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EVOLUTION OF A GRAIN SYSTEM:FROM EARLY TO LATE STAGES�M. Niemie
Institute of Physi
s, Opole UniversityOleska 48, 45-052 Opole, PolandA. GadomskiInstitute of Mathemati
s and Physi
s, University of Te
hnology and Agri
ultureS. Kaliskiego 7, 85-796 Bydgosz
z, Polandand J. �u
zkaInstitute of Physi
s, Silesian UniversityBankowa 14, 40-007 Katowi
e, Poland(Re
eived De
ember 4, 2000)An analyti
al approa
h to the d-dimensional grain growth, whi
h isa kind of the heterogeneous nu
leation-and-growth phase transformation,is o�ered. The system is assumed to be driven by 
apillary for
es. An-other important operative assumption is that the system evolves underpreservation of its hypervolume, whi
h results in 
onsidering the pro
ess asa random walk in the spa
e of grain sizes. A role of the initial 
onditionimposed on the system behaviour, and how does the system behave upona pres
ribed initial state, have been examined. A general 
on
lusion ap-pears, whi
h states that this pres
ription does not a�e
t the asymptoti
system behavior, but may be of importan
e when inspe
ting the early-time domain more 
arefully, 
f. the Weibull-type initial distribution. Thisstudy is addressed to some analogous theoreti
al des
riptions 
on
erningpoly
rystals as well as bubbles-
ontaining systems. Some 
omparison to an-other modelling, in whi
h a 
ru
ial role of lo
al material gradients (�uxes)was emphasized, has been atta
hed.PACS numbers: 05.40.�a, 64.60.�i, 81.10.Jt
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zka1. Introdu
tionNu
leation-and-growth phase transitions belong to a 
lass of the so-
alledheterogeneous phase transformations. Among quite many of them, one 
ouldlist su
h as: grain growth (of normal and abnormal nature), re
rystallization,some polymorphi
 as well as order�disorder phase transitions [1℄.Throughout this study we wish to explore some kineti
 e�e
ts 
hara
ter-isti
 of the grain growth, preferentially of the normal type [2℄. An emphasiswill be parti
ularly put on revealing 
ertain 
ru
ial points of the in�uen
e ofInitial Conditions (IC) on the grain growth pro
ess studied, whi
h is 
hosenby the authors as a landmark system. The reason for so doing 
omes fromthe fa
t, that up to now rather a little is known about the relation of howdoes some IC pres
ribed in�uen
e the overall system behavior [3℄.Let us start with short 
hara
teristi
s of what really the grain growthmeans. For this purpose we may adopt a kind of de�nition proposed in areview paper by Weaire and M
Murry. It 
an be summarized as follows [4℄:(i) grain growth pro
ess yields a 
ellular system of preserved hypervolume;(ii) Grain Boundaries (GB's) are asso
iated with a positive surfa
e energy;(iii) GB's migrate as to lower their energy;(iv) grain stru
ture evolves with time in the dire
tion of in
reasing grainsize;(v) the above points would su�
e to model the kineti
s of the grain growthin a statisti
al way, whi
h means, that su
h important notions, likegrain texture and grain stru
ture topology are unfortunately not in-volved expli
tly in this des
ription.From point (v) it immediately follows that grain growth as well as otherrelated pro
esses, like soap froth formation or evolution of bubbles-
ontainingsystems, 
an by modeled by the same means. There is, in fa
t, a long-standing analogy between poly
rystals and soap froths, whi
h has been ex-ploited in various 
ontexts, 
f. [4, 5℄.As for the me
hanism of grain growth, one is readily en
ouraged to see [2℄.At this point, we may quite generally state that there are two types offor
es driving the system and/or inhibiting the system evolution. Amonga few prin
