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EVOLUTION OF A GRAIN SYSTEM:FROM EARLY TO LATE STAGES�M. NiemieInstitute of Physis, Opole UniversityOleska 48, 45-052 Opole, PolandA. GadomskiInstitute of Mathematis and Physis, University of Tehnology and AgriultureS. Kaliskiego 7, 85-796 Bydgoszz, Polandand J. �uzkaInstitute of Physis, Silesian UniversityBankowa 14, 40-007 Katowie, Poland(Reeived Deember 4, 2000)An analytial approah to the d-dimensional grain growth, whih isa kind of the heterogeneous nuleation-and-growth phase transformation,is o�ered. The system is assumed to be driven by apillary fores. An-other important operative assumption is that the system evolves underpreservation of its hypervolume, whih results in onsidering the proess asa random walk in the spae of grain sizes. A role of the initial onditionimposed on the system behaviour, and how does the system behave upona presribed initial state, have been examined. A general onlusion ap-pears, whih states that this presription does not a�et the asymptotisystem behavior, but may be of importane when inspeting the early-time domain more arefully, f. the Weibull-type initial distribution. Thisstudy is addressed to some analogous theoretial desriptions onerningpolyrystals as well as bubbles-ontaining systems. Some omparison to an-other modelling, in whih a ruial role of loal material gradients (�uxes)was emphasized, has been attahed.PACS numbers: 05.40.�a, 64.60.�i, 81.10.Jt
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1514 M. Niemie, A. Gadomski, J. �uzka1. IntrodutionNuleation-and-growth phase transitions belong to a lass of the so-alledheterogeneous phase transformations. Among quite many of them, one ouldlist suh as: grain growth (of normal and abnormal nature), rerystallization,some polymorphi as well as order�disorder phase transitions [1℄.Throughout this study we wish to explore some kineti e�ets harater-isti of the grain growth, preferentially of the normal type [2℄. An emphasiswill be partiularly put on revealing ertain ruial points of the in�uene ofInitial Conditions (IC) on the grain growth proess studied, whih is hosenby the authors as a landmark system. The reason for so doing omes fromthe fat, that up to now rather a little is known about the relation of howdoes some IC presribed in�uene the overall system behavior [3℄.Let us start with short harateristis of what really the grain growthmeans. For this purpose we may adopt a kind of de�nition proposed in areview paper by Weaire and MMurry. It an be summarized as follows [4℄:(i) grain growth proess yields a ellular system of preserved hypervolume;(ii) Grain Boundaries (GB's) are assoiated with a positive surfae energy;(iii) GB's migrate as to lower their energy;(iv) grain struture evolves with time in the diretion of inreasing grainsize;(v) the above points would su�e to model the kinetis of the grain growthin a statistial way, whih means, that suh important notions, likegrain texture and grain struture topology are unfortunately not in-volved explitly in this desription.From point (v) it immediately follows that grain growth as well as otherrelated proesses, like soap froth formation or evolution of bubbles-ontainingsystems, an by modeled by the same means. There is, in fat, a long-standing analogy between polyrystals and soap froths, whih has been ex-ploited in various ontexts, f. [4, 5℄.As for the mehanism of grain growth, one is readily enouraged to see [2℄.At this point, we may quite generally state that there are two types offores driving the system and/or inhibiting the system evolution. Amonga few prinipal types of driving fores we would just mention a deterministione, inevitably onneted with the surfae (line) tension e�et (for bubbles,aording to the Laplae's law, with a pressure di�erene), and termed theapillary fore. It is known [2℄, that this fore may really be enhanedin a �utuating system. Another type of fores is named the drag fores,



