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CONSTRAINED RANDOM WALK OF A CARRIERIN TWO-DIMENSIONAL SITE-PERCOLATIONLATTICE, EXEMPLIFIED BY VIRTUAL AND REALWORLD SCENARIOS�Adam Gadomski, Jaek SiódmiakInstitute of Mathematis and Physis, University of Tehnology and AgriultureAl. Kaliskiego7, 85-796 Bydgoszz, Polandand Jan J. UherHigh Shool of Custom-House O�ersand Chrzanowska Middle-ShoolKonopnikiej 6, 43-300 Bielsko-Biala, Poland(Reeived Deember 28, 2000)A Random Walk (RW) realization in the square lattie, upon whih aperolation luster of sites, visited one by one by random walkers is builtup (by diret Monte Carlo method), has been arried out towards its basitendenies. It turns out that if the RW is realized near the site-perolationthreshold, the proess, as expeted, deelerates. If, in turn, one systemati-ally goes above the perolation threshold, being roughly about 0:6, towardsthe isotropi site-luster regime, the proess aelerates. Some drift super-imposed on the RW realization as well as boundary onditions of ertaintypes hange the system behavior in a quite preditive way. Both newand interesting examples, emphasizing a possible appliations of the phe-nomenon under study, are arefully mentioned. A �nite-size e�et alwaysinorporated in the realized MC-algorithm is going to make the proess ap-parently loser to reality. The notion of ontinuous phase (sub)transitionhas been disussed in the presented ontext.PACS numbers: 43.64.+r, 43.70.+i, 05.50.+q, 64.70.�p
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1542 A. Gadomski, J. Siódmiak, J.J. Uher1. IntrodutionInterest in disordered systems attrats nowadays onstant attention of re-searhers and tehnologists. A huge variety of studies and examples devotedto the perolation problem enables to propose a statement that the prob-lem is going to be one of the most important in modern statistial physis,and its �surroundings�, like hemial physis materials siene, biophysis,or soft-ondensed matter theory, or even omputer siene.The �rst lass of theoretial hallenges, inevitably assoiated with thesubjet of perolation, onerns with a question: Whether there are one ormore in�nite spanning lusters in the available physial spae? The answerobtained just reently assures that there are, in general, more than onespanning lusters of in�nite (or �nite but very large) size [1℄. This issue,however, will not be addressed in the present work.The seond lass of fundamental theoretial questions is related to possi-ble onnetions between very basi models of ondensed-matter theory, likestohasti Ising or Potts models, Kardar�Parisi�Zhang systems, desribing,for example, the dynamis of rough surfaes, and the perolation model.Some strit mappings of the systems mentioned on one another have beenfound in several ases [2℄. But this will not be addressed in this issue, either.Among many others quite spei� sub-lasses of problems, a fasinatinglass of theoretial tasks emerges, whih is foused on the Random Walk(RW) problem in a disordered lattie of any reasonable kind [3℄. This sortof problems will be a subjet of the present study. Namely, in this work weare going to investigate the RW problem, realized by a diret Monte Carlosimulation on a square lattie, upon whih a perolation luster is built up.On this site-perolation luster near and above the perolation threshold,RW realizations, one by one and by means of letting a �testing� partile(arrier) walk at random, have been arried out. After examining the so-alled pure RW [4℄ on the perolation luster lose and a ertain distaneabove the perolation threshold, that is known to be about 59 perent [5℄, wehave superimposed ertain onstraints on its realizations, �rst enforing theRW to be drifted, weakly, moderately as well quite strongly. Then, we haveput into play other onstraints, letting the system to feel its boundaries,mostly by presuming the elasti (weakly, moderately and strongly) as wellas inelasti ollision e�ets while touhing the lattie border by the partile.Moreover, we put at least one heuristi solution1, whih is also going toyield some type of small onstraints while looking at the system behavior.Namely, it is made quite arbitrary to put the starting line to be the seond1 There are in fat a few more, whih have, at the �rst stage of the performed omputersimulation, been inorporated just for making the proess a little bit more onstrainedviz. realisti, f. Appendix for details.