ipal types of driving for
es we would just mention a deterministi
one, inevitably 
onne
ted with the surfa
e (line) tension e�e
t (for bubbles,a

ording to the Lapla
e's law, with a pressure di�eren
e), and termed the
apillary for
e. It is known [2℄, that this for
e may really be enhan
edin a �u
tuating system. Another type of for
es is named the drag for
es,
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h the Zener for
e, due to pinning, as well as the Mullins for
e,subje
ted to thermal grooves, emerging mostly in high-temperature limit,
an be mentioned [6, 7℄.Looking into the nature of GB's, being always of paramount importan
ewhile trying to study thoroughly the phenomenon, one may simply dividethem into two basi
 types. These are as folows:(i) low-angle GB's;(ii) high-angle GB's.For our des
ription it is su�
ient to mention that the �rst ones, o

uringtypi
ally in some early stages of the grain growth, are equivalent to GB's ofsmall 
urvature, whereas the se
ond ones, emerging most probably in a latetime zone, do not 
onform to this type of GB. They, in turn, are attributedto GB's with a big 
urvature, rather.The systems mentioned above 
an be 
rudely 
lassi�ed by their kineti
s,whi
h 
an be best seen while looking at their asymptoti
 behavior. Theymostly express the physi
al fa
t that their 
hara
teristi
 average linear size(grain radius) 
hanges either powerly or logarithmi
ally, ex
ept the system
eases to grow [8℄. Under su
h 
ir
umstan
es, it would be interesting whatwould happen if we put various IC's just for having a look at how does itin�uen
e the global temporal system behavior and whi
h are the details of it.For sure, it would be equally interesting to provide a physi
ally justi�edrationale for the use of the starting system of equations, 
f. (1)�(3) in thenext se
tion. Let us sket
h roughly both a physi
al motivation as well asmathemati
al reasoning for keeping the system (1)�(3) at work. First of all,we are of the opinion that we may start with a general kineti
 equation ofAvrami�Kolmogorov-type, whi
h is 
ustomary in the theory of phase trans-formations [9℄. Namely, we begin by stating that the rate of a small 
hangein the average number of grains, designated by d=dt f(hvi; t)dhvi [10℄, willbe of interest. In other words, one is likely to look for the ensemble evolu-tion over a set of states measured in subsequent time instants t. We takean average over the 
orresponding ensemble of grains, 
hara
terized by thedistribution f(hvi; t), where time t stands for a parameter, and h:::i de-notes the average over the statisti
al ensemble. Next, one should noti
ethat the rate has to be proportional just to a small 
hange in the aver-age number of grains, i.e. to the overall (lo
al) magnitude 
hara
terizingthe pro
ess, namely d=dt f(hvi; t)dhvi / f(hvi; t)dhvi, whi
h is by the wayagain 
onsistent with philosophy of formulation of the above mentioned ki-neti
 equation [9℄. The se
ond observation is a more physi
ally motivatedremark, namely, that the proportionality 
oe�
ient should be determinedby the (d� 1)-dimensional area of a d-dimensional grain [11�13℄. It im-mediately results in proposing the following �averaged� equation, namely
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zkad=dt f(hvi; t)dhvi / hvi1�1=df(hvi; t)dhvi. Expanding the right-hand side ofthe proposed equation into the Taylor series around (si
!) the hypervolumeof a single grain, v, negle
ting the zeroth-term of the series (it 
ould, by
hoi
e, be equal to zero), noti
ing negligible meaning of its �rst term, espe-
ially, when 
ompared to the next one, and keeping as the most importantthe se
