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INFLUENCE OF FRACTAL STRUCTURESON CHAOTIC CRISESAND STOCHASTIC RESONANCE�A. Krawiekia, S. Matyja±kiewiza;b, K. Kaperski;aand J.A. Hoªysta;b;aFaulty of Physis, Warsaw University of TehnologyKoszykowa 75, 00-662 Warsaw, PolandbInstitute of Physis, Humboldt University at BerlinInvalidenstraÿe 110, D-10115 Berlin, GermanyMax Plank Institute for the Physis of Complex SystemsNöthnitzerstraÿe 38, D-01187 Dresden, Germany(Reeived Deember 1, 2000)We present analytial and numerial studies of a haoti model of akiked magneti moment (spin) in the presene of anisotropy and damp-ing. There is an in�uene of the fratal struture of attrators and basinsof attration on mean transient lifetimes near haoti rises and on noise-free stohasti resonane in this system. The observed osillations of aver-age transient times emerging on the bakground of the well-known powersaling law an be explained by simple geometri models of overlappingfratal sets. Using as the ontrol parameter the amplitude of magneti�eld pulses one �nds that suh measures of stohasti resonane as theinput�output orrelation funtion or the signal-to-noise ratio show multi-ple maxima harateristi of stohasti multiresonane. A simple adiabatitheory whih takes into aount the fratal strutures of this model wellexplains numerial simulations.PACS numbers: 05.40.+j, 05.45.+b1. IntrodutionTwo-dimensional maps are omfortable tools in the study of deterministihaos and related nonlinear phenomena, sine their dynamis is both rihenough to model omplex behavior of physial systems and simple enoughto allow fast numerial simulations and analytial treatment. In this paper� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.(1501)



1502 A. Krawieki et al.we use suh maps to investigate two related phenomena: rises and noise-free stohasti resonane. A boundary risis ours in haoti systems ifa haoti attrator touhes, at a ritial value q of the ontrol parameterq, a stable manifold of an unstable periodi orbit forming a boundary ofthe basin of attration [1, 2℄. As the ontrol parameter is further inreasedthe attrator undergoes an abrupt hange, i.e., the phase trajetory anpenetrate other regions of the parameter spae; and the mean transienttime h�i during whih the trajetory initiated at a generi point within theformer basin of attration remains lose to the preritial attrator obeysthe saling law h�i / (q � q)�, where � is a ritial exponent [1, 2℄. On theother hand, Stohasti Resonane (SR) [3�10℄ is a phenomenon ourringin ertain systems driven by a ombination of noise and periodi signal,whose essene is that the input noise intensity an be tuned to maximizethe degree of periodiity of a properly de�ned output signal. Noise-free SRis a related phenomenon ourring in haoti periodially driven systems inwhih, in the absene of external noise, the internal haoti dynamis an behanged by varying the ontrol parameter so that the periodi signal is besttransmitted [11�18℄. It is well known that noise-free SR an be observed insystems with rises due to the presene of a harateristi time h�i whihan be varied with q to math the period of the external drive [11, 14℄.In this paper we fous on the e�et of the fratal struture of preriti-al attrators and their basins of attration on both above-mentioned phe-nomena. Suh a struture may result in the appearane of onsiderableosillations of the mean transient time as a funtion of the ontrol parame-ter, superimposed on the basi trend given by the above-mentioned salinglaw [19, 20℄. As a result a periodi signal applied to the system an beequally well transmitted for many di�erent values of the ontrol param-eter [21℄: e.g., the orrelation funtion between the input (periodi) andoutput signals beomes a ompliated funtion of q with multiple strongmaxima. This is a noise-free ounterpart of the e�et known as stohas-ti multiresonane [7, 22, 23℄ whih ours in ertain systems with externalnoise. Here we present results obtained using a map whih models the mo-tion of a damped lassial magneti moment driven by pulses of magneti�eld in the presene of anisotropy [19�21,24�26℄ sine in this system the in-�uene of fratal strutures on h�i an be quite strong. We also argue thatnoise-free stohasti multiresonane ours in other systems with less visi-ble osillations of the mean transient time. Our investigations are based onnumerial simulations and theoretial alulations. For the latter purposewe use a model of fratal attrator and fratal basin of attration proposedin Refs. [19, 20℄ and the adiabati theory of noise-free SR in the preseneof suh fratal strutures presented in Ref. [21℄. Theoretial results explainwell both the osillations of h�i vs q and the multiresonane e�et.