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1543olumn of the lattie. This is equivalent to push the walker in arbitrary wayinto right diretion by one lattie onstant2.Thus, the main purpose of this paper is to examine how do some phys-ial onstraints superimposed on the system in�uene its overall behav-ior. Another motivation to perform this omputer-simulation-based workis to make the proess under study as being realized under more realistionditions, though the assumption of a testing multipartile random walk(a `multitask system') is unfortunately not perfetly ful�lled beause of quitemodest omputational apaity being at authors' disposal. We hope, how-ever, that a set of realisti examples hosen, and very muh related to thisstudy as well as some report on heuristis applied here, will somehow om-pensate the above drawbak.The prinipal quantity under vivid examination is the mean (�rst) pas-sage time of a testing partile against the linear size of the available lattiespae. Invoking the phase diagrammati notion, let us stress that for deal-ing with a (dynami) phase diagram some relation between the order andontrol parameters is undoubtedly needed. In the presented ase, one an�nd suh a relation while expeting some subtle relation between the proba-bility of establishing the perolation phenomenon (density of the disordered�ok) and some very dynamis of a RW realization in the site-perolationtwo-dimensional spae, represented by the speed of an averaged RW, givenas a ratio (in a logarithmi sale) of some two quantities, namely that goingto represent linear lattie size as well as the passage time, being always asignature of meander-like features of the two-dimensional perolation sub-strate. Let us note here that by hoosing the perolation probability eitherslightly or signi�antly above the perolation threshold, it is guaranteed, atleast in statistial meaning of this word, that there is a onnetion betweenthe left as well as right sides of the lattie, or that one of the disordered 2dmatrix main features appears to be its onnetedness, so that a arrier's pas-sage is expeted to our. As it is known, the main harateristis obtainedlassify the proess to be not a normal RW, but a model phenomenon beingquite sensitive to the above listed onstraints, whih, in turn, seems to besometimes beyond a ommon-sense realization. (An impressive issue on thissubjet, onsidered formally, however, in a three-dimensional ase, was alsoaddressed under the term di�usion on a fratal during one of the preedingSmoluhowski Symposia, f. Mazo in [6℄, and referenes therein.) We believe2 To be preise, we have plaed a arrier on an oupied spot in the seond olumn,then we have pushed it, again arbitrary, by one lattie onstant to the right (theexperiment without drift), and then we let the arrier perform its random walk untilit reahes an oupied spot in the last olumn; for obvious reasons, the experimentwith drift did not inlude that arbitrary plaement into the seond olumn, but thestart was always from the �rst olumn.



1544 A. Gadomski, J. Siódmiak, J.J. Uherthat something similar is going to happen in reality, what we are trying toexemplify by various physial ontexts (senarios), f. [7℄ for having a lookinto a biophysial phenomenon. No doubt that examples an be found re-ally everywhere, even unexpetedly, e.g. in the Internet tra�, where theinformation pakets may �perolate� through a virtual spae, whih in termsof phase transition language means rudely that a ertain passage betweensparse (free) and versatile ongested states of the omplex system underinvestigation is going to our [8℄.2. Computer model, its outlines, peuliaritiesand basi signaturesThe omputer model, staying behind the presented study, is ratherstraightforward. Thus, we wish to explore the following algorithm:1. Plae arbitrarily a arrier in the seond (without drift term) or �rst(with drift term) olumn of the lattie on a spot labelled by �1�.2. Let the arrier move at random (being drifted or not) on a perolationsubstrate omposed of randomly distributed sites, denoted by �0� and�1�, for empty and non-empty sites, respetively.3. Look for the plae into whih the arrier is going to travel by one ormore lattie units (onstants)a) If it is a �0� spot, or a border site, repeat the sampling again, orapply some boundary rules, respetivelyb) If it is a �1� spot proeed further.4. Update all ounters, but after having assured, that the partile strikesthe last lattie olumn at a �1� spot.5. Go bak to point 1 unless a stop ommand does intervene.6. Complete the omputation by arrying out some alulations and/ordrawing pitures of interest.As a result of thorough realization of the above algorithm, one may arriveat some numerial data, being gathered in the following two Tables. Let us,in short state what appears to be really remarkable while looking into theTables, f. Table I and II, respetively. It an be juxtaposed as follows:(i) The phenomenon in question has been examined twofold: Either whilesome quite versatile boundary onditions (BCs) do in�uene the RWsystem, or, when (deisive) drifts of rather di�erent types are going tobe readily superimposed on the system behavior.



