
al simulations.PACS numbers: 05.40.+j, 05.45.+b1. Introdu
tionTwo-dimensional maps are 
omfortable tools in the study of deterministi

haos and related nonlinear phenomena, sin
e their dynami
s is both ri
henough to model 
omplex behavior of physi
al systems and simple enoughto allow fast numeri
al simulations and analyti
al treatment. In this paper� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.(1501)



1502 A. Krawie
ki et al.we use su
h maps to investigate two related phenomena: 
rises and noise-free sto
hasti
 resonan
e. A boundary 
risis o

urs in 
haoti
 systems ifa 
haoti
 attra
tor tou
hes, at a 
riti
al value q
 of the 
ontrol parameterq, a stable manifold of an unstable periodi
 orbit forming a boundary ofthe basin of attra
tion [1, 2℄. As the 
ontrol parameter is further in
reasedthe attra
tor undergoes an abrupt 
hange, i.e., the phase traje
tory 
anpenetrate other regions of the parameter spa
e; and the mean transienttime h�i during whi
h the traje
tory initiated at a generi
 point within theformer basin of attra
tion remains 
lose to the pre
riti
al attra
tor obeysthe s
aling law h�i / (q � q
)�, where � is a 
riti
al exponent [1, 2℄. On theother hand, Sto
hasti
 Resonan
e (SR) [3�10℄ is a phenomenon o

urringin 
ertain systems driven by a 
ombination of noise and periodi
 signal,whose essen
e is that the input noise intensity 
an be tuned to maximizethe degree of periodi
ity of a properly de�ned output signal. Noise-free SRis a related phenomenon o

urring in 
haoti
 periodi
ally driven systems inwhi
h, in the absen
e of external noise, the internal 
haoti
 dynami
s 
an be
hanged by varying the 
ontrol parameter so that the periodi
 signal is besttransmitted [11�18℄. It is well known that noise-free SR 
an be observed insystems with 
rises due to the presen
e of a 
hara
teristi
 time h�i whi
h
an be varied with q to mat
h the period of the external drive [11, 14℄.In this paper we fo
us on the e�e
t of the fra
tal stru
ture of pre
riti-
al attra
tors and their basins of attra
tion on both above-mentioned phe-nomena. Su
h a stru
ture may result in the appearan
e of 
onsiderableos
illations of the mean transient time as a fun
tion of the 
ontrol parame-ter, superimposed on the basi
 trend given by the above-mentioned s
alinglaw [19, 20℄. As a result a periodi
 signal applied to the system 
an beequally well transmitted for many di�erent values of the 
ontrol param-eter [21℄: e.g., the 
orrelation fun
tion between the input (periodi
) andoutput signals be
omes a 
ompli
ated fun
tion of q with multiple strongmaxima. This is a noise-free 
ounterpart of the e�e
t known as sto
has-ti
 multiresonan
e [7, 22, 23℄ whi
h o

urs in 
ertain systems with externalnoise. Here we present results obtained using a map whi
h models the mo-tion of a damped 
lassi
al magneti
 moment driven by pulses of magneti
�eld in the presen
e of anisotropy [19�21,24�26℄ sin
e in this system the in-�uen
e of fra
tal stru
tures on h�i 
an be quite strong. We also argue thatnoise-free sto
hasti
 multiresonan
e o

urs in other systems with less visi-ble os
illations of the mean transient time. Our investigations are based onnumeri
al simulations and theoreti
al 
al
ulations. For the latter purposewe use a model of fra
tal attra
tor and fra
tal basin of attra
tion proposedin Refs. [19, 20℄ and the adiabati
 theory of noise-free SR in the presen
eof su
h fra
tal stru
tures presented in Ref. [21℄. Theoreti
al results explainwell both the os
illations of h�i vs q and the multiresonan
e e�e
t.
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tal Stru
tures : : : 15032. The model and methods of analysisWe 
onsider a 
lassi
al magneti
 moment (spin) S, jSj = S in the uni-axial anisotropy �eld and external transverse magneti
 �eld ~B (t) parallel tothe x-axis [19�21,24�26℄, des
ribed by the HamiltonianH = �A (Sz)2 � ~B (t)Sx ; (1)where A > 0 is the anisotropy 
onstant. The motion of the spin is determinedby the Landau�Lifs
hitz equation with damping termdSdt = S �Be� � �SS � (S �Be�) ; (2)where Be� = �dH=dS is the e�e
tive magneti
 �eld and � > 0 is thedamping parameter. We assume the transverse �eld in the form of periodi
Æ-pulses with amplitude B and period ~�~B (t) = B 1Xn=1 Æ (t� n~�) : (3)For su
h a �eld Eq. (2) 
an be integrated and the resulting spin dynami
s
an be written as a superposition of two-dimensional maps TA and TB . Themap TA des
ribes the evolution of the spin between ki
ks and TB des
ribesthe motion of the spin during the a
tion of the �eld pulsesSn+1 = TB [TA [Sn℄℄ ; (4)where Sn is a spin ve
tor just after the a
tion of the n-th magneti
 �eldpulse. A full form of this map 
an be found in Refs. [21, 24, 26℄.The map (4) exhibits a ri
h variety of 
haoti
 behavior. Let us 
onsiderthe map (4) with the parameters S = 1, ~� = 2�, � = 0:1437002, A = 1 andtreat B as the 
ontrol parameter. Then, for B slightly below B
 = 1:2 twosymmetri
 