Evolution of a Grain System: from Early to Late Stages 1515among whih the Zener fore, due to pinning, as well as the Mullins fore,subjeted to thermal grooves, emerging mostly in high-temperature limit,an be mentioned [6, 7℄.Looking into the nature of GB's, being always of paramount importanewhile trying to study thoroughly the phenomenon, one may simply dividethem into two basi types. These are as folows:(i) low-angle GB's;(ii) high-angle GB's.For our desription it is su�ient to mention that the �rst ones, ouringtypially in some early stages of the grain growth, are equivalent to GB's ofsmall urvature, whereas the seond ones, emerging most probably in a latetime zone, do not onform to this type of GB. They, in turn, are attributedto GB's with a big urvature, rather.The systems mentioned above an be rudely lassi�ed by their kinetis,whih an be best seen while looking at their asymptoti behavior. Theymostly express the physial fat that their harateristi average linear size(grain radius) hanges either powerly or logarithmially, exept the systemeases to grow [8℄. Under suh irumstanes, it would be interesting whatwould happen if we put various IC's just for having a look at how does itin�uene the global temporal system behavior and whih are the details of it.For sure, it would be equally interesting to provide a physially justi�edrationale for the use of the starting system of equations, f. (1)�(3) in thenext setion. Let us sketh roughly both a physial motivation as well asmathematial reasoning for keeping the system (1)�(3) at work. First of all,we are of the opinion that we may start with a general kineti equation ofAvrami�Kolmogorov-type, whih is ustomary in the theory of phase trans-formations [9℄. Namely, we begin by stating that the rate of a small hangein the average number of grains, designated by d=dt f(hvi; t)dhvi [10℄, willbe of interest. In other words, one is likely to look for the ensemble evolu-tion over a set of states measured in subsequent time instants t. We takean average over the orresponding ensemble of grains, haraterized by thedistribution f(hvi; t), where time t stands for a parameter, and h:::i de-notes the average over the statistial ensemble. Next, one should notiethat the rate has to be proportional just to a small hange in the aver-age number of grains, i.e. to the overall (loal) magnitude haraterizingthe proess, namely d=dt f(hvi; t)dhvi / f(hvi; t)dhvi, whih is by the wayagain onsistent with philosophy of formulation of the above mentioned ki-neti equation [9℄. The seond observation is a more physially motivatedremark, namely, that the proportionality oe�ient should be determinedby the (d� 1)-dimensional area of a d-dimensional grain [11�13℄. It im-mediately results in proposing the following �averaged� equation, namely



1516 M. Niemie, A. Gadomski, J. �uzkad=dt f(hvi; t)dhvi / hvi1�1=df(hvi; t)dhvi. Expanding the right-hand side ofthe proposed equation into the Taylor series around (si!) the hypervolumeof a single grain, v, negleting the zeroth-term of the series (it ould, byhoie, be equal to zero), notiing negligible meaning of its �rst term, espe-ially, when ompared to the next one, and keeping as the most importantthe seond term, one may safely arrive at the system (1)�(3).The paper is strutured in the following way. In the next setion we in-trodue a statistial�mehanial model of grain growth, whih for a spei�hoie of parameters, i.e. under onstany of total hypervolume of the sys-tem, redues to the Mulheran�Harding (M�H) model for the random walkin the spae of grain sizes. In Se. 3 we sketh quite thoroughly the methodof solving the grain-growth problem, whereas in Ses. 4�6 we provide exatresult for the n-th statistial moment of the proess, enabling one to inludethe entire analysis by splitting into both the main harateristis of the ini-tial as well as late evolution stages, and disuss their physial meaning. Lastsetion serves for onlusions and omparative analyses of related growingproesses, for whih the total hypervolume preservation is unfortunately notassured [14℄, with a ertain omment on some experimental ase, omingfrom physial metallurgy.2. Mulheran�Harding model in d-dimensionsThe M�H model [8, 11, 12℄ is a di�usion-type model whih desribes thesize- and time-dependent evolution of a grain system. It has a form of theontinuity equation, namely,��tf(v; t) = L̂Df(v; t) = D0 �2�v2 v�f(v; t) = � ��v j(v; t) ; v 2 [0;1) ; (1)where v is a volume of a grain, D0 is a onstant representing a randomwalk behavior in grain growth, f(v; t) is the distribution funtion of grainsat time t, i.e., f(v; t) dv is a relative number of grains of size in the volumerange [v; v + dv℄ and the parameter � depends on dimension of the system.We have introdued the �di�usion� operator L̂D de�ned by the equalityin (1). Below, we put D0 = 1 beause it enters only in the produt D0twhih resales time t. Assuming that the net �ux of the migrating partilesaross the grain boundaries is proportional, for three-dimensional systems,to the surfae of grains of volume v and, for two-dimensional systems, to thelength of the irumferene of rystallites of area s [8, 11℄, one provides for� the relation � = 1� 1d (2)for systems of dimension d >1.



