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1. Introduction

Interest in disordered systems attracts nowadays constant attention of re-
searchers and technologists. A huge variety of studies and examples devoted
to the percolation problem enables to propose a statement that the prob-
lem is going to be one of the most important in modern statistical physics,
and its “surroundings”, like chemical physics materials science, biophysics,
or soft-condensed matter theory, or even computer science.

The first class of theoretical challenges, inevitably associated with the
subject of percolation, concerns with a question: Whether there are one or
more infinite spanning clusters in the available physical space? The answer
obtained just recently assures that there are, in general, more than one
spanning clusters of infinite (or finite but very large) size [1]. This issue,
however, will not be addressed in the present work.

The second class of fundamental theoretical questions is related to possi-
ble connections between very basic models of condensed-matter theory, like
stochastic Ising or Potts models, Kardar—Parisi-Zhang systems, describing,
for example, the dynamics of rough surfaces, and the percolation model.
Some strict mappings of the systems mentioned on one another have been
found in several cases [2]. But this will not be addressed in this issue, either.

Among many others quite specific sub-classes of problems, a fascinating
class of theoretical tasks emerges, which is focused on the Random Walk
(RW) problem in a disordered lattice of any reasonable kind [3]. This sort
of problems will be a subject of the present study. Namely, in this work we
are going to investigate the RW problem, realized by a direct Monte Carlo
simulation on a square lattice, upon which a percolation cluster is built up.
On this site-percolation cluster near and above the percolation threshold,
RW realizations, one by one and by means of letting a “testing” particle
(carrier) walk at random, have been carried out. After examining the so-
called pure RW [4] on the percolation cluster close and a certain distance
above the percolation threshold, that is known to be about 59 percent [5], we
have superimposed certain constraints on its realizations, first enforcing the
RW to be drifted, weakly, moderately as well quite strongly. Then, we have
put into play other constraints, letting the system to feel its boundaries,
mostly by presuming the elastic (weakly, moderately and strongly) as well
as inelastic collision effects while touching the lattice border by the particle.
Moreover, we put at least one heuristic solution', which is also going to
yield some type of small constraints while looking at the system behavior.
Namely, it is made quite arbitrary to put the starting line to be the second

! There are in fact a few more, which have, at the first stage of the performed computer
simulation, been incorporated just for making the process a little bit more constrained
viz. realistic, cf. Appendix for details.
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column of the lattice. This is equivalent to push the walker in arbitrary way
into right direction by one lattice constant?.

Thus, the main purpose of this paper is to examine how do some phys-
ical constraints superimposed on the system influence its overall behav-
ior. Another motivation to perform this computer-simulation-based work
is to make the process under study as being realized under more realistic
conditions, though the assumption of a testing multiparticle random walk
(a ‘multitask system’) is unfortunately not perfectly fulfilled because of quite
modest computational capacity being at authors’ disposal. We hope, how-
ever, that a set of realistic examples chosen, and very much related to this
study as well as some report on heuristics applied here, will somehow com-
pensate the above drawback.

The principal quantity under vivid examination is the mean (first) pas-
sage time of a testing particle against the linear size of the available lattice
space. Invoking the phase diagrammatic notion, let us stress that for deal-
ing with a (dynamic) phase diagram some relation between the order and
control parameters is undoubtedly needed. In the presented case, one can
find such a relation while expecting some subtle relation between the proba-
bility of establishing the percolation phenomenon (density of the disordered
flock) and some very dynamics of a RW realization in the site-percolation
two-dimensional space, represented by the speed of an averaged RW, given
as a ratio (in a logarithmic scale) of some two quantities, namely that going
to represent linear lattice size as well as the passage time, being always a
signature of meander-like features of the two-dimensional percolation sub-
strate. Let us note here that by choosing the percolation probability either
slightly or significantly above the percolation threshold, it is guaranteed, at
least in statistical meaning of this word, that there is a connection between
the left as well as right sides of the lattice, or that one of the disordered 2d
matrix main features appears to be its connectedness, so that a carrier’s pas-
sage is expected to occur. As it is known, the main characteristics obtained
classify the process to be not a normal RW, but a model phenomenon being
quite sensitive to the above listed constraints, which, in turn, seems to be
sometimes beyond a common-sense realization. (An impressive issue on this
subject, considered formally, however, in a three-dimensional case, was also
addressed under the term diffusion on a fractal during one of the preceding
Smoluchowski Symposia, ¢f. Mazo in [6], and references therein.) We believe

2 To be precise, we have placed a carrier on an occupied spot in the second column,
then we have pushed it, again arbitrary, by one lattice constant to the right (the
experiment without drift), and then we let the carrier perform its random walk until
it reaches an occupied spot in the last column; for obvious reasons, the experiment
with drift did not include that arbitrary placement into the second column, but the
start was always from the first column.
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that something similar is going to happen in reality, what we are trying to
exemplify by various physical contexts (scenarios), cf. [7] for having a look
into a biophysical phenomenon. No doubt that examples can be found re-
ally everywhere, even unexpectedly, e.g. in the Internet traffic, where the
information packets may “percolate” through a virtual space, which in terms
of phase transition language means crudely that a certain passage between
sparse (free) and versatile congested states of the complex system under
investigation is going to occur [8].