haoti
 attra
tors of (4) 
orresponding to two spin orientationsin the absen
e of the external �eld exist (spin �up�, Sz > 0 and �down�,Sz < 0) [24, 25℄. For B > B
 these two attra
tors merge as a result of theattra
tor merging 
risis [20, 24℄ and a new post-
riti
al attra
tor (Fig. 1)
onsisting of two symmetri
 parts is born. The system swit
hes 
haoti
allybetween these two parts. We are interested in the dependen
e of the meantransient time, whi
h in the 
ase of the attra
tor merging 
risis is the timebetween 
onse
utive swit
hes [2℄, on the 
ontrol parameter. In order toobserve noise-free SR we apply the external periodi
 signal whi
h modulatesthe 
ontrol parameter B in Eq. (4) so that it be
omes time-dependentB (n) = B0 +B1 
os (!0n) (5)



1504 A. Krawie
ki et al.

0
-1

0

1

-π π

S
z

ΦFig. 1. Attra
tor of the spin map (4) with S = 1, A = 1, � = 2�, � = 0:1437002,B
 = 1:2 and B = 1:2001 > B
; � is the angle between the proje
tion of the spinve
tor on the x-y plane and the x axis.and observe its transmission through the system as B0 is varied. We pointout that, 
ontrary to other 
ases [11, 13℄, this periodi
 signal 
ouples toEq. (4) in a 
omplex (non-additive) manner. The system with su
h time de-penden
e of the 
ontrol parameter 
an be des
ribed as a dynami
al threshold
rossing system and the spin jumps between the two parts of the post-
riti
alattra
tor 
an be treated as threshold 
rossing events [27℄. Thus SR 
an beexpe
ted to appear in our system as in other dynami
al [8, 12℄ and non-dynami
al [9,10℄ threshold-
rossing systems. We de�ne the output signal ynas usual in threshold 
rossing systems, so that one-step long pulses of unitheight 
orrespond to the jumps between the two parts of the post-
riti
alattra
tor: yn = 1 if at iteration n the jump o

urred and yn = 0 otherwise.Due to the symmetry of the system with respe
t to the plane Sz = 0 we
an assume that the jump o

urs when Sz;n�1 and Sz;n have opposite signs(Fig. 2). As a simple measure of the noise-free SR we take the 
orrelationfun
tion between the input and output signalC = hynB1 
os (!0n)iq�B21=2� (hy2ni � hyni2) ; (6)where the angular bra
kets denote the time average, and investigate its de-penden
e on B0. The external signal is best transmitted if C is at a maxi-mum.
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nFig. 2. An example of the time series Sz vs n of the spin map (4) with B1 = 6 �10�4and T0 = 1024. Also a periodi
 signal proportional to B1 
os (!0n) is shown. Notethat the jumps between the states Sz;n < 0 and Sz;n > 0 o

ur most probablywhen the periodi
 signal is at a maximum.3. Numeri
al results3.1. Crisis in the spin map: os
illations of the mean transient timeIn Fig. 3 the dependen
e of the mean transient time h�i on the 
ontrolparameter B obtained from numeri
al simulations of the spin map is shown.Above the 
risis at B
 = 1:2 the power s
aling law h� (B)i / (B �B
)��with � � 0:707 yields the basi
 trend of the 
urve h�i vs B. However,
onsiderable os
illations superimposed on this trend 
an be also seen. Theyare a 
ombination of two basi
 kinds of os
illations, the so-
alled normal andanomalous ones.Above the 
risis the pre
riti
al attra
tors are turned into 
haoti
 saddlesand their basins into pseudobasins. Just above B
 the fra
tal stru
ture ofthese new obje
ts 
an be assumed as identi
al with that of their pre
riti
al
ounterparts. Normal os
illations appear in 
haoti
 systems in whi
h thepre
riti
al basins of attra
tion do not have a self-similar (fra
tal) stru
ture.They are indu
ed by 
onse
utive bran
hes of the fra
tal 
haoti
 saddle 
reep-ing, with in
reasing 
ontrol parameter, into the non-fra
tal basin of anotherpre
riti
al attra
tor [20℄ whi
h results in the modulation of the slope of the
urve h�i vs the 
ontrol parameter. Anomalous os
illations o