Evolution of a Grain System: from Early to Late Stages 1517The �ux j(v; t) reads, f. (1),j(v; t) = � ��vv�f(v; t) : (3)After performing di�erentiation in (3) one sees that the �ux j(v; t) is de-omposed into two parts, namely,j(v; t) = ��v��1f(v; t)� v� ��vf(v; t) : (4)These are respetively: the drift part and the di�usional part. Notie thatthe deterministi drift part is proportional to urvature 1=r of the grains,where r is the grain radius. Indeed, it is proportional to v�1=d, but learly vis proportional to rd. The urvature-driven part is proportional to the sur-fae tension hange. The di�usional part onforms to a form of the �rstFik's law and is proportional to the area of a single grain (beause grainshange their volume by gaining or losing atoms and the rate of attahmentor detahment is proportional to the grain surfae [15℄) and to the gradientof the distribution funtion f(v; t). Thus, one realizes that the surfae prop-erties, subjeted to the (d� 1)-dimensional hypersurfae of a d-dimensionalrystallite (bubble) are of ruial importane in understanding the meha-nism of our modeling.In order to solve Eq. (1) we have to support this equation by appropriateonditions. These are [8, 11℄:a) the initial ondition f(v; 0) = f0(v) ; (5)where f0(v) is a given initial distribution of grains;b) the boundary onditionsf(0; t) = f(1; t) = 0 : (6)The physial interpretation of the boundary onditions is lear as well asunambiguous: the number of grains of zero volume v = 0 as well as ofin�nite volume v =1 at any time is zero.



1518 M. Niemie, A. Gadomski, J. �uzka3. Solution of the modelThe solution f(v; t) of the di�usion-type equation (1) an be presentedin terms of a family of two-parameter evolution operators P̂ (t; s) as followsf(v; t) = P̂ (t; s)f(v; s) ; t � s � 0 : (7)This equation an be rewritten in the integral form, namely,f(v; t) = 1Z0 P (v; tjw; s)f(w; s)dw ; (8)where the integral kernel P (v; tjw; s) of the time evolution operators P̂ (t; s)forms a family of propagators. From the de�nition (8) of the propagators itfollows that they obey the semigroup propertyP (v; tjw; s) = 1Z0 P (v; tjz; �)P (z; � jw; s)dz ; t � � � s (9)and the ondition limt!sP (v; tjw; s) = Æ(v � w) ; (10)holds for any t � s � 0. Let us note that (9) is similar to the Chapman�Kolmogorov equation for the onditional probability distribution of stohas-ti Markovian proesses. However, the distribution f(v; t) is not normalizedto unity and hanges with time.If the initial distribution f(v; 0) is given then from (8) it follows thatf(v; t) = 1Z0 P (v; tjw; 0)f(w; 0)dw : (11)It means that it is su�ient to onstrut the propagator P (v; tjw; 0). Weseek a solution of (1) using the separation ansatz for f(v; t), namely,f�(v; t) = e��tG�(v) : (12)It leads to the eigenvalue problemL̂DG�(v) = ��G�(v) : (13)



Evolution of a Grain System: from Early to Late Stages 1519Here G�(v) and � are the eigenfuntions and eigenvalues of the �di�usion�operator L̂D de�ned in (1). The eigenvalues may be disrete or ontinuousor both. One an show [16℄ that � takes non-negative values in [0;1).From (1) and (12) it follows that G�(v) ful�ls the ordinary di�erentialequation of the seond orderv�G00�(v) + 2�v��1G0�(v) + ��(� � 1)v��2 + ��G�(v) = 0; (14)where the prime indiates di�erentiation with respet to v. The hange ofthe independent variable y = v� (15)transforms (14) into the equationy2F 00� (y) + ayF 0�(y) + (bym + )F�(y) = 0 ; (16)where the new funtion F�(y) is de�ned via the relationF�(y) = G�(v) (17)and a = 3 � 1=�, b = �=�2,  = 1 � 1=�, m = �1 + 2=�. Eq. (16)is the Bessel equation [17℄. One an take an arbitrary set of two linearlyindependent partiular solutions of this equation. Then a general solutionis a linear ombination of them. We hoose it in the form [17℄F�(y) = G�(v)= v(1�2�)=2"C1(�)J� 2p�2� �v(2��)=2!