2. Computer model, its outlines, peculiarities
and basic signatures

The computer model, staying behind the presented study, is rather
straightforward. Thus, we wish to explore the following algorithm:

1. Place arbitrarily a carrier in the second (without drift term) or first
(with drift term) column of the lattice on a spot labelled by “1”.

2. Let the carrier move at random (being drifted or not) on a percolation
substrate composed of randomly distributed sites, denoted by “0” and
“1”, for empty and non-empty sites, respectively.

3. Look for the place into which the carrier is going to travel by one or
more lattice units (constants)
a) If it is a “0” spot, or a border site, repeat the sampling again, or
apply some boundary rules, respectively
b) If it is a “1” spot proceed further.

4. Update all counters, but after having assured, that the particle strikes
the last lattice column at a “1” spot.

5. Go back to point 1 unless a stop command does intervene.

6. Complete the computation by carrying out some calculations and/or
drawing pictures of interest.

As aresult of thorough realization of the above algorithm, one may arrive
at some numerical data, being gathered in the following two Tables. Let us,
in short state what appears to be really remarkable while looking into the
Tables, cf. Table I and II, respectively. It can be juxtaposed as follows:

(i) The phenomenon in question has been examined twofold: Either while
some quite versatile boundary conditions (BCs) do influence the RW
system, or, when (decisive) drifts of rather different types are going to
be readily superimposed on the system behavior.
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Some small-scale computer simulation have been performed, where
the lattice size ranged between 23 x 23 and 27 x 27, i.e. over 5 binary
“decades”.

The quantity of prior interest has been agreed to be the mean (first)
passage time, that means, the number of steps that need to be realized
just for traversing across 2d site-percolation structure from left (second
column, cf. remarks in Sec. 1 and in Appendix, but a walker must
begin its walk at a “1” spot) to right (last column, but a walker must
strike it at a “1” spot). This quantity has been measured against the
linear square lattice size, and averaged over 50 realizations for each
lattice, cf. some details beneath, mostly involved in Tables I and II.

Even under assumed constraints (see, point (i)) some well known basic
tendencies of the RW temporal behavior have shown up [3,4].

There exist certain interesting discrepancies when compared to a peri-
odic boundary RW realization as well as while neglecting a drift, being
assumed of quite different strengths. They are know from literature,

cf. [3-5].

There are some fairly expected items in the presented Tables, cf. cap-
tions to them, that can be quite well understood in terms of either
very finiteness of the system under consideration and its realization(s)
(first of all, realize that the values of the basic quantities obtained do
depend upon the number of trials or realizations), or, while remem-
bering that the studied system is classified to be pretty nonlinear wviz.
unpredictive, when one is going to change, even slightly, its constraints.

A quite general scenario drawn, provokes someone to find out some
suitable examples that may exemplify the temporal behavior of the
model phenomenon under study; in our opinion, they can be somehow
borrowed at least from two areas of research, namely from the virtual
Internet world as well as from a quite real biophysical context, e.g. a
diffusion of amphiphilic tracers in phospholipid monolayers [9]. In the
former, one may think about passage of a certain information packet (a
carrier) that successfully passes over many routers-influencing states,
just to reach its destination place. In the latter, in turn, one can
conceptually proceed in terms of a walk of some invasive spread that
constantly affects its healthy surroundings, i.e. when it passes over its
fitness landscape. Note, by the way that maybe the so-called small-
world model [10] would be more appropriate in this context, but one
may realize that our model is (at least) formally immersed within this
fashionable concept. Both these categories touch probably deeply the



1546 A. GApowmsKl, J. S16DMIAK, J.J. UHER

notion of phase transition, possibly of the second order [11|. They
both seem to have much in common at least with some two phase
transitions, namely:

A. In the thin film formation, there appears readily to be a challenge
how some experimentalist can manipulate between commensurabili-
ty /incommensurability of a thin film deposited (sputtered) on the
substrate of a certain crystallographic characteristics; here, a suitable
collective dynamics, making use of some structural but dynamic cor-
respondence between the deposit and the (solid) support must be the
case, cf. the Frenkel-Kontorova model of thin film formation, which,
in terms of thermodynamic phase transition behavior leads typically
to a phase diagram a la some degree of commensurability (order pa-
rameter, frequently measured in percents) as a function of an external
parameter, e.g. a lateral pressure;