In�uene of Fratal Strutures : : : 15032. The model and methods of analysisWe onsider a lassial magneti moment (spin) S, jSj = S in the uni-axial anisotropy �eld and external transverse magneti �eld ~B (t) parallel tothe x-axis [19�21,24�26℄, desribed by the HamiltonianH = �A (Sz)2 � ~B (t)Sx ; (1)where A > 0 is the anisotropy onstant. The motion of the spin is determinedby the Landau�Lifshitz equation with damping termdSdt = S �Be� � �SS � (S �Be�) ; (2)where Be� = �dH=dS is the e�etive magneti �eld and � > 0 is thedamping parameter. We assume the transverse �eld in the form of periodiÆ-pulses with amplitude B and period ~�~B (t) = B 1Xn=1 Æ (t� n~�) : (3)For suh a �eld Eq. (2) an be integrated and the resulting spin dynamisan be written as a superposition of two-dimensional maps TA and TB . Themap TA desribes the evolution of the spin between kiks and TB desribesthe motion of the spin during the ation of the �eld pulsesSn+1 = TB [TA [Sn℄℄ ; (4)where Sn is a spin vetor just after the ation of the n-th magneti �eldpulse. A full form of this map an be found in Refs. [21, 24, 26℄.The map (4) exhibits a rih variety of haoti behavior. Let us onsiderthe map (4) with the parameters S = 1, ~� = 2�, � = 0:1437002, A = 1 andtreat B as the ontrol parameter. Then, for B slightly below B = 1:2 twosymmetri haoti attrators of (4) orresponding to two spin orientationsin the absene of the external �eld exist (spin �up�, Sz > 0 and �down�,Sz < 0) [24, 25℄. For B > B these two attrators merge as a result of theattrator merging risis [20, 24℄ and a new post-ritial attrator (Fig. 1)onsisting of two symmetri parts is born. The system swithes haotiallybetween these two parts. We are interested in the dependene of the meantransient time, whih in the ase of the attrator merging risis is the timebetween onseutive swithes [2℄, on the ontrol parameter. In order toobserve noise-free SR we apply the external periodi signal whih modulatesthe ontrol parameter B in Eq. (4) so that it beomes time-dependentB (n) = B0 +B1 os (!0n) (5)
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ΦFig. 1. Attrator of the spin map (4) with S = 1, A = 1, � = 2�, � = 0:1437002,B = 1:2 and B = 1:2001 > B; � is the angle between the projetion of the spinvetor on the x-y plane and the x axis.and observe its transmission through the system as B0 is varied. We pointout that, ontrary to other ases [11, 13℄, this periodi signal ouples toEq. (4) in a omplex (non-additive) manner. The system with suh time de-pendene of the ontrol parameter an be desribed as a dynamial thresholdrossing system and the spin jumps between the two parts of the post-ritialattrator an be treated as threshold rossing events [27℄. Thus SR an beexpeted to appear in our system as in other dynamial [8, 12℄ and non-dynamial [9,10℄ threshold-rossing systems. We de�ne the output signal ynas usual in threshold rossing systems, so that one-step long pulses of unitheight orrespond to the jumps between the two parts of the post-ritialattrator: yn = 1 if at iteration n the jump ourred and yn = 0 otherwise.Due to the symmetry of the system with respet to the plane Sz = 0 wean assume that the jump ours when Sz;n�1 and Sz;n have opposite signs(Fig. 2). As a simple measure of the noise-free SR we take the orrelationfuntion between the input and output signalC = hynB1 os (!0n)iq�B21=2� (hy2ni � hyni2) ; (6)where the angular brakets denote the time average, and investigate its de-pendene on B0. The external signal is best transmitted if C is at a maxi-mum.