+C2(�)J�� 2p�2� �v(2��)=2!# ;(18)where � = 12� � = d1 + d (19)and J�(x) is the Bessel funtion [18℄. Two �onstants� C1(�) and C2(�)appearing in the linear ombination of the partiular solutions J�(x) andJ��(x) are determined by initial and boundary onditions. Let us notiethat the eigenvalues � are ontinuous and as it was stated above � 2 [0;1).Therefore from the method of separation of variables (12) it follows that thegeneral solution f(v; t) is a linear ombination of the solutions f�(v; t) takenover all values of �. It means that in the ase of ontinuous eigenvaluesf(v; t) an eventually be represented by the expression:f(v; t) = 1Z0 f�(v; t) d� = 1Z0 e��tG�(v) d� : (20)



1520 M. Niemie, A. Gadomski, J. �uzkaWe have to determine two �onstants� C1(�) and C2(�). For this aim, let usrewrite (18) in the formG�(v) = G(1)� (v) + G(2)� (v) ; (21)where G(1)� (v) = C1(�)v(1�2�)=2J�  2p�2� �v(2��)=2! (22)and G(2)� (v) = C2(�)v(1�2�)=2J��  2p�2� �v(2��)=2! : (23)For su�iently small x (x� 1), the leading term of the Bessel funtion isJ�(x) � x� : (24)Therefore for small values of v the funtions G(1)� (v) and G(2)� (v) behave asG(1)� (v) � C1(�)��=2v1�� (25)and G(2)� (v) � C2(�)���=2v��: (26)Aordingly, for su�iently small v the distribution f(v; t) depends upon v asf(v; t) � v1�� 1Z0 e��tC1(�)��=2d�+ v�� 1Z0 e��tC2(�)���=2d� : (27)Two integrals in this expression are di�erent from zero and should be �niteif f(v; t) exists. The �rst term in (27) tends to zero when v ! 0 while theseond term tends to in�nity. Hene, the �rst boundary ondition f(0; t) = 0holds only if C2(�) � 0. The seond boundary ondition, f(1; t) = 0, isful�lled beause for large x the Bessel funtion behaves as J�(x) � x�1=2whih tends to zero as x!1.Beause C2(�)�0, the expression (20) an be reast in the expliit form asf(v; t) = 2v(1�2�)=2 1Z0 dz z e�tz2B(z)J� � 2z2� � v(2��)=2� ; (28)



Evolution of a Grain System: from Early to Late Stages 1521where the new integration variable z = p� has been introdued and B(z) �C1(z2) is a funtion determined by an initial distribution f(v; 0). Let ustake the limit t! 0. Then (28) onverges tof(v; 0) = 2v(1�2�)=2 1Z0 dz zB(z)J� � 2z2� � v(2��)=2� : (29)Formally, it is an integral equation with respet to the unknown funtionB(z). In fat, it is a Bessel transform [19℄. The inverse Bessel transformyields B(z) as an integral of f(v; 0). As a result we obtainB(z) = 12� � 1Z0 dv v1=2f(v; 0)J� � 2z2� � v(2��)=2� : (30)If we insert (30) into (28) and hange the integration order, we obtain therelation (11) in whih the propagator P (v; tjw; 0) has the formP (v; tjw; 0) = 2v(1�2�)=2w1=22� � 1Z0 dz z e�tz2J� � 2z2� � v(2��)=2��J� � 2z2� � w(2��)=2� : (31)The integration an be arried out [20℄ with the resultP (v; tjw; 0)= v(1�2�)=2w1=2(2� �)t exp��v2�� + w2��(2� �)2t �I� 2(vw)(2��)=2(2 � �)2t !; (32)where I�(x) is the modi�ed Bessel funtion [18℄. Thus, the solution f(v; t)is fully determined and now an be analyzed.4. Main harateristis of the proessFor any state funtion G(v) one an determine the statistial hara-teristis of it like a mean value or �utuations. For the speial ase whenG(v) = vn; n = 0; 1; 2; ::: one an obtain statistial moments mn(t) whihwe de�ne by the integralsmn(t) = 1Z0 vnf(v; t) dv; n = 0; 1; 2; ::: : (33)