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1545(ii) Some small-sale omputer simulation have been performed, wherethe lattie size ranged between 23 � 23 and 27 � 27, i.e. over 5 binary�deades�.(iii) The quantity of prior interest has been agreed to be the mean (�rst)passage time, that means, the number of steps that need to be realizedjust for traversing aross 2d site-perolation struture from left (seondolumn, f. remarks in Se. 1 and in Appendix, but a walker mustbegin its walk at a �1� spot) to right (last olumn, but a walker muststrike it at a �1� spot). This quantity has been measured against thelinear square lattie size, and averaged over 50 realizations for eahlattie, f. some details beneath, mostly involved in Tables I and II.(iv) Even under assumed onstraints (see, point (i)) some well known basitendenies of the RW temporal behavior have shown up [3, 4℄.(v) There exist ertain interesting disrepanies when ompared to a peri-odi boundary RW realization as well as while negleting a drift, beingassumed of quite di�erent strengths. They are know from literature,f. [3�5℄.(vi) There are some fairly expeted items in the presented Tables, f. ap-tions to them, that an be quite well understood in terms of eithervery �niteness of the system under onsideration and its realization(s)(�rst of all, realize that the values of the basi quantities obtained dodepend upon the number of trials or realizations), or, while remem-bering that the studied system is lassi�ed to be pretty nonlinear viz.unpreditive, when one is going to hange, even slightly, its onstraints.(vii) A quite general senario drawn, provokes someone to �nd out somesuitable examples that may exemplify the temporal behavior of themodel phenomenon under study; in our opinion, they an be somehowborrowed at least from two areas of researh, namely from the virtualInternet world as well as from a quite real biophysial ontext, e.g. adi�usion of amphiphili traers in phospholipid monolayers [9℄. In theformer, one may think about passage of a ertain information paket (aarrier) that suessfully passes over many routers-in�uening states,just to reah its destination plae. In the latter, in turn, one anoneptually proeed in terms of a walk of some invasive spread thatonstantly a�ets its healthy surroundings, i.e. when it passes over its�tness landsape. Note, by the way that maybe the so-alled small-world model [10℄ would be more appropriate in this ontext, but onemay realize that our model is (at least) formally immersed within thisfashionable onept. Both these ategories touh probably deeply the



1546 A. Gadomski, J. Siódmiak, J.J. Uhernotion of phase transition, possibly of the seond order [11℄. Theyboth seem to have muh in ommon at least with some two phasetransitions, namely:A. In the thin �lm formation, there appears readily to be a hallengehow some experimentalist an manipulate between ommensurabili-ty/inommensurability of a thin �lm deposited (sputtered) on thesubstrate of a ertain rystallographi harateristis; here, a suitableolletive dynamis, making use of some strutural but dynami or-respondene between the deposit and the (solid) support must be thease, f. the Frenkel�Kontorova model of thin �lm formation, whih,in terms of thermodynami phase transition behavior leads typiallyto a phase diagram à la some degree of ommensurability (order pa-rameter, frequently measured in perents) as a funtion of an externalparameter, e.g. a lateral pressure;B. In olletive tra� behavior under periodi boundary onditions,however, one observes a motion of individuals under versatile noisestrength onditions, leading to self-propelled behavior; it leads to aertain ferromagneti vs paramagneti-like phase transition behavior,or more generelly that being of order/disorder type [12℄: Note, howeverthat the latter annot be onfused with phase transition of seondorder, though there are some (unresolved) relations between them, f.the Bose�Einstein ondensation as a landmark ase [11, 13℄. (Notiethat we did not expliitly examine the in�uene of �utuations onthe system behavior. This probably remains to be a quite interestingfuture task.)From Table I it an be seen that the RW behavior has been examined inthree subgroups. In the �rst subgroup (�rst 4 rows) we antiipate, withinthe simulation auray, some usual RW behavior being only slightly in�u-ened by the boundary onstraints, whih are assumed to be the simplestre�etion BCs. When some inrease of elasti response of the boundary tothe arrier is playing a role (seond subgroup, equivalent to the three nextrows in the table), the limit 12 is approahed more visibly, and all the ex-ponents are augmented, when ompared to the previous ones. In the lastsubgroup, where some inelasti BCs [15℄ have been applied, one detets pos-sibly smallest satter of the exponent values, sine the two-dimensional RWis sometimes, i.e. along the boundaries, realized as the one-dimensional one.In Table II, in turn, one reognizes some in�uene of various drift terms.A general onlusion towards a system tendeny an be risked, namely: Thebigger the applied drift is, the more pronouned is the system tendeny justto approahing the exponent value of 1, i.e. to reah a ��rst� notiable limitharateristi of the so-alled supernormal RW, f. disussion in the next