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nFig. 2. An example of the time series Sz vs n of the spin map (4) with B1 = 6 �10�4and T0 = 1024. Also a periodi signal proportional to B1 os (!0n) is shown. Notethat the jumps between the states Sz;n < 0 and Sz;n > 0 our most probablywhen the periodi signal is at a maximum.3. Numerial results3.1. Crisis in the spin map: osillations of the mean transient timeIn Fig. 3 the dependene of the mean transient time h�i on the ontrolparameter B obtained from numerial simulations of the spin map is shown.Above the risis at B = 1:2 the power saling law h� (B)i / (B �B)��with � � 0:707 yields the basi trend of the urve h�i vs B. However,onsiderable osillations superimposed on this trend an be also seen. Theyare a ombination of two basi kinds of osillations, the so-alled normal andanomalous ones.Above the risis the preritial attrators are turned into haoti saddlesand their basins into pseudobasins. Just above B the fratal struture ofthese new objets an be assumed as idential with that of their preritialounterparts. Normal osillations appear in haoti systems in whih thepreritial basins of attration do not have a self-similar (fratal) struture.They are indued by onseutive branhes of the fratal haoti saddle reep-ing, with inreasing ontrol parameter, into the non-fratal basin of anotherpreritial attrator [20℄ whih results in the modulation of the slope of theurve h�i vs the ontrol parameter. Anomalous osillations our when thepreritial basins of attration are also fratal sets. Their harateristi fea-ture is the presene of setions where the urve h�i vs the ontrol parameterinreases against the general trend [19℄. Typially their magnitude is largerthan that of normal osillations; e.g., anomalous osillations are dominatingin Fig. 3, but traes of the normal osillations are also visible.
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Log10(B-Bc)Fig. 3. The mean transient time h�i vs B�B for the spin map (4) with parametersas in Fig. 1; dominating anomalous osillations an be seen. Solid line � numerialresults; dashed line � theoretial results obtained from the model of Se. 4.2 withthe parameters � = 0:124, bE = 3:115209 : : :, � = 0:00234,  = 0:285, b=a = 3:83,� = 1:6. 3.2. An example of noise-free stohasti multiresonaneIn Fig. 4 typial urves C vs B0 are shown for slowly varying inputsignals with di�erent amplitudes B1. Jumps between symmetri parts of thepostritial attrator are observed for B0 > B � B1. Within the range ofB0 shown in Fig. 4 the urves exhibit several strong maxima, so the noise-free stohasti multiresonane is found. These maxima are aompaniedby numerous tiny loal maxima. We also heked that other measures ofSR, like the most popular signal-to-noise ratio (SNR), also exhibit a multi-peaked struture as B0 is varied [21℄. It an be shown that there is a diretorrespondene between ertain segments of the two urves: h�i vs B and Cvs B0+B1 [21℄. This relationship indiates that the ourrene of noise-freestohasti multiresonane and ompliated dependene of the orrelationfuntion on the ontrol parameter in our model is a result of the fratalstruture of preritial attrators and their basins of attration.4. Theoretial results4.1. A model of the fratal haoti saddle and the pseudobasinLet us onsider a model of a fratal haoti saddle overlapping a pseu-dobasin of another, e.g., symmetri haoti saddle [19, 20℄. This model in-orporates the important topologial properties of the two overlapping sets.The ontrol parameter, whih in the spin map (4) should be identi�ed withB � B, will be denoted as q. The time-dependent ontrol parameter will
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B0+B1Fig. 4. The orrelation funtion C vs B0 for the signal yn from the spin map (4)with parameters as in Fig. 1 and T0 = 1024: (a) B1 = 1 � 10�4, (b) B1 = 3 � 10�4,() B1 = 6 � 10�4, (d) B1 = 1:5 � 10�3. Solid lines � numerial results; dashed lines� theoretial results obtained from the theory of Se. 4.3 with the parameters asin Fig. 3.be denoted as q (n) = q0 + q1 os(!0n), where q0 should be identi�ed withB0 �B and q1 with B1 (f. Eq. (5)).Let us start with the ase of time-independent ontrol parameter q. Weassume the model of the haoti saddle A as a family of K + 2 parabolisegments Ak (Fig. 5)A = K+1[k=0 Ak = K+1[k=0 n(x; y) : y = �x2 � (1� Æk;K+1) a�k + qo ; (7)where a and � are model parameters. The invariant measure is uniformlydistributed along the segments and its relative density on the segment Akis assumed as ~�k = (1� ) k for 0 � k � K and ~�K+1 = K+1, where0 <  < 1 is another model parameter. The model of the pseudobasin is