ond term, one may safely arrive at the system (1)�(3).The paper is stru
tured in the following way. In the next se
tion we in-trodu
e a statisti
al�me
hani
al model of grain growth, whi
h for a spe
i�

hoi
e of parameters, i.e. under 
onstan
y of total hypervolume of the sys-tem, redu
es to the Mulheran�Harding (M�H) model for the random walkin the spa
e of grain sizes. In Se
. 3 we sket
h quite thoroughly the methodof solving the grain-growth problem, whereas in Se
s. 4�6 we provide exa
tresult for the n-th statisti
al moment of the pro
ess, enabling one to in
ludethe entire analysis by splitting into both the main 
hara
teristi
s of the ini-tial as well as late evolution stages, and dis
uss their physi
al meaning. Lastse
tion serves for 
on
lusions and 
omparative analyses of related growingpro
esses, for whi
h the total hypervolume preservation is unfortunately notassured [14℄, with a 
ertain 
omment on some experimental 
ase, 
omingfrom physi
al metallurgy.2. Mulheran�Harding model in d-dimensionsThe M�H model [8, 11, 12℄ is a di�usion-type model whi
h des
ribes thesize- and time-dependent evolution of a grain system. It has a form of the
ontinuity equation, namely,��tf(v; t) = L̂Df(v; t) = D0 �2�v2 v�f(v; t) = � ��v j(v; t) ; v 2 [0;1) ; (1)where v is a volume of a grain, D0 is a 
onstant representing a randomwalk behavior in grain growth, f(v; t) is the distribution fun
tion of grainsat time t, i.e., f(v; t) dv is a relative number of grains of size in the volumerange [v; v + dv℄ and the parameter � depends on dimension of the system.We have introdu
ed the �di�usion� operator L̂D de�ned by the equalityin (1). Below, we put D0 = 1 be
ause it enters only in the produ
t D0twhi
h res
ales time t. Assuming that the net �ux of the migrating parti
lesa
ross the grain boundaries is proportional, for three-dimensional systems,to the surfa
e of grains of volume v and, for two-dimensional systems, to thelength of the 
ir
umferen
e of 
rystallites of area s [8, 11℄, one provides for� the relation � = 1� 1d (2)for systems of dimension d >1.



Evolution of a Grain System: from Early to Late Stages 1517The �ux j(v; t) reads, 
f. (1),j(v; t) = � ��vv�f(v; t) : (3)After performing di�erentiation in (3) one sees that the �ux j(v; t) is de-
omposed into two parts, namely,j(v; t) = ��v��1f(v; t)� v� ��vf(v; t) : (4)These are respe
tively: the drift part and the di�usional part. Noti
e thatthe deterministi
 drift part is proportional to 
urvature 1=r of the grains,where r is the grain radius. Indeed, it is proportional to v�1=d, but 
learly vis proportional to rd. The 
urvature-driven part is proportional to the sur-fa
e tension 
hange. The di�usional part 
onforms to a form of the �rstFi
k's law and is proportional to the area of a single grain (be
ause grains
hange their volume by gaining or losing atoms and the rate of atta
hmentor deta
hment is proportional to the grain surfa
e [15℄) and to the gradientof the distribution fun
tion f(v; t). Thus, one realizes that the surfa
e prop-erties, subje
ted to the (d� 1)-dimensional hypersurfa
e of a d-dimensional
rystallite (bubble) are of 
ru
ial importan
e in understanding the me
ha-nism of our modeling.In order to solve Eq. (1) we have to support this equation by appropriate
onditions. These are [8, 11℄:a) the initial 
ondition f(v; 0) = f0(v) ; (5)where f0(v) is a given initial distribution of grains;b) the boundary 
onditionsf(0; t) = f(1; t) = 0 : (6)The physi
al interpretation of the boundary 
onditions is 
lear as well asunambiguous: the number of grains of zero volume v = 0 as well as ofin�nite volume v =1 at any time is zero.