1522 M. Niemie, A. Gadomski, J. �uzkaIn virtue of (11) and (32) and after integration over the variable v, theytake on the form:mn(t) = (2� �) 2(n�1)2�� � �n��+22�� �� � 3��2��� tn�12��� 1Z0 dw f(w; 0) w exp�� w2��(2� �)2t��M �n� �+ 22� � ; 3� �2� � ; w2��(2� �)2t� ; (34)where M(a; b; x) is the Kummer (on�uent hypergeometri) funtion and� (x) is the Euler gamma funtion [18℄.The �rst two moments N(t) � m0(t) and V (t) � m1(t) are the mostimportant ones beause of their physial interpretation. The zero-order mo-ment N(t) = 1Z0 f(v; t) dv (35)is the relative number of grains at time t. From (34) one getsN(t) = �1=(2��)(t)� � 3��2��� 1Z0 F (w; t) dw ; (36)whereF (w; t) = w exp ���(t)w2���M �1; 3� �2� � ; �(t)w2��� f(w; 0) (37)and �(t) = 1(2� �)2t : (38)The �rst-order moment V (t) is the average total volume of the system. Using(11) and (32), one an show by an expliit evaluation of the integrals thatV (t) = 1Z0 vf(v; t) dv = 1Z0 vf(v; 0) dv = V (0): (39)It means that statistially the total volume of the system is preserved intime.



Evolution of a Grain System: from Early to Late Stages 1523The next important harateristis of the proess is the average volumeof a single grain. It is de�ned as:hv(t)i = 1R0 vf(v; t) dv1R0 f(v; t) dv : (40)By virtue of (39), the mean single grain volume an be expressed via theaverage number of grains. Indeed, Eq. (40) an be rewritten ashv(t)i = V (t)N(t) = V (0)N�1(t) : (41)In this way, the main harateristis are determined by the zero-order mo-ment N(t) only. 5. Early stages of evolutionNow, let us investigate the in�uene of the initial ondition f(v; 0) onevolution of the system. As a �rst example we onsider the Dira-deltainitial distribution,f(v; 0) = N0Æ(v � v0) = V (0)v0 Æ(v � v0) : (42)Physially, it means that at initial time t = 0 there are N0 grains eah ofnon-zero volume v0 and in onsequene the total volume of the system isV (0) = v0N0. In this ase one getsf(v; t) = N0P (v; tjv0; 0) (43)and the zero-order momentN(t) = V (0) ��(t)� (� + 1)exp���(t)v01=��M �1; � + 1;�(t)v01=�� ; (44)where � is given by (19). The seond initial distribution f(v; 0) is hosen tobe the Weibull distribution (see Fig. 1),f(v; 0) = N0(2� �)v1��exp ��v2���= V (0)� � 12���(2� �)2v1��exp ��v2��� : (45)
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Fig. 1. Plot of the initial distributions f(v; 0) = f(v) versus v for a � the Weibullfuntion de�ned by Eq. (45) and b � the Weibull-type funtion de�ned by Eq. (47).The parameters V (0) = 100 and � = 2=3 (whih orresponds to the three-dimensional ase, d = 3).In this ase, the zero-order moment is expressed by an elementary funtion,namely, N(t) = N0 ���2t+ 1��� = V (0)�� (�) ���2t+ 1��� : (46)The third example of the initial distribution f(v; 0) is the Weibull-type dis-tribution (see Fig. 1),f(v; 0) = N0(4� 2�)v3�2�exp ��v4�2��= V (0)� � 14�2�� (4� 2�)2v3�2�exp ��v4�2�� : (47)The orresponding zero-order moment is more ompliated than in the se-ond ase and readsN(t) = N02���2�t�� U ��2 ; 12 ; �44t2�= V (0)� (�2 )21���2��1t�� U ��2 ; 12 ; �44t2� ; (48)where U(a; b; z) is the Triomi (on�uent hypergeometri) funtion. InFig. 2, we visualize the in�uene of the initial distributions on the kinet-is of the mean number of grains in the system. In all three ases we assume
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Fig. 2. The mean number N(t) of grains as a funtion of time t in the 3-d systemsand for three various initial distributions: a � f(v; 0) is the Weibull-type funtiongiven by (47), b � f(v; 0) is the Dira-delta distribution (42) with v0 = 1,  � f(v; 0)is the Weibull funtion (45). The average total volume of the system is V (0) = 100.the same value of the total volume V (0) of the system, f. (42), (45) and(47). All three funtions N(t) monotonially derease with time. For theDira-delta (42) and Weibull-type (47) initial distributions, after a relativelyshort transient regime, the zero-order moments approah almost the samevalues. In the ase of the Weibull initial distribution (45), the mean numberN(t) of grains is, after very short time, smaller than in two previous ases.In turn, beause the average total volume is the same in all ases, it meansthat the average radius of grains is