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. . .Fig. 5. The model of a fratal haoti saddle with a = 1 and q = 0 (7) entering thepseudobasin of attration of the other saddle (8).assumed as a family of L+ 2 stripes Bl (Fig. 5)B = L+1[l=0 Bl = L+1[l=0 n(x; y) : (1� Æl;L+1)��lb� �lbE� � y � �lbo ; (8)where �, b and bE are again model parameters.The risis ours at q = 0 when the uppermost paraboli segment ofthe saddle A touhes the lowermost stripe of the pseudobasin B. All modelparameters are determined by the fratal struture of the saddles and pseu-dobasins of the system under study and an be assessed from magni�ed plotsof the ollision region between the haoti saddles and pseudobasins [19,20℄.In order to model the ase with the time-dependent ontrol parameter, qshould be replaed with q (n) in Eqs. (7), (8).4.2. Theoretial evaluation of the mean transient timeFrom the model of Se. 4.1 the mean transient time an be evaluated ash� (q)i = p�1 (q), where p (q) is the probability of jump between the sym-metri parts of the post-ritial attrator. This probability is proportionalto the measure � (q) of the overlap of the saddle and the pseudobasin ofthe other saddle [1, 2℄. The latter measure is a sum of overlap measures�kl (q) between the individual paraboli segments Ak of the haoti saddleand the stripes Bl of the pseudobasin. In turn, the quantity �kl (q) is justthe length of the segment Ak ontained inside the stripe Bk and multipliedby the relative measure density ~�k, thus we obtainp (q) = �� (q) = � K+1Xk=0 L+1Xl=0 �kl (q) ; (9)



In�uene of Fratal Strutures : : : 1509where � is the proportionality onstant, and�kl (q) = �k �(1� Æl;L+1)��lb� �lbE� ; q�� �k ��lb; q� : (10)In Eq. (10) �k (; q) denotes the measure of the overlap of the segment Akand a half-plane q >  whih, for small q � (1� Æk;K+1) a�k � , an beapproximated as�k (; q) = ~�kqq � (1� Æk;K+1) a�k �  ��q � a (1� Æk;K+1)�k � � ;(11)where �(�) denotes the Heaviside funtion.Choosing properly the model parameters (their values are given belowFig. 3) one an reprodue the ompliated dependene of the mean transienttime on the ontrol parameter with high auray (Fig. 3). In partiular, theanomalous and normal osillations of h� (q)i are reprodued. Using ertainsimpli�ations of the above model it is possible to obtain simple analytiexpressions for the period and magnitude of normal osillations [20℄ andfor the period and maximum height of anomalous osillations [19,20℄ whihagree well with numerial results.4.3. Theoretial evaluation of the orrelation funtionIn the ase of the time-dependent ontrol parameter q (n)=q0+q1 os(!0n)the jump probability p (q (n)) � p (n) beomes also time-dependent. Then,in the ontinuous time approximation, and taking into aount that y2n = yn,it an be easily shown thathynB1 os (!0n)i = T�10 T0Z0 p (t)B1 os (!0t) dt = B1P1 (q0) ; (12)hy2ni = hyni = T�10 T0Z0 p (t) dt = p (q0) ; (13)where T0 = 2�=!0 is the period of external signal, P1 is the �rst Fourieroe�ient, and p is the mean value over T0 of p (t). If the external periodisignal is slowly varying in time, the adiabati approximation an be used [6℄in whih the time-dependent jump probability an be obtained from ourmodel by replaing q with q (n) in Eqs. (9)�(11). Then, the quantities P1and p an be evaluated analytially, and the resulting expressions are doublesums similar to that in Eq. (9), ontaining ompliated ombinations of



1510 A. Krawieki et al.ellipti integrals of the �rst and seond kind. The omplete expressions forP1 and p an be found in Ref. [21℄.Choosing the same set of model parameters whih enabled us to �t thetheoretial and numerial urves of the mean transient time vs the ontrolparameter in Se. 4.2 we obtained the theoretial urves C vs q0 shownin Fig. 4. In Figs. 4(b)�(d), i.e., for larger values of the amplitude B1,the agreement between the theoretial and numerial results is good. Notonly the multiresonane e�et is found, i.e., the maximization of the input�output orrelation funtion for many values of the ontrol parameter, butalso the loation and height of the maxima of C are predited quite well. InFig. 