B. In collective traffic behavior under periodic boundary conditions,
however, one observes a motion of individuals under versatile noise
strength conditions, leading to self-propelled behavior; it leads to a
certain ferromagnetic vs paramagnetic-like phase transition behavior,
or more generelly that being of order/disorder type [12]: Note, however
that the latter cannot be confused with phase transition of second
order, though there are some (unresolved) relations between them, cf.
the Bose-Einstein condensation as a landmark case [11,13]. (Notice
that we did not explicitly examine the influence of fluctuations on
the system behavior. This probably remains to be a quite interesting
future task.)

From Table I it can be seen that the RW behavior has been examined in
three subgroups. In the first subgroup (first 4 rows) we anticipate, within
the simulation accuracy, some usual RW behavior being only slightly influ-
enced by the boundary constraints, which are assumed to be the simplest
reflection BCs. When some increase of elastic response of the boundary to
the carrier is playing a role (second subgroup, equivalent to the three next
rows in the table), the limit % is approached more visibly, and all the ex-
ponents are augmented, when compared to the previous ones. In the last
subgroup, where some inelastic BCs [15] have been applied, one detects pos-
sibly smallest scatter of the exponent values, since the two-dimensional RW
is sometimes, i.e. along the boundaries, realized as the one-dimensional one.

In Table II, in turn, one recognizes some influence of various drift terms.
A general conclusion towards a system tendency can be risked, namely: The
bigger the applied drift is, the more pronounced is the system tendency just
to approaching the exponent value of 1, 7.e. to reach a “first” noticable limit
characteristic of the so-called supernormal RW, c¢f. discussion in the next
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TABLE I

Statistics obtained from the performed direct Monte Carlo computer simulation, cf. [14],
for the so-called undirected (pure) RW process, with simplest reflecting and more specific
non-weakly reflecting as well as non-reflecting boundary conditions, respectively, ¢f. Ap-
pendix. They are abbreviated by el0, ell and iel, respectively. The average confidence
level of the presented results is ca. 99.4 percent, which may for sure be affected by both
the heuristics invented for the simulation purpose as well as the finite size effect, due
to not too large linear size of the square lattice (the maximum value is assumed to be
128 lattice units, cf. text for other details), which generally emphasizes quite nonlinear
behavior of the averaged single-particle traffic [15]. Notice that the value of d,, in the
4-th row appears to be somewhat bigger than it is reported, i.e. about 0.491, and slowly
but surely reflects a tendency to reaching %

Exponent(d,,) Probability (pper) Drift* BCs**

0.34 0.60 0 el0
0.46 0.80 0 el0
0.49 0.98 0 el0
0.49 1.00 0 el0
0.35 0.60 0 ell
0.52 0.80 0 ell
0.50 0.98 0 ell
0.39 0.60 0 zel
0.48 0.80 0 zel
0.49 0.98 0 zel

* Zero drift has been applied.

** In the first 4 rows some possibly simplest reflecting BCs have been applied (return
by one lattice unit after reflection). In the second 3 rows a bigger variable reflection
of the carrier must be anticipated (see, Text), while in the 3 last remaining rows
some inelastic collision, leading to a one-dimensional random motion of the carrier
along the boundary, has been introduced.

Section. The lowest limit with pper appears to be interesting since it is going
to fix the value of the d,, exponent around 0.27-0.28 for any pronounced
drift value, cf. Appendix for details.

Note also, which is characteristic of both the tables under analysis, that
some other relation has to be mentioned. Namely, if one goes away from
the percolation threshold, being about 0.6, towards the isotropic phase, with
probability equal to 1.0, one sees that the distance in the probability space
has increased about % of the threshold probability mentioned, whereas the
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TABLE 11

Statistics obtained from the performed direct Monte Carlo computer simulation, for the
so-called directed RW process, with simple (possibly weakly) reflecting boundary condi-
tions (BCs), but for various types of drifts, superimosed on the RW behavior. The average
confidence level of the presented results is about 97.8 percent, c¢f. remarks in Table I, and
consult [15] for some details. The values in rows from 5 to 7 appear to be a bit surpriz-
ing, especially while compared to those in the first 4 rows, which would probably draw a
certain attention to both the limits (some need to continue the simulation task emerges)

as well as ‘nonlinearities’ of the performed computer experiment.