ur when thepre
riti
al basins of attra
tion are also fra
tal sets. Their 
hara
teristi
 fea-ture is the presen
e of se
tions where the 
urve h�i vs the 
ontrol parameterin
reases against the general trend [19℄. Typi
ally their magnitude is largerthan that of normal os
illations; e.g., anomalous os
illations are dominatingin Fig. 3, but tra
es of the normal os
illations are also visible.
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Log10(B-Bc)Fig. 3. The mean transient time h�i vs B�B
 for the spin map (4) with parametersas in Fig. 1; dominating anomalous os
illations 
an be seen. Solid line � numeri
alresults; dashed line � theoreti
al results obtained from the model of Se
. 4.2 withthe parameters � = 0:124, bE = 3:115209 : : :, � = 0:00234, 
 = 0:285, b=a = 3:83,� = 1:6. 3.2. An example of noise-free sto
hasti
 multiresonan
eIn Fig. 4 typi
al 
urves C vs B0 are shown for slowly varying inputsignals with di�erent amplitudes B1. Jumps between symmetri
 parts of thepost
riti
al attra
tor are observed for B0 > B
 � B1. Within the range ofB0 shown in Fig. 4 the 
urves exhibit several strong maxima, so the noise-free sto
hasti
 multiresonan
e is found. These maxima are a

ompaniedby numerous tiny lo
al maxima. We also 
he
ked that other measures ofSR, like the most popular signal-to-noise ratio (SNR), also exhibit a multi-peaked stru
ture as B0 is varied [21℄. It 
an be shown that there is a dire
t
orresponden
e between 
ertain segments of the two 
urves: h�i vs B and Cvs B0+B1 [21℄. This relationship indi
ates that the o

urren
e of noise-freesto
hasti
 multiresonan
e and 
ompli
ated dependen
e of the 
orrelationfun
tion on the 
ontrol parameter in our model is a result of the fra
talstru
ture of pre
riti
al attra
tors and their basins of attra
tion.4. Theoreti
al results4.1. A model of the fra
tal 
haoti
 saddle and the pseudobasinLet us 
onsider a model of a fra
tal 
haoti
 saddle overlapping a pseu-dobasin of another, e.g., symmetri
 
haoti
 saddle [19, 20℄. This model in-
orporates the important topologi
al properties of the two overlapping sets.The 
ontrol parameter, whi
h in the spin map (4) should be identi�ed withB � B
, will be denoted as q. The time-dependent 
ontrol parameter will
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C

B0+B1Fig. 4. The 
orrelation fun
tion C vs B0 for the signal yn from the spin map (4)with parameters as in Fig. 1 and T0 = 1024: (a) B1 = 1 � 10�4, (b) B1 = 3 � 10�4,(
) B1 = 6 � 10�4, (d) B1 = 1:5 � 10�3. Solid lines � numeri
al results; dashed lines� theoreti
al results obtained from the theory of Se
. 4.3 with the parameters asin Fig. 3.be denoted as q (n) = q0 + q1 
os(!0n), where q0 should be identi�ed withB0 �B
 and q1 with B1 (
f. Eq. (5)).Let us start with the 
ase of time-independent 
ontrol parameter q. Weassume the model of the 
haoti
 saddle A as a family of K + 2 paraboli
segments Ak (Fig. 5)A = K+1[k=0 Ak = K+1[k=0 n(x; y) : y = �x2 � (1� Æk;K+1) a�k + qo ; (7)where a and � are model parameters. The invariant measure is uniformlydistributed along the segments and its relative density on the segment Akis assumed as ~�k = (1� 
) 
k for 0 � k � K and ~�K+1 = 
K+1, where0 < 
 < 1 is another model parameter. The model of the pseudobasin is
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. . .Fig. 5. The model of a fra
tal 
haoti
 saddle with a = 1 and q = 0 (7) entering thepseudobasin of attra
tion of the other saddle (8).assumed as a family of L+ 2 stripes Bl (Fig. 5)B = L+1[l=0 Bl = L+1[l=0 n(x; y) : (1� Æl;L+1)��lb� �lbE� � y � �lbo ; (8)where �, b and bE are again model parameters.The 
risis o