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an be presentedin terms of a family of two-parameter evolution operators P̂ (t; s) as followsf(v; t) = P̂ (t; s)f(v; s) ; t � s � 0 : (7)This equation 
an be rewritten in the integral form, namely,f(v; t) = 1Z0 P (v; tjw; s)f(w; s)dw ; (8)where the integral kernel P (v; tjw; s) of the time evolution operators P̂ (t; s)forms a family of propagators. From the de�nition (8) of the propagators itfollows that they obey the semigroup propertyP (v; tjw; s) = 1Z0 P (v; tjz; �)P (z; � jw; s)dz ; t � � � s (9)and the 
ondition limt!sP (v; tjw; s) = Æ(v � w) ; (10)holds for any t � s � 0. Let us note that (9) is similar to the Chapman�Kolmogorov equation for the 
onditional probability distribution of sto
has-ti
 Markovian pro
esses. However, the distribution f(v; t) is not normalizedto unity and 
hanges with time.If the initial distribution f(v; 0) is given then from (8) it follows thatf(v; t) = 1Z0 P (v; tjw; 0)f(w; 0)dw : (11)It means that it is su�
ient to 
onstru
t the propagator P (v; tjw; 0). Weseek a solution of (1) using the separation ansatz for f(v; t), namely,f�(v; t) = e��tG�(v) : (12)It leads to the eigenvalue problemL̂DG�(v) = ��G�(v) : (13)
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tions and eigenvalues of the �di�usion�operator L̂D de�ned in (1). The eigenvalues may be dis
rete or 
ontinuousor both. One 
an show [16℄ that � takes non-negative values in [0;1).From (1) and (12) it follows that G�(v) ful�ls the ordinary di�erentialequation of the se
ond orderv�G00�(v) + 2�v��1G0�(v) + ��(� � 1)v��2 + ��G�(v) = 0; (14)where the prime indi
ates di�erentiation with respe
t to v. The 
hange ofthe independent variable y = v� (15)transforms (14) into the equationy2F 00� (y) + ayF 0�(y) + (bym + 
)F�(y) = 0 ; (16)where the new fun
tion F�(y) is de�ned via the relationF�(y) = G�(v) (17)and a = 3 � 1=�, b = �=�2, 
 = 1 � 1=�, m = �1 + 2=�. Eq. (16)is the Bessel equation [17℄. One 
an take an arbitrary set of two linearlyindependent parti
ular solutions of this equation. Then a general solutionis a linear 
ombination of them. We 
hoose it in the form [17℄F�(y) = G�(v)= v(1�2�)=2"C1(�)J� 2p�2� �v(2��)=2!+C2(�)J�� 2p�2� �v(2��)=2!# ;(18)where � = 12� � = d1 + d (19)and J�(x) is the Bessel fun
tion [18℄. Two �
onstants� C1(�) and C2(�)appearing in the linear 
ombination of the parti
ular solutions J�(x) andJ��(x) are determined by initial and boundary 
onditions. Let us noti
ethat the eigenvalues � are 
ontinuous and as it was stated above � 2 [0;1).Therefore from the method of separation of variables (12) it follows that thegeneral solution f(v; t) is a linear 
ombination of the solutions f�(v; t) takenover all values of �. It means that in the 
ase of 
ontinuous eigenvaluesf(v; t) 
an eventually be represented by the expression:f(v; t) = 1Z0 f�(v; t) d� = 1Z0 e��tG�(v) d� : (20)
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onstants� C1(�) and C2(�). For this aim, let usrewrite (18) in the formG�(v) = G(1)� (v) + G(2)� (v) ; (21)where G(1)� (v) = C1(�)v(1�2�)=2J�  2p�2� �v(2��)=2! (22)and G(2)� (v) = C2(�)v(1�2�)=2J��  2p�2� �v(2��)=2! : (23)For su�
iently small x (x� 1), the leading term of the Bessel fun
tion isJ�(x) � x� : (24)Therefore for small values of v the fun