Exponent (d,,) Probability (pper) Drift® BCs*®

0.28 0.60 Max el0
0.70 0.80 Max el0
0.90 0.98 Max el0
0.92 1.00 Max el0
0.28 0.60 max el0
0.85 0.80 max el0
1.00 0.98 max el0
0.27 0.60 mid el0
0.77 0.80 mid el0
1.00 0.98 mid el0
0.31 0.60 min el0
0.73 0.80 min el0
0.78 0.98 min el0

* Possibly biggest (Max), somewhat smaller but also big (max), some intermediate
(mid) as well as possibly smallest (min) drifts have been used, respectively, cf.
explanations in Text as well as the Appendix.

** The boundary condition is always the same, i.e. the simplest elastic one, denoted
as in Table I by el0.

% (more or less) up
to 1 (‘normal case’), or even up to 1 (‘supernormal case’), i.e. they increased
by % or even by 4 times (drift®), respectively, ¢f. Appendix. It resembles at
first look some colonization or infection scenario by a soil-borne fungal plant
parasite, exhaustively explored in [7], and interpreted quantitatively in [10].

It will be commented in detail in one of the subsequent sections.

exponents have experienced some “outgrowth” from ca.

It is worth to mention some theoretical realizations of the routes that
must be passed more or less collectively (or, one by one but under a set of
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realistic constraints, as is done in this work). One may recommend here at
least two types of descriptions. The first one, being the most popular, is
based on the Einstein’s concept of the mean-squared displacement (appre-
ciated also by Smoluchowski [16]), and can be summarized by the following
formula [3, 5]

(r?(t)) ~ 2/ (1)

where the left-hand side expression denotes the above mentioned key quan-
tity, being proportional to the area, or a number of sites, visited by a walker
(t is the time, and d,, stands for a RW dimension), whereas the second is
provided by a discretized master equation of Smoluchowski-like type, given
by [17,18]
%m(t) = =X Wing(t) + Z;Wjin, (¢), (2)
for which site-probabilites n; as well as transition rates W;; (and Wj;) are
some quantities of prior importance.

Especially the W probabilities applied particularly for traffic phenomena,
are strongly suggested to be chosen in a form [19]

w=2, 3
u

where @ stands for a prefactor, enabling one to include proper optimization
conditions for the analyzed traffic conditions (in case of W = Wj;, one
provides @ = 1, but in the countercase @ is a combination of Wj;’s), whereas
the parameter 7 is a time constant, which can be understood as the waiting
time for the escape of a carrier out of a jam or some congestion state into
unperturbed (free) flow. Look also into [12], pp. 377-382, where a phase
transition scenario, like free vs synchronized (correlated) flow as well as its
relations to a jam state have been drawn, cf. Fig. 1.

Note, by the way that in Fig. 1 the plotted curves represent the con-
gested dynamic phases (“ferromagnetic phases”), cf. [20], where the ap-
plied drift (“ordering external magnetic field”) makes the information flow
more pronounced, enabling to reach values above 180, i.e. dy — 1, cf.
Table II. It is then a kind of differentiation between unproperly (d,, — %) as

well as properly (d~w — 1) congested phases. If uncertaintity level tends to
zero, the phases become to be non-congested, but a really free (‘absolutely
non-jamming’) [8] phase appears above the abscissa (“paramagnetic phase”),
for which such a simple statistical measure of information uncertainty, in-
vented ad hoc for the congested phases, does not hold (because it is not
deterministic!), or can, e.g. artificially, be completed by adding new points
on the ordinate, the values of which exceed 100 in this case (obviously, the
spontanous “magnetization” would disappear).
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Fig.1. Schematic figure, representing some information diagram of the second
order type (continuous) [11], in which the so-called information uncertainty stands
for a control parameter (“temperature’) while the (dynamic) order parameter is
chosen to be the information flow. The former is evaluated to be —k X In (pper),

whereas the latter stands for the ratio 10 (Lea)
In (Tmfp)

is just k x du (“dynamic magnetization”), ¢f. Tables I and II; here Lgy represents
the linear lattice size, whereas Ty, is the mean first passage time (the arithmetic

, but also multiplied by k, which

mean was always taken over 50 simulation runs for each Lgq, ranging from 8 to
128), and k stands for some adjustment (“Boltzmann”) constant, k& = 200. The &
constant is chosen roughly to give the ranges of both ordinate and abscissa axes of
the diagram not exceeding 100 (percents), but for the set of data from the Table I
(first four rows, cf. the steepest curve). The diagram is based on the first four rows
taken from Table I (zero drift, the left steeper curve) as well as Table II (nonzero
drift, the right more “extended” curve), so that it is not a smooth curve, but reflects
rather main tendency of the stochastic process under study, with some crossover
towards lower values, cf. Text as well as [23]. Notice that for the both cases (curves)
presented the same boundary conditions, denoted by €l0, c¢f. captions to Tables,
have been assumed.