urs at q
 = 0 when the uppermost paraboli
 segment ofthe saddle A tou
hes the lowermost stripe of the pseudobasin B. All modelparameters are determined by the fra
tal stru
ture of the saddles and pseu-dobasins of the system under study and 
an be assessed from magni�ed plotsof the 
ollision region between the 
haoti
 saddles and pseudobasins [19,20℄.In order to model the 
ase with the time-dependent 
ontrol parameter, qshould be repla
ed with q (n) in Eqs. (7), (8).4.2. Theoreti
al evaluation of the mean transient timeFrom the model of Se
. 4.1 the mean transient time 
an be evaluated ash� (q)i = p�1 (q), where p (q) is the probability of jump between the sym-metri
 parts of the post-
riti
al attra
tor. This probability is proportionalto the measure � (q) of the overlap of the saddle and the pseudobasin ofthe other saddle [1, 2℄. The latter measure is a sum of overlap measures�kl (q) between the individual paraboli
 segments Ak of the 
haoti
 saddleand the stripes Bl of the pseudobasin. In turn, the quantity �kl (q) is justthe length of the segment Ak 
ontained inside the stripe Bk and multipliedby the relative measure density ~�k, thus we obtainp (q) = �� (q) = � K+1Xk=0 L+1Xl=0 �kl (q) ; (9)
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e of Fra
tal Stru
tures : : : 1509where � is the proportionality 
onstant, and�kl (q) = �k �(1� Æl;L+1)��lb� �lbE� ; q�� �k ��lb; q� : (10)In Eq. (10) �k (
; q) denotes the measure of the overlap of the segment Akand a half-plane q > 
 whi
h, for small q � (1� Æk;K+1) a�k � 
, 
an beapproximated as�k (
; q) = ~�kqq � (1� Æk;K+1) a�k � 
 ��q � a (1� Æk;K+1)�k � 
� ;(11)where �(�) denotes the Heaviside fun
tion.Choosing properly the model parameters (their values are given belowFig. 3) one 
an reprodu
e the 
ompli
ated dependen
e of the mean transienttime on the 
ontrol parameter with high a

ura
y (Fig. 3). In parti
ular, theanomalous and normal os
illations of h� (q)i are reprodu
ed. Using 
ertainsimpli�
ations of the above model it is possible to obtain simple analyti
expressions for the period and magnitude of normal os
illations [20℄ andfor the period and maximum height of anomalous os
illations [19,20℄ whi
hagree well with numeri
al results.4.3. Theoreti
al evaluation of the 
orrelation fun
tionIn the 
ase of the time-dependent 
ontrol parameter q (n)=q0+q1 
os(!0n)the jump probability p (q (n)) � p (n) be
omes also time-dependent. Then,in the 
ontinuous time approximation, and taking into a

ount that y2n = yn,it 
an be easily shown thathynB1 
os (!0n)i = T�10 T0Z0 p (t)B1 
os (!0t) dt = B1P1 (q0) ; (12)hy2ni = hyni = T�10 T0Z0 p (t) dt = p (q0) ; (13)where T0 = 2�=!0 is the period of external signal, P1 is the �rst Fourier
oe�
ient, and p is the mean value over T0 of p (t). If the external periodi
signal is slowly varying in time, the adiabati
 approximation 
an be used [6℄in whi
h the time-dependent jump probability 
an be obtained from ourmodel by repla
ing q with q (n) in Eqs. (9)�(11). Then, the quantities P1and p 
an be evaluated analyti
ally, and the resulting expressions are doublesums similar to that in Eq. (9), 
ontaining 
ompli
ated 
ombinations of
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 integrals of the �rst and se
ond kind. The 
omplete expressions forP1 and p 
an be found in Ref. [21℄.Choosing the same set of model parameters whi
h enabled us to �t thetheoreti
al and numeri
al 
urves of the mean transient time vs the 
ontrolparameter in Se
. 4.2 we obtained the theoreti
al 
urves C vs q0 shownin Fig. 4. In Figs. 4(b)�(d), i.e., for larger values of the amplitude B1,the agreement between the theoreti
al and numeri
al results is good. Notonly the multiresonan
e e�e
t is found, i.e., the maximization of the input�output 
orrelation fun
tion for many values of the 
ontrol parameter, butalso the lo
ation and height of the maxima of C are predi
ted quite well. InFig. 4(a) only qualitative agreement between the theoreti
al and numeri
al
urves 
an be seen. This is 
onne
ted with the fa
t that in our model (7), (8)we negle
t further splitting of the paraboli
 segments and stripes with smallindi
es k and l, respe
tively. This splitting, however, o