larger in the third ase.6. Late stages of evolutionThe behavior of the system for long time an be studied by analyzingthe statistial moments in (34). If time t!1, the integrand in (34) tendsto the funtion wf(w; 0) and the integral tends to a onstant value V (0).Therefore one an onlude that for long time, t� 1, the statistial momentsmn(t) behave as mn(t) � t(n�1)=(2��): (49)In partiular, the zero-order moment exhibits the asymptotisN(t) � t�1=(2��) = t�d=(d+1): (50)The important feature is that the asymptotis do not depend on the initialstate of the system whih is haraterized by the initial distribution f(v; 0)of the grains.



1526 M. Niemie, A. Gadomski, J. �uzkaOne of the basi harateristis of the normal grain growth is the averageradius hr(t)i of the single grain. Beause the volume v(t) � rd(t), the averageradius is hr(t)i � D1=d(t)E � 1R0 v1=df(v; t) dv1R0 f(v; t) dv : (51)Although the exponent 1=d is not a natural number, nevertheless one anexploit the expression (34) to alulate the average radius. As a result oneobtains hr(t)i � t� (52)with the exponent � = 1d+ 1 : (53)So, the average radius of grains inreases with time and independently ofthe initial onditions, it depends powerly on time. It is interesting that themean-�eld type de�nitionhr(t)i � hv(t)i1=d � N�1=d(t); (54)used in other papers [14℄, leads to the same result (52).Now, let us integrate (1) over the phase spae v 2 [0;1). Then one getsdN(t)dt = j(0; t): (55)One an hek that j(0; t) < 0 and the �ux at in�nity j(1; t) = 0. From thisrelation it follows that the diminishing of the grain number N(t) is relatedto the �ux aross the absorbing boundary at v = 0. This is why there areless and less grains: in�nitesimally small grains disappear attahing somebigger ones. 7. ConlusionsThe following onlusions an be listed as being of prior importane forthe kinetis of d-dimensional grain growth as well as soap froth evolution:(i) For the growth proess with onstant total hypervolume the evolutiondoes not asymptotially depend upon the initial state f(v; 0);(ii) In�uene of the initial ondition may sometimes be more pronouned(f. the initial state in the form of Weibull funtions of v), whihsuggests some possible appliation of the modeling proposed, mostlytowards designing a �ne-grained material;



Evolution of a Grain System: from Early to Late Stages 1527(iii) Main harateristis of the evolution show up an expliit dependenyupon dimensionality;(iv) Evolution goes in a self-similar way both in the regimes of the spaeof grain sizes as well as time;(v) If the total hypervolume of the system remains unonserved, one mayexpet abnormalities, f. [2, 6℄.Some omparison to another approah, proposed to desribe a phase hangeor mirostruture formation, under a set of physial onditions juxtaposedbelow is worth making. The onditions are [14℄:(i) the kineti equation is of di�usion type, but the physial mehanismis readily manifested via some domination of loal �uxes in the spaeof grain sizes; by the way, right at this point it is worth to realize aperennially alive disussion by Van Kampen on whih kind of di�usionequation, suitable for desription of kineti proesses in inhomogeneousmedia, one is likely to work under onrete physial irumstanes tobe modeled, f. [21℄;(ii) the di�usion (migration, mutation, et. [14℄) is a state-dependent pro-ess and the di�usion funtion D(v) does depend powerly upon thephysial state of the system, so that the role of the boundary is verymuh pronouned in this ase;(iii) there is no domination of the smallest as well as largest grains;(iv) there exists an expliit dependene of the problem in question upondimensionality by means of (2);(v) total volume (hypervolume in a d-dimensional ase, or simply area ina 2d ase) inreases powerly with