The present authors would propose to consider some phenomenological
extension of Eq. (3), just in the form of W = %, where p provides some nec-
essary information of the RW (“network”) topology, quite in a spirit of some
well-known dispersion parameter h, closely related to the so-called spectral
dimension [3,4], e.g. for u = 0 (“free” motion) one gets a completely random
route for a hopping carrier, but for 0 < pu < 1 one detects a correlated, or
even some highly correlated viz. jammed, movement, i.e. when y — 1. A
question arises: Whether such an extension proposed could be equivalent to
a fractional order [21] master equation

dP
ﬁm(t) = = XiWijn;(t) + XjWjin;(t) , (4)
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where the time derivative % from Eq. (2) has to be replaced by a fractional

i—;, and 0 < i < 1, since the sensitivity of the transport

phenomena in question to the time scale, ¢f. [16], and refs. therein, appear
to be quite noticable, and whether y ~ i or not, or how they are mutually
related, if this is the case? Moreover, maybe there exists a certain mutual
relation between the exponent i and the RW exponent d,,, the values of
which one can find in Tables I (no drift) as well as 2 (with a drift)? Some
statistical-physical arguments, based on the Liouville kinetic equation [11]

and concerning the so-called nonequilibrium phase transformations suggest
[22] that

order derivative

fi ~ 2dy (5)

so as a standard RW temporal behavior, cf. Table I, could be recovered, if
one assumed d,, = %, which is equivalent to fi = 1, i.e. when the ordinary
time derivative comes into play, cf. Eq. (2).

Notice, however that both the main mechanisms mentioned above lead
unequivocally to ending up with the asymptotic formula like Eq. (1), or its
analytical, i.e. transformed, equivalents, cf., so as a scaling behavior could
quite often be recovered. A main shortage of such analytical descriptions,
however, is that they are not capable of including such importants ‘details’
(read: constraints), like those studied here. That is why we try to invent
or simply use the computer models. (A main advantage is, however that
they are more under control, though up to a certain limit, sometimes named
the approximation.) For a review of recent works on the diffusion on a
percolation cluster, but applied specifically to chemical reactions involving
proteins, one is encouraged to see [18], where the distribution of the mean
first passage times as well as some analytical formulae of how to get them,
having known that distribution, have been provided.

3. Example(s) coming from the physics of Internet

In the doctoral dissertation by Kensuke Fukuda, a study of phase tran-
sition phenomena in Internet traffic has been presented [20]. Among many
quite interesting details, ranging from statistical physics to computer sci-
ence, one may experience some quantitative impression about the probability
density as well as corresponding peak position of the flow density (packets’
density) at a Japanese gateway, called the WAN Keyo, the abbreviation of
the Wide Area Network at the Keyo University in Japan. The plots pre-
sented there show a dynamical phase transition behavior, where a transition
takes place between congested as well as non-congested information flow
phases. In the phase transition the order parameter has been chosen to be
a peak position (in kbyte/sec) for some information packet (but averaged),
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occuring with a certain probability. The control paramter, in turn, has been
correspondingly selected to be the mean flow density, measured in kbyte/sec,
too.

In fact, a few transitions have been revealed, in particular between non-
congested (free) and moderately congested flows. There appears to be a
(weak) transition between moderately congested as well as heavily congested
flowing phases, which can probably be better termed a crossover behavior
[23], taking place within the entire dynamic phase, being called the congested
phase; one could also argue that a subtransition is expected to occur, cf. [21].
The general phase transition diagram, which can be drawn, looks solely like
the second order phase transition picture, cf. [20], and Fig. 3.7 therein.

We are of the opinion that our RW study on the percolation substrate
can also reveal the behavior of such a type, though we may have certain
problems of how to approach the Internet reality, ¢.e. how to get from our
model some desired, eg. temporal characteristics, like congestion length dis-
tributions [24], round-trip times distributions [25], or even login—logout inter-
val time distributions [26]. We mean that a first step towards the Internet
specifics could be to support each randomly hopping carrier by a kind of
protocol that has to contain: Some necessary information about its desti-
nation place, number of trips across the lattice (we have realized here one
trip from left to right of the lattice), waiting, or temporary trapping times
(whatever it means), and their distributions [27], strength of the drift super-
imposed on the walk as well as how does it may feel the boundary conditions
(“geometric” limitations of the walk or cut-offs). We have actually taken into
account the two last items mentioned, and some extention of the computer
model could be towards incorporationg the three remaining ones. Moreover,
we can also, even in such a simple computer experiment, introduce a notion
of the self-learning RW that will take some advantage from what the preced-
ing one has actually experienced while randomly traversing the matrix [28§],
1.e. for how long as well as possibly where certain trapping events took place.
(In the small-word language [29], it could be transferred to a change as well
as some placement variation of local interactions of the carrier with its en-
vironment?.) In consequence, it can cause the protocol to be updated, so
that a kind of RW with memory may be used as a straightforward general-
ization of this simulation scheme. It can, but in a continuous time domain,
be supported by using the concept of the fractional Kramers equation (with
a drift term), called the fractional Fokker—Planck equation, but with special
emphasis put on its Rayleigh limiting case (with no drift term), derived for
a test particle of mass M performing its Brownian motion wvia colliding with
bath particles of mass m, where 7; < 1, which results in having collisions