tions G(1)� (v) and G(2)� (v) behave asG(1)� (v) � C1(�)��=2v1�� (25)and G(2)� (v) � C2(�)���=2v��: (26)A

ordingly, for su�
iently small v the distribution f(v; t) depends upon v asf(v; t) � v1�� 1Z0 e��tC1(�)��=2d�+ v�� 1Z0 e��tC2(�)���=2d� : (27)Two integrals in this expression are di�erent from zero and should be �niteif f(v; t) exists. The �rst term in (27) tends to zero when v ! 0 while these
ond term tends to in�nity. Hen
e, the �rst boundary 
ondition f(0; t) = 0holds only if C2(�) � 0. The se
ond boundary 
ondition, f(1; t) = 0, isful�lled be
ause for large x the Bessel fun
tion behaves as J�(x) � x�1=2whi
h tends to zero as x!1.Be
ause C2(�)�0, the expression (20) 
an be re
ast in the expli
it form asf(v; t) = 2v(1�2�)=2 1Z0 dz z e�tz2B(z)J� � 2z2� � v(2��)=2� ; (28)



Evolution of a Grain System: from Early to Late Stages 1521where the new integration variable z = p� has been introdu
ed and B(z) �C1(z2) is a fun
tion determined by an initial distribution f(v; 0). Let ustake the limit t! 0. Then (28) 
onverges tof(v; 0) = 2v(1�2�)=2 1Z0 dz zB(z)J� � 2z2� � v(2��)=2� : (29)Formally, it is an integral equation with respe
t to the unknown fun
tionB(z). In fa
t, it is a Bessel transform [19℄. The inverse Bessel transformyields B(z) as an integral of f(v; 0). As a result we obtainB(z) = 12� � 1Z0 dv v1=2f(v; 0)J� � 2z2� � v(2��)=2� : (30)If we insert (30) into (28) and 
hange the integration order, we obtain therelation (11) in whi
h the propagator P (v; tjw; 0) has the formP (v; tjw; 0) = 2v(1�2�)=2w1=22� � 1Z0 dz z e�tz2J� � 2z2� � v(2��)=2��J� � 2z2� � w(2��)=2� : (31)The integration 
an be 
arried out [20℄ with the resultP (v; tjw; 0)= v(1�2�)=2w1=2(2� �)t exp��v2�� + w2��(2� �)2t �I� 2(vw)(2��)=2(2 � �)2t !; (32)where I�(x) is the modi�ed Bessel fun
tion [18℄. Thus, the solution f(v; t)is fully determined and now 
an be analyzed.4. Main 
hara
teristi
s of the pro
essFor any state fun
tion G(v) one 
an determine the statisti
al 
hara
-teristi
s of it like a mean value or �u
tuations. For the spe
ial 
ase whenG(v) = vn; n = 0; 1; 2; ::: one 
an obtain statisti
al moments mn(t) whi
hwe de�ne by the integralsmn(t) = 1Z0 vnf(v; t) dv; n = 0; 1; 2; ::: : (33)
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zkaIn virtue of (11) and (32) and after integration over the variable v, theytake on the form:mn(t) = (2� �) 2(n�1)2�� � �n��+22�� �� � 3��2��� tn�12��� 1Z0 dw f(w; 0) w exp�� w2��(2� �)2t��M �n� �+ 22� � ; 3� �2� � ; w2��(2� �)2t� ; (34)where M(a; b; x) is the Kummer (
on�uent hypergeometri
) fun
tion and� (x) is the Euler gamma fun
tion [18℄.The �rst two moments N(t) � m0(t) and V (t) � m1(t) are the mostimportant ones be
ause of their physi
al interpretation. The zero-order mo-ment N(t) = 1Z0 f(v; t) dv (35)is the relative number of grains at time t. From (34) one getsN(t) = �1=(2��)(t)� � 3��2��� 1Z0 F (w; t) dw ; (36)whereF (w; t) = w exp ���(t)w2���M �1; 3� �2� � ; �(t)w2��� f(w; 0) (37)and �(t) = 1(2� �)2t : (38)The �rst-order moment V (t) is the average total volume of the system. Using(11) and (32), one 
an show by an expli
it evaluation of the integrals thatV (t) = 1Z0 vf(v; t) dv = 1Z0 vf(v; 0) dv = V (0): (39)It means that statisti
ally the total volume of the system is preserved intime.