4(a) only qualitative agreement between the theoretial and numerialurves an be seen. This is onneted with the fat that in our model (7), (8)we neglet further splitting of the paraboli segments and stripes with smallindies k and l, respetively. This splitting, however, ours in a real systemand auses the inrease of the number of maxima of C and shift of theirloation in omparison with the theoretial predition. The above resultsthus prove that the appearane of noise-free stohasti multiresonane is adiret onsequene of the fratal struture of preritial attrators and theirbasins. They also show that for slowly varying periodi signals this e�etan be at least qualitatively explained using the adiabati approximation forthe time-dependent probabilities p (n).5. Disussion and onlusionsIn this paper we disussed two e�ets onneted with the in�uene of thefratal struture of preritial attrators and their basins of attration onthe dynamis of system near rises: osillations of the mean transient timeand noise-free stohasti multiresonane. The former e�et has long beenknown [2,28℄, however, it has been treated as a rather small deviation fromthe basi power saling of h�i and not studied in detail. Only reently ana-lyti theory of this e�et has been elaborated by two of us [19,20℄. Our fur-ther work has shown that if SR is investigated in a system lose to risis, thefratality of preritial attrators and their basins leads to a more spetau-lar e�et of noise-free stohasti multiresonane, whih annot be treated asa small deviation from the typial piture of SR with a single maximum of Cor SNR [21℄. It should be emphasized that both e�ets appear naturally inour system, while, e.g., the appearane of stohasti multiresonane in a sys-tem with noise required a purposeful onstrution of a multistable potential[22, 23℄.The �ne struture of preritial attrators and their basins is best re-�eted in the numerous maxima of C for a very small amplitude of theperiodi signal (Fig. 4(a)). As B1 is inreased the details of the fratal stru-



In�uene of Fratal Strutures : : : 1511ture smaller than a. 2B1 are averaged and the urve C vs B0 is smoothedout. For small B1, tiny (i.e., on the order of B1) hanges of the ontrolparameter B0 lead to dramati hanges of C, i.e., of the quality of signaltransmission. This important e�et usually annot be found in typial sys-tems with SR where the maxima of C or the SNR are smooth and soft(inluding haoti one-dimensional maps in whih noise-free SR an be ob-served [11�13℄). Hene large sensitivity of SR to small hanges of the ontrolparameter an be onsidered as typial of systems with osillations of themean transient time.In our study of SR in this work we used as a measure the input�outputorrelation funtion instead of the most popular SNR. It an be shown thatalso the SNR exhibits multiple maxima as the ontrol parameter is var-ied [21℄. We observed better agreement between numerial and theoretialurves C vs B0 than SNR vs B0. This is probably sine in order to evaluateC using the theory of Se. 4.3 only the adiabati approximation is needed,while in order to evaluate the SNR analytially one should make additionalassumptions onerning the statistial independene of the jumps betweensymmetri parts of the postritial attrator [10, 21℄.So far, we have disussed noise-free stohasti multiresonane only in asystem with fratal basins of preritial attrators. However, the preseneof strong anomalous osillations of h�i is not a neessary ondition for theourrene of many maxima of the orrelation funtion or the SNR. Ourpreliminary results obtained in systems in whih normal osillations of themean transient time are dominating on�rm this onlusion; a full aountof these results will be published elsewhere. Sine osillations of the meantransient time are often observed in systems with rises [2, 28℄ noise-freestohasti multiresonane should be also observable in many suh systems,inluding experimental ones with ontinuous time.REFERENCES[1℄ C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 57, 1284 (1986).[2℄ C. Grebogi, E. Ott, F. Romeiras, J.A. Yorke, Phys. Rev. A36, 5365 (1987).[3℄ R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981).[4℄ L. Gammaitoni, P. Hänggi, P. Jung, F. Marhesoni, Rev. Mod. Phys. 70, 223(1998).[5℄ V.S. Anishenko, A.B. Neiman, F. Moss, L. Shimansky-Geier, Phys. Usp. 42,7 (1999), [Usp. Fiz. Nauk 169, 7 (1999)℄.[6℄ B. MNamara, K. Wiesenfeld, Phys. Rev. A39, 4854 (1989).[7℄ P. Jung, P. Hänggi, Phys. Rev. A44, 8032 (1991).
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