3 In fact, the nature of the applied constraints can be a controlling factor for some
qualitative differentiation among certain classes of random sets.
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as being frequent, but not too weak, cf. [30], so that a kind of Levy flight
might still be observed. In that case, by the way, the fractionality, involved
by means of the Liouville-Riemann integral operator, concerns with the po-
sition space [30], but not with the time domain, as was discussed above. Last
but not least, we have probably to revisit the meaning of the lattice, mostly
towards Internet topology [31]. Also, the type of percolation, whether there
must be the site- or bond-percolation [32], or mixed, or maybe coloured [33],
etc. should be decided prior to a concrete experiment. At this stage of our
presentation, we may say that, at least qualitatively, our model conforms
well to that invented by the Japanese authors [8,20,26]. Moreover, we have
practically estimated the main length vs time characteristics, which accord-
ing to Tables I and II, appear to be power laws similar to that mentioned in
Eq. (1), namely

qul2 ~ mfpsa (6)

where ¢ = 2d,, cf. captions to Tables I and II as well as Fig. 1 for details.
Under the constraints applied, it is then a manifestation of (statistical) self-
similarity, which stands for another landmark feature of the studies realized
by the authors [20,25,26], but is also stressed in some other work [31]. By
the way, notice that the RW is expected to be subnormal, when dy 18 going
to be less than % (or, e < 1) [3]. If, in turn, dy, > % (or, € > 1) the RW
is said to be supernormal (wiz., “turbulent”) [27,34]. The “singular” point
dy = % (or, € = 1) yields the so-called normal, i.e. Brownian behavior,
cf. [13]. Note that the left-hand side of Eq. (6) gives straightforwardly the
area of the lattice, though the overall area, due to heuristics presumed, cf.
Sec. 2 and 5, is unfortuantely not used in full for the drift-free case, what
would cause a systematic but negligible error for smaller lattices as well as
for short-times RW realizations, see Appendix again.

4. Example(s) coming from the physics of natural habits

Similar scenarios like that presented in the preceding section can for sure
be found e.g. in biophysics, or in even more specialized natural sciences. For
instance, in colonized (saprotrophic) as well as parasitic pathogen fungal
systems in soil activities occur practically in two-dimensional spaces that
means, in soil layers [35]. In such systems, there appears naturally a cer-
tain contact distance necessary to undertake the spread of the colony. This
distance would a priori correspond to the threshold probability of the perco-
lation matrix (a support comprised of agar as well as nutrient spots, etc.), on
which the epidemy is going to spread out. Such a situation was extensively
analyzed in [7] in terms of basic percolation characteristics for a special type
of fungal plant pathogen named Rhizoctonia solani. The results clearly show
that above a certain critical distance between hosts at most a finite spread is



1554 A. GApowmsKl, J. S16DMIAK, J.J. UHER

observed while below that distance one may encounter an appreciable spread
of the disease.

There are, however, some signatures of more subtle behavior in the (the-
oretically) unlimited growth regime, i.e. above the percolation threshold, pe,
that can be anticipated by inspecting Fig. 1b (right in the middle) in [7],
which above the percolation threshold is qualitatively of the same type like
Fig. 1 in our study. (For obvious reasons they are, however, smoother.)
The situation in which the colonization distance changes from smaller (large
invasion) to bigger (small or even small and localized invasion) would corre-
spond to a systematic change of the drift, from the largest to the smallest, cf.
Table 1T, and analysis thereafter. In fact, one can even propose to compare
the donor-recipient distance for such (small-world) systems [10], designated
by d.r, and relate it to a maximum (average) time in which a certain number
of sites has been colonized (T¢) (provided that the process behaves further

in a more or less stationary mode), just by making, correspondingly to du
DG
a flow measure this way. It must then be plotted against a relative distance
taken from the smallest de-values, say P = (de' ™ — de,™®) /dcrmin7 cf.
Fig. 7 in [7], and also taken in a logarithmic scale as —K X In (P), where K
could be some accomodation prefactor, ¢f. Fig. 1 (for assuring proper depic-
tion such a prefactor should also complete the logarithmic ratio representing
the invasion flow, whereas —K x In(P) is likely to represent the invasion
uncertainty or decolonization strength, according to a “schedule” given in
the caption to Fig. 1, and description provided in Text).