Evolution of a Grain System: from Early to Late Stages 1523The next important 
hara
teristi
s of the pro
ess is the average volumeof a single grain. It is de�ned as:hv(t)i = 1R0 vf(v; t) dv1R0 f(v; t) dv : (40)By virtue of (39), the mean single grain volume 
an be expressed via theaverage number of grains. Indeed, Eq. (40) 
an be rewritten ashv(t)i = V (t)N(t) = V (0)N�1(t) : (41)In this way, the main 
hara
teristi
s are determined by the zero-order mo-ment N(t) only. 5. Early stages of evolutionNow, let us investigate the in�uen
e of the initial 
ondition f(v; 0) onevolution of the system. As a �rst example we 
onsider the Dira
-deltainitial distribution,f(v; 0) = N0Æ(v � v0) = V (0)v0 Æ(v � v0) : (42)Physi
ally, it means that at initial time t = 0 there are N0 grains ea
h ofnon-zero volume v0 and in 
onsequen
e the total volume of the system isV (0) = v0N0. In this 
ase one getsf(v; t) = N0P (v; tjv0; 0) (43)and the zero-order momentN(t) = V (0) ��(t)� (� + 1)exp���(t)v01=��M �1; � + 1;�(t)v01=�� ; (44)where � is given by (19). The se
ond initial distribution f(v; 0) is 
hosen tobe the Weibull distribution (see Fig. 1),f(v; 0) = N0(2� �)v1��exp ��v2���= V (0)� � 12���(2� �)2v1��exp ��v2��� : (45)
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Fig. 1. Plot of the initial distributions f(v; 0) = f(v) versus v for a � the Weibullfun
tion de�ned by Eq. (45) and b � the Weibull-type fun
tion de�ned by Eq. (47).The parameters V (0) = 100 and � = 2=3 (whi
h 
orresponds to the three-dimensional 
ase, d = 3).In this 
ase, the zero-order moment is expressed by an elementary fun
tion,namely, N(t) = N0 ���2t+ 1��� = V (0)�� (�) ���2t+ 1��� : (46)The third example of the initial distribution f(v; 0) is the Weibull-type dis-tribution (see Fig. 1),f(v; 0) = N0(4� 2�)v3�2�exp ��v4�2��= V (0)� � 14�2�� (4� 2�)2v3�2�exp ��v4�2�� : (47)The 
orresponding zero-order moment is more 
ompli
ated than in the se
-ond 
ase and readsN(t) = N02���2�t�� U ��2 ; 12 ; �44t2�= V (0)� (�2 )21���2��1t�� U ��2 ; 12 ; �44t2� ; (48)where U(a; b; z) is the Tri
omi (
on�uent hypergeometri
) fun
tion. InFig. 2, we visualize the in�uen
e of the initial distributions on the kinet-i
s of the mean number of grains in the system. In all three 
ases we assume
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Fig. 2. The mean number N(t) of grains as a fun
tion of time t in the 3-d systemsand for three various initial distributions: a � f(v; 0) is the Weibull-type fun
tiongiven by (47), b � f(v; 0) is the Dira
-delta distribution (42) with v0 = 1, 
 � f(v; 0)is the Weibull fun
tion (45). The average total volume of the system is V (0) = 100.the same value of the total volume V (0) of the system, 
f. (42), (45) and(47). All three fun
tions N(t) monotoni
ally de
rease with time. For theDira
-delta (42) and Weibull-type (47) initial distributions, after a relativelyshort transient regime, the zero-order moments approa
h almost the samevalues. In the 
ase of the Weibull initial distribution (45), the mean numberN(t) of grains is, after very short time, smaller than in two previous 
ases.In turn, be
ause the average total volume is the same in all 
ases, it meansthat the average radius of grains is larger in the third 
ase.6. Late stages of evolutionThe behavior of the system for long time 
an be studied by analyzingthe statisti
al moments in (34). If time t!1, the integrand in (34) tendsto the fun
tion wf(w; 0) and the integral tends to a 
onstant value V (0).Therefore one 
an 
on
lude that for long time, t� 1, the statisti
al momentsmn(t) behave as mn(t) � t(n�1)=(2��): (49)In parti
ular, the zero-order moment exhibits the asymptoti
sN(t) � t�1=(2��) = t�d=(d+1): (50)The important feature is that the asymptoti
s do not depend on the initialstate of the system whi
h is 
hara
terized by the initial distribution f(v; 0)of the grains.