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1547TABLE IStatistis obtained from the performed diret Monte Carlo omputer simulation, f. [14℄,for the so-alled undireted (pure) RW proess, with simplest re�eting and more spei�non-weakly re�eting as well as non-re�eting boundary onditions, respetively, f. Ap-pendix. They are abbreviated by el0, el1 and iel, respetively. The average on�denelevel of the presented results is a. 99:4 perent, whih may for sure be a�eted by boththe heuristis invented for the simulation purpose as well as the �nite size e�et, dueto not too large linear size of the square lattie (the maximum value is assumed to be128 lattie units, f. text for other details), whih generally emphasizes quite nonlinearbehavior of the averaged single-partile tra� [15℄. Notie that the value of ~dw in the4-th row appears to be somewhat bigger than it is reported, i.e. about 0:491, and slowlybut surely re�ets a tendeny to reahing 12 .Exponent( ~dw) Probability (pper) Drift� BCs��0:34 0:60 0 el00:46 0:80 0 el00:49 0:98 0 el00:49 1:00 0 el00:35 0:60 0 el10:52 0:80 0 el10:50 0:98 0 el10:39 0:60 0 iel0:48 0:80 0 iel0:49 0:98 0 iel� Zero drift has been applied.�� In the �rst 4 rows some possibly simplest re�eting BCs have been applied (returnby one lattie unit after re�etion). In the seond 3 rows a bigger variable re�etionof the arrier must be antiipated (see, Text), while in the 3 last remaining rowssome inelasti ollision, leading to a one-dimensional random motion of the arrieralong the boundary, has been introdued.Setion. The lowest limit with pper appears to be interesting sine it is goingto �x the value of the ~dw exponent around 0:27�0:28 for any pronouneddrift value, f. Appendix for details.Note also, whih is harateristi of both the tables under analysis, thatsome other relation has to be mentioned. Namely, if one goes away fromthe perolation threshold, being about 0:6, towards the isotropi phase, withprobability equal to 1:0, one sees that the distane in the probability spaehas inreased about 23 of the threshold probability mentioned, whereas the



1548 A. Gadomski, J. Siódmiak, J.J. Uher TABLE IIStatistis obtained from the performed diret Monte Carlo omputer simulation, for theso-alled direted RW proess, with simple (possibly weakly) re�eting boundary ondi-tions (BCs), but for various types of drifts, superimosed on the RW behavior. The averageon�dene level of the presented results is about 97:8 perent, f. remarks in Table I, andonsult [15℄ for some details. The values in rows from 5 to 7 appear to be a bit surpriz-ing, espeially while ompared to those in the �rst 4 rows, whih would probably draw aertain attention to both the limits (some need to ontinue the simulation task emerges)as well as `nonlinearities' of the performed omputer experiment.Exponent ( ~dw) Probability (pper) Drift� BCs��0:28 0:60 Max el00:70 0:80 Max el00:90 0:98 Max el00:92 1:00 Max el00:28 0:60 max el00:85 0:80 max el01:00 0:98 max el00:27 0:60 mid el00:77 0:80 mid el01:00 0:98 mid el00:31 0:60 min el00:73 0:80 min el00:78 0:98 min el0� Possibly biggest (Max), somewhat smaller but also big (max), some intermediate(mid) as well as possibly smallest (min) drifts have been used, respetively, f.explanations in Text as well as the Appendix.�� The boundary ondition is always the same, i.e. the simplest elasti one, denotedas in Table I by el0.exponents have experiened some �outgrowth� from a. 13 (more or less) upto 12 (`normal ase'), or even up to 1 (`supernormal ase'), i.e. they inreasedby 32 or even by 4 times (drift�), respetively, f. Appendix. It resembles at�rst look some olonization or infetion senario by a soil-borne fungal plantparasite, exhaustively explored in [7℄, and interpreted quantitatively in [10℄.It will be ommented in detail in one of the subsequent setions.It is worth to mention some theoretial realizations of the routes thatmust be passed more or less olletively (or, one by one but under a set of



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1549realisti onstraints, as is done in this work). One may reommend here atleast two types of desriptions. The �rst one, being the most popular, isbased on the Einstein's onept of the mean-squared displaement (appre-iated also by Smoluhowski [16℄), and an be summarized by the followingformula [3, 5℄ hr2(t)i � t2=dw ; (1)where the left-hand side expression denotes the above mentioned key quan-tity, being proportional to the area, or a number of sites, visited by a walker(t is the time, and dw stands for a RW dimension), whereas the seond isprovided by a disretized master equation of Smoluhowski-like type, givenby [17, 18℄ ddtni(t) = ��jWijni(t) +�jWjinj(t); (2)for whih site-probabilites ni as well as transition rates Wij (and Wji) aresome quantities of prior importane.Espeially theW probabilities applied partiularly for tra� phenomena,are strongly suggested to be hosen in a form [19℄W = �� ; (3)where � stands for a prefator, enabling one to inlude proper optimizationonditions for the analyzed tra� onditions (in ase of W � Wji, oneprovides � = 1, but in the ounterase � is a ombination ofWij 's), whereasthe parameter � is a time onstant, whih an be understood as the waitingtime for the esape of a arrier out of a jam or some ongestion state intounperturbed (free) �ow. Look also into [12℄, pp. 377�382, where a phasetransition senario, like free vs synhronized (orrelated) �ow as well as itsrelations to a jam state have been drawn, f. Fig. 1.Note, by the way that in Fig. 1 the plotted urves represent the on-gested dynami phases (�ferromagneti phases�), f. [20℄, where the ap-plied drift (�ordering external magneti �eld�) makes the information �owmore pronouned, enabling to reah values above 180, i.e. ~dw ! 1, f.Table II. It is then a kind of di�erentiation between unproperly ( ~dw ! 12) aswell as properly ( ~dw ! 1) ongested phases. If unertaintity level tends tozero, the phases beome to be non-ongested, but a really free (`absolutelynon-jamming') [8℄ phase appears above the absissa (�paramagneti phase�),for whih suh a simple statistial measure of information unertainty, in-vented ad ho for the ongested phases, does not hold (beause it is notdeterministi!), or an, e.g. arti�ially, be ompleted by adding new pointson the ordinate, the values of whih exeed 100 in this ase (obviously, thespontanous �magnetization� would disappear).