Unfortunately, such a suggestive comparison, like that (a priori) pro-
posed above, yields some exponential decay, which confirmes that presented
in Fig. 8a in [7], so that this cannot readily correspond to what we present in
Fig. 1. Some other well-behaved measures of the process are to be proposed
to reflect that kind of behavior as pictured in Fig. 1. We have probed the
following reasoning. Instead of P given above, we propose to use the colo-

nization probability 1 — P, and its natural logarithm, and for a flow measure

In (N)
In (Tresc) ’

and the time Tyes is a (rescaled) colonization time (all the data are taken
from Fig. 2). The rescaled time Tyeqe reads

from Table II or I, a logarithmic ratio like that means, by arranging

we just choose where N represents the number of sites colonized,

AN

Tresc = Lyef T )

(7)
where Tyt is equal to 28 days, ¢f. Figs 7 and 8 in [7], and ATN is a relative
change in the consecutive numbers of colonized sites. If we choose properly
magnification factor(s), we are able to get satysfying, at least qualitative
agreement with plots presented in Fig. 1; here, we have found a parabolic fit.
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Let us also state explicitly that on the basis of our simulation, a tacid working
assumption can be made, which states that there is, according to some quite
visible correlations present in Table IT between the drift strength as well as
the values of d,,, taken for different percolation probability, a correspondence
between the drift magnitudes, cf. Appendix, as well as the probability values.
It was also used for inventing a comparison between our study and that
published in [7]. This is as well a proposition on how our model can be
transferred into an invasive percolation process [36,37], and how both the
models analyzed belong to a class of small-world models [10,29], where some
meaning of the critical distance seems to be of crucial importance.

To finish the comparison, let us state that in contrast to our model the
data presented in Fig. 7 in [7] are provided for the triangular lattice, for
which pe; = 0.35 [3,33]. To sum up, both the phenomena compared undergo
roughly a scenario called the invasive spread (for replicate microcosms),
depicted for different times after innoculation, c¢f. Fig. 4 (left column with
pictures) in [7|. This kind of spread can indeed be chosen as a representative
scenario, conforming well to our computer model, though in our model we
do recognize somewhat different schedule, since the invasion occurs stepwise,
because particles are launched one by one from the right-hand side of the
lattice.

5. Concluding address

e The RW has been named a constrained random walk [38], because two
types of constraints* have been superimposed in a systematic way on
its behavior. They are subjected to either the boundary conditions, cf.
Table I, or they arise as a result of trying to make the walk directional.
Clearly, some tendencies of the discrete stochastic dynamics [39] in
question have been picked up, and no definitely ultimate but rather
fairly decisive conclusions can be offered.

e We wish to state that the process of passing the 2d percolation marix
by the ‘averaged’ walker (a carrier or messenger) experiences (at least)
a crossover from a normal to subnormal (i.e., towards lower exponent
values) or supernormal (that means: towards higher exponent values),
according to the constraints proposed in the paper.

* Referring to G.H. Weiss understanding of constraints that are either due to bound-
aries (exactly the case studied in the present paper) or they are subjected to keeping
some characteristic quantity fixed, e.g. the end-to-end distance in statistical mechan-
ics of polymers; the notion of constraints, according to Weiss, does not involve any
possibility of taking a drift as one of the constraints, but the author readily differen-
tiates between unbiased (undrifted) as well as biased, viz. directional RW. It makes
some subtle but marked difference between our practical realization and what in [38]
was ment.
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e There is, however, something more interesting viz. more applicable in
the process studied: An evidence of appearence of the transition of
second type [11] appears, and a (dynamic) diagram of the sort free
vs congested traffic, or comparatively, commensurate vs incommensu-
rate adsorption effect in thin films” systems (a model system: Kr on
graphite) can certainly be drawn [40].

e Heuristics as well as other factors of “secondary importance” (e.g., a
certain asymmetry of the square lattice used, cf. the two first sections,
which would imply that in some cases we have, in fact, used a “rect-
angular” lattice for which one side differed practically from the other
by one latice unit) modify slightly the presented results, but do not
destroy the main tendencies, c¢f. Appendix below.

e One is able to juxtapose a set of examples which stays behind the
modeling proposed, c¢f. Sections 3-4. Moreover, one is capable of ex-
tending the list of examples by invoking at least a few more. It can
even be done without referring to the seminal literature of the sub-
ject matter [1,3,4,33,38], but can be accomplished, e.g. by mentioning
some practical realizations within the field of physics of (bio)materials,
devoted either to a gas-fraction permeation study through porous poly-
meric membranes or to some defect formation process in model lipid
materials, respectively, ¢f. [41]. A power-law behavior as well as time
dependency of some basic kinetic coefficients [42] seem to be often
manifested in those complex systems, e.g. networks in soil physics [43],
where some interaction of randomly travelling particles with a disor-
dered lattice appears to be a key feature.