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hara
teristi
s of the normal grain growth is the averageradius hr(t)i of the single grain. Be
ause the volume v(t) � rd(t), the averageradius is hr(t)i � D1=d(t)E � 1R0 v1=df(v; t) dv1R0 f(v; t) dv : (51)Although the exponent 1=d is not a natural number, nevertheless one 
anexploit the expression (34) to 
al
ulate the average radius. As a result oneobtains hr(t)i � t� (52)with the exponent � = 1d+ 1 : (53)So, the average radius of grains in
reases with time and independently ofthe initial 
onditions, it depends powerly on time. It is interesting that themean-�eld type de�nitionhr(t)i � hv(t)i1=d � N�1=d(t); (54)used in other papers [14℄, leads to the same result (52).Now, let us integrate (1) over the phase spa
e v 2 [0;1). Then one getsdN(t)dt = j(0; t): (55)One 
an 
he
k that j(0; t) < 0 and the �ux at in�nity j(1; t) = 0. From thisrelation it follows that the diminishing of the grain number N(t) is relatedto the �ux a
ross the absorbing boundary at v = 0. This is why there areless and less grains: in�nitesimally small grains disappear atta
hing somebigger ones. 7. Con
lusionsThe following 
on
lusions 
an be listed as being of prior importan
e forthe kineti
s of d-dimensional grain growth as well as soap froth evolution:(i) For the growth pro
ess with 
onstant total hypervolume the evolutiondoes not asymptoti
ally depend upon the initial state f(v; 0);(ii) In�uen
e of the initial 
ondition may sometimes be more pronoun
ed(
f. the initial state in the form of Weibull fun
tions of v), whi
hsuggests some possible appli
ation of the modeling proposed, mostlytowards designing a �ne-grained material;
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hara
teristi
s of the evolution show up an expli
it dependen
yupon dimensionality;(iv) Evolution goes in a self-similar way both in the regimes of the spa
eof grain sizes as well as time;(v) If the total hypervolume of the system remains un
onserved, one mayexpe
t abnormalities, 
f. [2, 6℄.Some 
omparison to another approa
h, proposed to des
ribe a phase 
hangeor mi
rostru
ture formation, under a set of physi
al 
onditions juxtaposedbelow is worth making. The 
onditions are [14℄:(i) the kineti
 equation is of di�usion type, but the physi
al me
hanismis readily manifested via some domination of lo
al �uxes in the spa
eof grain sizes; by the way, right at this point it is worth to realize aperennially alive dis
ussion by Van Kampen on whi
h kind of di�usionequation, suitable for des
ription of kineti
 pro
esses in inhomogeneousmedia, one is likely to work under 
on
rete physi
al 
ir
umstan
es tobe modeled, 
f. [21℄;(ii) the di�usion (migration, mutation, et
. [14℄) is a state-dependent pro-
ess and the di�usion fun
tion D(v) does depend powerly upon thephysi
al state of the system, so that the role of the boundary is verymu
h pronoun
ed in this 
ase;(iii) there is no domination of the smallest as well as largest grains;(iv) there exists an expli
it dependen
e of the problem in question upondimensionality by means of (2);(v) total volume (hypervolume in a d-dimensional 
ase, or simply area ina 2d 
ase) in
reases powerly with time, whi
h is in apparent 
ontra-di
tion with what is presented here. The �rst and last above stated
onditions di�er substantially while 
omparing with the normal graingrowth 
onditions (formally, it should be realized that also the num-ber of grains de
reases slower in time than in the 
ase of normal graingrowth, namely as � t�1=(d+1) [8, 14℄) while 