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Fig. 1. Shemati �gure, representing some information diagram of the seondorder type (ontinuous) [11℄, in whih the so-alled information unertainty standsfor a ontrol parameter (�temperature�) while the (dynami) order parameter ishosen to be the information �ow. The former is evaluated to be �k � ln (pper),whereas the latter stands for the ratio ln (Lsql)ln (Tmfp) , but also multiplied by k, whihis just k � ~dw (�dynami magnetization�), f. Tables I and II; here Lsql representsthe linear lattie size, whereas Tmfp is the mean �rst passage time (the arithmetimean was always taken over 50 simulation runs for eah Lsql, ranging from 8 to128), and k stands for some adjustment (�Boltzmann�) onstant, k = 200. The konstant is hosen roughly to give the ranges of both ordinate and absissa axes ofthe diagram not exeeding 100 (perents), but for the set of data from the Table I(�rst four rows, f. the steepest urve). The diagram is based on the �rst four rowstaken from Table I (zero drift, the left steeper urve) as well as Table II (nonzerodrift, the right more �extended� urve), so that it is not a smooth urve, but re�etsrather main tendeny of the stohasti proess under study, with some rossovertowards lower values, f. Text as well as [23℄. Notie that for the both ases (urves)presented the same boundary onditions, denoted by el0, f. aptions to Tables,have been assumed.The present authors would propose to onsider some phenomenologialextension of Eq. (3), just in the form ofW = ��� , where � provides some ne-essary information of the RW (�network�) topology, quite in a spirit of somewell-known dispersion parameter h, losely related to the so-alled spetraldimension [3,4℄, e.g. for � = 0 (�free� motion) one gets a ompletely randomroute for a hopping arrier, but for 0 < � < 1 one detets a orrelated, oreven some highly orrelated viz. jammed, movement, i.e. when � ! 1. Aquestion arises: Whether suh an extension proposed ould be equivalent toa frational order [21℄ master equationd~�dt~�ni(t) = ��jWijni(t) +�jWjinj(t) ; (4)



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1551where the time derivative ddt from Eq. (2) has to be replaed by a frationalorder derivative d~�dt~� , and 0 < ~� < 1, sine the sensitivity of the transportphenomena in question to the time sale, f. [16℄, and refs. therein, appearto be quite notiable, and whether � ' ~� or not, or how they are mutuallyrelated, if this is the ase? Moreover, maybe there exists a ertain mutualrelation between the exponent ~� and the RW exponent ~dw, the values ofwhih one an �nd in Tables I (no drift) as well as 2 (with a drift)? Somestatistial-physial arguments, based on the Liouville kineti equation [11℄and onerning the so-alled nonequilibrium phase transformations suggest[22℄ that ~� � 2 ~dw ; (5)so as a standard RW temporal behavior, f. Table I, ould be reovered, ifone assumed ~dw = 12 , whih is equivalent to ~� = 1, i.e. when the ordinarytime derivative omes into play, f. Eq. (2).Notie, however that both the main mehanisms mentioned above leadunequivoally to ending up with the asymptoti formula like Eq. (1), or itsanalytial, i.e. transformed, equivalents, f., so as a saling behavior ouldquite often be reovered. A main shortage of suh analytial desriptions,however, is that they are not apable of inluding suh importants `details'(read: onstraints), like those studied here. That is why we try to inventor simply use the omputer models. (A main advantage is, however thatthey are more under ontrol, though up to a ertain limit, sometimes namedthe approximation.) For a review of reent works on the di�usion on aperolation luster, but applied spei�ally to hemial reations involvingproteins, one is enouraged to see [18℄, where the distribution of the mean�rst passage times as well as some analytial formulae of how to get them,having known that distribution, have been provided.3. Example(s) oming from the physis of InternetIn the dotoral dissertation by Kensuke Fukuda, a study of phase tran-sition phenomena in Internet tra� has been presented [20℄. Among manyquite interesting details, ranging from statistial physis to omputer si-ene, one may experiene some quantitative impression about the probabilitydensity as well as orresponding peak position of the �ow density (pakets'density) at a Japanese gateway, alled the WAN Keyo, the abbreviation ofthe Wide Area Network at the Keyo University in Japan. The plots pre-sented there show a dynamial phase transition behavior, where a transitiontakes plae between ongested as well as non-ongested information �owphases. In the phase transition the order parameter has been hosen to bea peak position (in kbyte/se) for some information paket (but averaged),