The authors want to thank Dr. Adam Kleczkowski (Cambridge, England)
for valuable discussions and contribution to the section describing the bio-
logical applications. Some technical assistance of Mr. Grzegorz Grudowski
is acknowledged.

Appendix

Some quantitative comment on the heuristics applied in the RW realization

As was announced before, the RW has been realized for a few different
sizes of the square lattice Lgq X Lgq1, where Lgy = 8;16; 24; 32; 48; 64; 96; 128,
but for different boundary conditions (elastic and inelastic reflection BCs),
without a drift as well as for four different drifts, denoted by Max, max,
mid, min, from the biggest to the smallest, respectively.
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In all the cases without drift we are obliged to take into consideration
initial condition (IC), ¢f. the first point of the algorithm in Sec. 2.
In the computer experiment without a drift (Table I) the IC is necessary.
It is introduced to shorten the computer simulation, because this way we
get rid of every first back steps (probability that the first step will be to
back direction is i, but after this step we may loose the carrier, which will
cause to start walking with a new carrier). Thus, this IC makes the real
space available for travelling not a square space but that of a rectangle of
size Lgq X (Lsq —1). Such a modification would fortunately cause minor
differences® while evaluating the exponent dNU,, which can be recast based on
the ratio
i o Lot = 1) ®)
In (Tmfp)

When instead of the geometrical mean in the logarithm’s argument in
Eq. (8) either the corresponding arithmetic or harmonic means have been
applied, the value of the exponent becomes unchanged within assumed ac-
curacy level.

For the case with a nonzero drift (Table II) the real size of square lattice
is still Lgq X Lgq, because the carrier is readily drifted from an occupied
spot in the first column of the lattice, in which it is located.

The BCs applied, c¢f. Table I, mostly imply a certain reflection from
upper and lower parts of the border of the lattice. For the elastic reflection
a maximum reflection, dyef, is an integer part of 2x (1 + Lfgl ), and it describes
how long could be a back step after a reflection from the border, measured
in lattice constants, can be experienced by a walker. The values of dyef =
dref(Lsq) are 3, 5, 6, 8, 11, 14, 21, 27, and correspond to the values of Lgq
listed above.

We see that the quantity dref(Lsql) is a linear function of Lgq. We can
quantitatively describe this relationship by proposing a simple linear fit

dref(qul) =A+ Bqul ’ (9)

where A = 1.4648 and B = 0.2002. Even such a specific though linear (it is
important!) choice ensures a kind of regular reaction from the border while
increasing the linear lattice size [15]. It looks also that our RW system is
going to be stable against a linear (boundary-influenced) perturbation.

As was stated before, in our computer experiment we have used four
types of drifts: Max, max, mid and min. The values of this drifts are:
Max = Lgq — 2, max = Lgq — 4, mid = (Lgq —2)/2 and min = 2 [15]. These

5 E.g., while evaluating the exponents near the percolation threshold for pper = 0.6,
the obtained values are increased by ca. 0.01 when compared to those gathered in
Table I.
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are, however, some assumed values, because in practice after performing a
drifted shift, the particle could land on an empty place, so that it must be
shifted back along the longitudinal direction until a non-empty place has
successfully been met. Looking at the values in Table II, we may state
that the magnitude of the drift makes no essential difference when chosen
appreciably large, at least near the percolation threshold as well as isotropic
lattice limits. At some intermediate values one may expect some differences.
While being chosen “unproperly”, however (last three rows of Table II), the
measure of information flow manifests a certain abnormal behavior, and
would tend to behave as in the undrifted case near the percolation threshold,
but then quite unexpectedly, rather. This can be explained as a separate
type of temporal behavior in the disordered structure under study.

Moreover, one should note that if we change pper in range between 0.6
and 1, 7.e. we do observe some increase of pper in value by % (still the drifted
case is considered), but in the same time, one has to observe strong growth
of the exponent dy from 0.28 to 1, i.e. by about factor 4. However for the
undrifted case and for the same increase in pper, one experiences a growth
of the expenent by factor %, which means ca. three times slower than in the
drifted case, see Table I and Table II.

For those who may have some opportunity to go over [15] a more tra-

ditional way of studying such problems can be envisaged [44]. It has to
Ls 12

4T1?1fp ?
and thereafter, by checking its basic tendencies while using data available
in seven tables presented in [15]. The cross-checking proposed aggres well

with what was revealed in our study, c¢f. Sections 2 and 3.

be done by defining a (time-lag influenced) diffusion coefficient D =
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