onditions (ii)�(iv) areexa
tly the same. It must also be noti
ed that the average radius ofthe grain or domain follows the same asymptoti
s in the both 
asesmentioned.It is also worthy to argue that the phase transformation pro
ess, de-s
ribed in the present paper, pro
eeds in 2d as well as in 3d systems similarlyfrom the qualitative point of view (
f. [8, 14℄). There are, however, 
ertain
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es. Namely, the distribution fun
tion, subje
ted to thesame values of parameters, rea
hes its maximum value somewhat higher in3d than in 2d 
ase. The �rst two moments behave also in a slightly di�erentmanner, that means, the number of grains in the system (the 0-th momentof the pro
ess) de
reases somewhat slower in 2d than in 3d 
ase, whereasthe total volume of the system (the �rst moment of the pro
ess) remainsalways 
onserved, no matter whether the system under 
onsideration is two-or three-dimensional. The average radius, in turn, evolves a bit slower ina 3d system, whi
h is also the 
ase represented by the di�usion-type modelmentioned above. Moreover, it is interesting to noti
e here that all the basi
physi
al quantities that we have analyzed (the two �rst moments and theaverage radius of the mi
rodomain) do s
ale perfe
tly with time t, with 
er-tain exponents being less than one, whi
h are going to be
ome ex
lusivelydimensionality d-dependent.In a �nal word, let us draw some attention to the fa
t, that the afore pre-sented 
omparison 
ould, to a 
ertain extent, be exempli�ed by the re
rystal-lization as well as grain growth pro
esses in the single phase b:
:
: iron [22℄.In the former, grains of the pre-strained iron phase after primary 
rystalliza-tion do not perfe
tly feel the available spa
e and the remaining amorphouspart 
ompetes with the 
rystalline one, whi
h is however the 
ase 
hara
ter-isti
 of earlier annealing times. In the latter, that means, when the annealingtime rises 
onsiderably, the 
rystalline phase prevails, whi
h eventually re-sults in perfe
t spa
e-feeling by the formed poly
rystal. Then, the evolutionof the poly
rystal is reported to pro
eed in a uniform way, rather (no signa-tures of abnormality are dete
ted in [22℄). It appears to be interesting, thatthe growth exponents got from measurements di�er, while 
ompared withours, mostly in the (stationary) grain growth 
ase. It may thus imply, thatthe o�ered model would be more suitable for bubbles-
ontaining systems,where su
h low-valued fra
tional exponents 
an be met [3℄. It 
annot, infa
t, be dis
arded in total for poly
rystals, sin
e for su
h systems one an-ti
ipates quite often (for instan
e, for 
erami
 ferroele
tri
 poly
rystals) theexponents about 1=2 or lower, just around 1=4 for three-dimensional systems(Ba Ti O3) [1, 2, 23℄. It may, however, follow from the presented modeling,that no hope for in
lusion of some ne
essary information about the type of
rystallinity (perhaps, about the me
hanism of appearen
e/disappearen
eof the grain boundaries as well as grain shapes alterations [22℄) into the of-fered statisti
al-physi
al des
ription would as usually result, at least in somespe
i�
 
ases, in mis�ts between theory and pra
ti
e.One of us (A. G.) wishes to thank Dr. S. Hutzler for his prompt response
on
erning literature information, and Prof. J. Piase
ki for pointing out theproblem of examination of survival 
onditions for the global grain �ux in thesystem studied.
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