1552 A. Gadomski, J. Siódmiak, J.J. Uherouring with a ertain probability. The ontrol paramter, in turn, has beenorrespondingly seleted to be the mean �ow density, measured in kbyte/se,too.In fat, a few transitions have been revealed, in partiular between non-ongested (free) and moderately ongested �ows. There appears to be a(weak) transition between moderately ongested as well as heavily ongested�owing phases, whih an probably be better termed a rossover behavior[23℄, taking plae within the entire dynami phase, being alled the ongestedphase; one ould also argue that a subtransition is expeted to our, f. [21℄.The general phase transition diagram, whih an be drawn, looks solely likethe seond order phase transition piture, f. [20℄, and Fig. 3.7 therein.We are of the opinion that our RW study on the perolation substratean also reveal the behavior of suh a type, though we may have ertainproblems of how to approah the Internet reality, i.e. how to get from ourmodel some desired, eg. temporal harateristis, like ongestion length dis-tributions [24℄, round-trip times distributions [25℄, or even login�logout inter-val time distributions [26℄. We mean that a �rst step towards the Internetspei�s ould be to support eah randomly hopping arrier by a kind ofprotool that has to ontain: Some neessary information about its desti-nation plae, number of trips aross the lattie (we have realized here onetrip from left to right of the lattie), waiting, or temporary trapping times(whatever it means), and their distributions [27℄, strength of the drift super-imposed on the walk as well as how does it may feel the boundary onditions(�geometri� limitations of the walk or ut-o�s). We have atually taken intoaount the two last items mentioned, and some extention of the omputermodel ould be towards inorporationg the three remaining ones. Moreover,we an also, even in suh a simple omputer experiment, introdue a notionof the self-learning RW that will take some advantage from what the preed-ing one has atually experiened while randomly traversing the matrix [28℄,i.e. for how long as well as possibly where ertain trapping events took plae.(In the small-word language [29℄, it ould be transferred to a hange as wellas some plaement variation of loal interations of the arrier with its en-vironment3.) In onsequene, it an ause the protool to be updated, sothat a kind of RW with memory may be used as a straightforward general-ization of this simulation sheme. It an, but in a ontinuous time domain,be supported by using the onept of the frational Kramers equation (witha drift term), alled the frational Fokker�Plank equation, but with speialemphasis put on its Rayleigh limiting ase (with no drift term), derived fora test partile of mass M performing its Brownian motion via olliding withbath partiles of mass m, where mM � 1, whih results in having ollisions3 In fat, the nature of the applied onstraints an be a ontrolling fator for somequalitative di�erentiation among ertain lasses of random sets.



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1553as being frequent, but not too weak, f. [30℄, so that a kind of Levy �ightmight still be observed. In that ase, by the way, the frationality, involvedby means of the Liouville�Riemann integral operator, onerns with the po-sition spae [30℄, but not with the time domain, as was disussed above. Lastbut not least, we have probably to revisit the meaning of the lattie, mostlytowards Internet topology [31℄. Also, the type of perolation, whether theremust be the site- or bond-perolation [32℄, or mixed, or maybe oloured [33℄,et. should be deided prior to a onrete experiment. At this stage of ourpresentation, we may say that, at least qualitatively, our model onformswell to that invented by the Japanese authors [8,20,26℄. Moreover, we havepratially estimated the main length vs time harateristis, whih aord-ing to Tables I and II, appear to be power laws similar to that mentioned inEq. (1), namely Lsql2 � Tmfp" ; (6)where " = 2 ~dw f. aptions to Tables I and II as well as Fig. 1 for details.Under the onstraints applied, it is then a manifestation of (statistial) self-similarity, whih