urs in a real systemand 
auses the in
rease of the number of maxima of C and shift of theirlo
ation in 
omparison with the theoreti
al predi
tion. The above resultsthus prove that the appearan
e of noise-free sto
hasti
 multiresonan
e is adire
t 
onsequen
e of the fra
tal stru
ture of pre
riti
al attra
tors and theirbasins. They also show that for slowly varying periodi
 signals this e�e
t
an be at least qualitatively explained using the adiabati
 approximation forthe time-dependent probabilities p (n).5. Dis
ussion and 
on
lusionsIn this paper we dis
ussed two e�e
ts 
onne
ted with the in�uen
e of thefra
tal stru
ture of pre
riti
al attra
tors and their basins of attra
tion onthe dynami
s of system near 
rises: os
illations of the mean transient timeand noise-free sto
hasti
 multiresonan
e. The former e�e
t has long beenknown [2,28℄, however, it has been treated as a rather small deviation fromthe basi
 power s
aling of h�i and not studied in detail. Only re
ently ana-lyti
 theory of this e�e
t has been elaborated by two of us [19,20℄. Our fur-ther work has shown that if SR is investigated in a system 
lose to 
risis, thefra
tality of pre
riti
al attra
tors and their basins leads to a more spe
ta
u-lar e�e
t of noise-free sto
hasti
 multiresonan
e, whi
h 
annot be treated asa small deviation from the typi
al pi
ture of SR with a single maximum of Cor SNR [21℄. It should be emphasized that both e�e
ts appear naturally inour system, while, e.g., the appearan
e of sto
hasti
 multiresonan
e in a sys-tem with noise required a purposeful 
onstru
tion of a multistable potential[22, 23℄.The �ne stru
ture of pre
riti
al attra
tors and their basins is best re-�e
ted in the numerous maxima of C for a very small amplitude of theperiodi
 signal (Fig. 4(a)). As B1 is in
reased the details of the fra
tal stru
-



In�uen
e of Fra
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a. 2B1 are averaged and the 
urve C vs B0 is smoothedout. For small B1, tiny (i.e., on the order of B1) 
hanges of the 
ontrolparameter B0 lead to dramati
 
hanges of C, i.e., of the quality of signaltransmission. This important e�e
t usually 
annot be found in typi
al sys-tems with SR where the maxima of C or the SNR are smooth and soft(in
luding 
haoti
 one-dimensional maps in whi
h noise-free SR 
an be ob-served [11�13℄). Hen
e large sensitivity of SR to small 
hanges of the 
ontrolparameter 
an be 
onsidered as typi
al of systems with os
illations of themean transient time.In our study of SR in this work we used as a measure the input�output
orrelation fun
tion instead of the most popular SNR. It 
an be shown thatalso the SNR exhibits multiple maxima as the 
ontrol parameter is var-ied [21℄. We observed better agreement between numeri
al and theoreti
al
urves C vs B0 than SNR vs B0. This is probably sin
e in order to evaluateC using the theory of Se
. 4.3 only the adiabati
 approximation is needed,while in order to evaluate the SNR analyti
ally one should make additionalassumptions 
on
erning the statisti
al independen
e of the jumps betweensymmetri
 parts of the post
riti
al attra
tor [10, 21℄.So far, we have dis
ussed noise-free sto
hasti
 multiresonan
e only in asystem with fra
tal basins of pre
riti
al attra
tors. However, the presen
eof strong anomalous os
illations of h�i is not a ne
essary 
ondition for theo

urren
e of many maxima of the 
orrelation fun
tion or the SNR. Ourpreliminary results obtained in systems in whi
h normal os
illations of themean transient time are dominating 
on�rm this 
on
lusion; a full a

ountof these results will be published elsewhere. Sin
e os
illations of the meantransient time are often observed in systems with 
rises [2, 28℄ noise-freesto
hasti
 multiresonan
e should be also observable in many su
h systems,in
luding experimental ones with 
ontinuous time.REFERENCES[1℄ C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 57, 1284 (1986).[2℄ C. Grebogi, E. Ott, F. Romeiras, J.A. Yorke, Phys. Rev. A36, 5365 (1987).[3℄ R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981).[4℄ L. Gammaitoni, P. Hänggi, P. Jung, F. Mar
hesoni, Rev. Mod. Phys. 70, 223(1998).[5℄ V.S. Anis
henko, A.B. Neiman, F. Moss, L. S
himansky-Geier, Phys. Usp. 42,7 (1999), [Usp. Fiz. Nauk 169, 7 (1999)℄.[6℄ B. M
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