time, whih is in apparent ontra-dition with what is presented here. The �rst and last above statedonditions di�er substantially while omparing with the normal graingrowth onditions (formally, it should be realized that also the num-ber of grains dereases slower in time than in the ase of normal graingrowth, namely as � t�1=(d+1) [8, 14℄) while onditions (ii)�(iv) areexatly the same. It must also be notied that the average radius ofthe grain or domain follows the same asymptotis in the both asesmentioned.It is also worthy to argue that the phase transformation proess, de-sribed in the present paper, proeeds in 2d as well as in 3d systems similarlyfrom the qualitative point of view (f. [8, 14℄). There are, however, ertain



1528 M. Niemie, A. Gadomski, J. �uzkaquantitative di�erenes. Namely, the distribution funtion, subjeted to thesame values of parameters, reahes its maximum value somewhat higher in3d than in 2d ase. The �rst two moments behave also in a slightly di�erentmanner, that means, the number of grains in the system (the 0-th momentof the proess) dereases somewhat slower in 2d than in 3d ase, whereasthe total volume of the system (the �rst moment of the proess) remainsalways onserved, no matter whether the system under onsideration is two-or three-dimensional. The average radius, in turn, evolves a bit slower ina 3d system, whih is also the ase represented by the di�usion-type modelmentioned above. Moreover, it is interesting to notie here that all the basiphysial quantities that we have analyzed (the two �rst moments and theaverage radius of the mirodomain) do sale perfetly with time t, with er-tain exponents being less than one, whih are going to beome exlusivelydimensionality d-dependent.In a �nal word, let us draw some attention to the fat, that the afore pre-sented omparison ould, to a ertain extent, be exempli�ed by the rerystal-lization as well as grain growth proesses in the single phase b::: iron [22℄.In the former, grains of the pre-strained iron phase after primary rystalliza-tion do not perfetly feel the available spae and the remaining amorphouspart ompetes with the rystalline one, whih is however the ase harater-isti of earlier annealing times. In the latter, that means, when the annealingtime rises onsiderably, the rystalline phase prevails, whih eventually re-sults in perfet spae-feeling by the formed polyrystal. Then, the evolutionof the polyrystal is reported to proeed in a uniform way, rather (no signa-tures of abnormality are deteted in [22℄). It appears to be interesting, thatthe growth exponents got from measurements di�er, while ompared withours, mostly in the (stationary) grain growth ase. It may thus imply, thatthe o�ered model would be more suitable for bubbles-ontaining systems,where suh low-valued frational exponents an be met [3℄. It annot, infat, be disarded in total for polyrystals, sine for suh systems one an-tiipates quite often (for instane, for erami ferroeletri polyrystals) theexponents about 1=2 or lower, just around 1=4 for three-dimensional systems(Ba Ti O3) [1, 2, 23℄. It may, however, follow from the presented modeling,that no hope for inlusion of some neessary information about the type ofrystallinity (perhaps, about the mehanism of appearene/disappeareneof the grain boundaries as well as grain shapes alterations [22℄) into the of-fered statistial-physial desription would as usually result, at least in somespei� ases, in mis�ts between theory and pratie.One of us (A. G.) wishes to thank Dr. S. Hutzler for his prompt responseonerning literature information, and Prof. J. Piaseki for pointing out theproblem of examination of survival onditions for the global grain �ux in thesystem studied.
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