stands for another landmark feature of the studies realizedby the authors [20, 25, 26℄, but is also stressed in some other work [31℄. Bythe way, notie that the RW is expeted to be subnormal, when ~dw is goingto be less than 12 (or, " < 1) [3℄. If, in turn, ~dw > 12 (or, " > 1) the RWis said to be supernormal (viz., �turbulent�) [27, 34℄. The �singular� point~dw = 12 (or, " = 1) yields the so-alled normal, i.e. Brownian behavior,f. [13℄. Note that the left-hand side of Eq. (6) gives straightforwardly thearea of the lattie, though the overall area, due to heuristis presumed, f.Se. 2 and 5, is unfortuantely not used in full for the drift-free ase, whatwould ause a systemati but negligible error for smaller latties as well asfor short-times RW realizations, see Appendix again.4. Example(s) oming from the physis of natural habitsSimilar senarios like that presented in the preeding setion an for surebe found e.g. in biophysis, or in even more speialized natural sienes. Forinstane, in olonized (saprotrophi) as well as parasiti pathogen fungalsystems in soil ativities our pratially in two-dimensional spaes thatmeans, in soil layers [35℄. In suh systems, there appears naturally a er-tain ontat distane neessary to undertake the spread of the olony. Thisdistane would a priori orrespond to the threshold probability of the pero-lation matrix (a support omprised of agar as well as nutrient spots, et.), onwhih the epidemy is going to spread out. Suh a situation was extensivelyanalyzed in [7℄ in terms of basi perolation harateristis for a speial typeof fungal plant pathogen named Rhizotonia solani. The results learly showthat above a ertain ritial distane between hosts at most a �nite spread is



1554 A. Gadomski, J. Siódmiak, J.J. Uherobserved while below that distane one may enounter an appreiable spreadof the disease.There are, however, some signatures of more subtle behavior in the (the-oretially) unlimited growth regime, i.e. above the perolation threshold, prthat an be antiipated by inspeting Fig. 1b (right in the middle) in [7℄,whih above the perolation threshold is qualitatively of the same type likeFig. 1 in our study. (For obvious reasons they are, however, smoother.)The situation in whih the olonization distane hanges from smaller (largeinvasion) to bigger (small or even small and loalized invasion) would orre-spond to a systemati hange of the drift, from the largest to the smallest, f.Table II, and analysis thereafter. In fat, one an even propose to omparethe donor-reipient distane for suh (small-world) systems [10℄, designatedby dr, and relate it to a maximum (average) time in whih a ertain numberof sites has been olonized (Tol) (provided that the proess behaves furtherin a more or less stationary mode), just by making, orrespondingly to ~dwfrom Table II or I, a logarithmi ratio like ln (dr)ln (Tol) , that means, by arranginga �ow measure this way. It must then be plotted against a relative distanetaken from the smallest dr-values, say P = (dri�th � drmin)=drmin, f.Fig. 7 in [7℄, and also taken in a logarithmi sale as �K � ln (P ), where Kould be some aomodation prefator, f. Fig. 1 (for assuring proper depi-tion suh a prefator should also omplete the logarithmi ratio representingthe invasion �ow, whereas �K � ln (P ) is likely to represent the invasionunertainty or deolonization strength, aording to a �shedule� given inthe aption to Fig. 1, and desription provided in Text).Unfortunately, suh a suggestive omparison, like that (a priori) pro-posed above, yields some exponential deay, whih on�rmes that presentedin Fig. 8a in [7℄, so that this annot readily orrespond to what we present inFig. 1. Some other well-behaved measures of the proess are to be proposedto re�et that kind of behavior as pitured in Fig. 1. We have probed thefollowing reasoning. Instead of P given above, we propose to use the olo-nization probability 1�P , and its natural logarithm, and for a �ow measurewe just hoose ln (N)ln (Tres) , where N represents the number of sites olonized,and the time Tres is a (resaled) olonization time (all the data are takenfrom Fig. 2). The resaled time Tres readsTres = Tref�NN ; (7)where Tref is equal to 28 days, f. Figs 7 and 8 in [7℄, and �NN is a relativehange in the onseutive numbers of olonized sites. If we hoose properlymagni�ation fator(s), we are able to get satysfying, at least qualitativeagreement with plots presented in Fig. 1; here, we have found a paraboli �t.



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1555Let us also state expliitly that on the basis of our simulation, a taid workingassumption an be made, whih states that there is, aording to some quitevisible orrelations present in Table II between the drift strength as well asthe values of ~dw, taken for di�erent perolation probability, a orrespondenebetween the drift magnitudes, f. Appendix, as well as the probability values.It was also used for inventing a omparison between our study and thatpublished in [7℄. This is as well a proposition on how our model an betransferred into an invasive perolation proess [36, 37℄, and how both themodels analyzed belong to a lass of small-world models [10,29℄, where somemeaning of the ritial distane seems to be of ruial importane.To �nish the omparison, let us state that in ontrast to our model thedata presented in Fig. 7 in [7℄ are provided for the triangular lattie, forwhih pr � 0:35 [3,33℄. To sum up, both the phenomena ompared undergoroughly a senario alled the invasive spread (for repliate miroosms),depited for di�erent times after innoulation, f. Fig. 4 (left olumn withpitures) in [7℄. This kind of spread an indeed be hosen as a representativesenario, onforming well to our omputer model, though in our model wedo reognize somewhat di�erent shedule, sine the invasion ours stepwise,beause partiles are launhed one by one from the right-hand side of thelattie. 5. Conluding address� The RW has been named a onstrained random walk [38℄, beause twotypes of onstraints4 have been superimposed in a systemati way onits behavior. They are subjeted to either the boundary onditions, f.Table I, or they arise as a result of trying to make the walk diretional.Clearly, some tendenies of the disrete stohasti dynamis [39℄ inquestion have been piked up, and no de�nitely ultimate but ratherfairly deisive onlusions an be o�ered.� We wish to state that the proess of passing the 2d perolation marixby the `averaged' walker (a arrier or messenger) experienes (at least)a rossover from a normal to subnormal (i.e., towards lower exponentvalues) or supernormal (that means: towards higher exponent values),aording to the onstraints proposed in the paper.4 Referring to G.H. Weiss understanding of onstraints that are either due to bound-aries (exatly the ase studied in the present paper) or they are subjeted to keepingsome harateristi quantity �xed, e.g. the end-to-end distane in statistial mehan-is of polymers; the notion of onstraints, aording to Weiss, does not involve anypossibility of taking a drift as one of the onstraints, but the author readily di�eren-tiates between unbiased (undrifted) as well as biased, viz. diretional RW. It makessome subtle but marked di�erene between our pratial realization and what in [38℄was ment.



1556 A. Gadomski, J. Siódmiak, J.J. Uher� There is, however, something more interesting viz. more appliable inthe proess studied: An evidene of appearene of the transition ofseond type [11℄ appears, and a (dynami) diagram of the sort freevs ongested tra�, or omparatively, ommensurate vs inommensu-rate adsorption e�et in thin �lms� systems (a model system: Kr ongraphite) an ertainly be drawn [40℄.� Heuristis as well as other fators of �seondary importane� (e.g., aertain asymmetry of the square lattie used, f. the two �rst setions,whih would imply that in some ases we have, in fat, used a �ret-angular� lattie for whih one side di�ered pratially from the otherby one latie unit) modify slightly the presented results, but do notdestroy the main tendenies, f. Appendix below.� One is able to juxtapose a set of examples whih stays behind themodeling proposed, f. Setions 3�4. Moreover, one is apable of ex-tending the list of examples by invoking at least a few more. It aneven be done without referring to the seminal literature of the sub-jet matter [1,3,4,33,38℄, but an be aomplished, e.g. by mentioningsome pratial realizations within the �eld of physis of (bio)materials,devoted either to a gas-fration permeation study through porous poly-meri membranes or to some defet formation proess in model lipidmaterials, respetively, f. [41℄. A power-law behavior as well as timedependeny of some basi kineti oe�ients [42℄ seem to be oftenmanifested in those omplex systems, e.g. networks in soil physis [43℄,where some interation of randomly travelling partiles with a disor-dered lattie appears to be a key feature.The authors want to thank Dr. Adam Klezkowski (Cambridge, England)for valuable disussions and ontribution to the setion desribing the bio-logial appliations. Some tehnial assistane of Mr. Grzegorz Grudowskiis aknowledged. AppendixSome quantitative omment on the heuristis applied in the RW realizationAs was announed before, the RW has been realized for a few di�erentsizes of the square lattie Lsql�Lsql, where Lsql = 8; 16; 24; 32; 48; 64; 96; 128,but for di�erent boundary onditions (elasti and inelasti re�etion BCs),without a drift as well as for four di�erent drifts, denoted by Max, max,mid, min, from the biggest to the smallest, respetively.



Constrained Random Walk of a Carrier in Two-Dimensional. . . 1557In all the ases without drift we are obliged to take into onsiderationinitial ondition (IC), f. the �rst point of the algorithm in Se. 2.In the omputer experiment without a drift (Table I) the IC is neessary.It is introdued to shorten the omputer simulation, beause this way weget rid of every �rst bak steps (probability that the �rst step will be tobak diretion is 14 , but after this step we may loose the arrier, whih willause to start walking with a new arrier). Thus, this IC makes the realspae available for travelling not a square spae but that of a retangle ofsize Lsql � (Lsql � 1). Suh a modi�ation would fortunately ause minordi�erenes5 while evaluating the exponent ~dw, whih an be reast based onthe ratio ~dw ' ln [Lsql(Lsql � 1)℄1=2ln (Tmfp) : (8)When instead of the geometrial mean in the logarithm's argument inEq. (8) either the orresponding arithmeti or harmoni means have beenapplied, the value of the exponent beomes unhanged within assumed a-uray level.For the ase with a nonzero drift (Table II) the real size of square lattieis still Lsql � Lsql, beause the arrier is readily drifted from an oupiedspot in the �rst olumn of the lattie, in whih it is loated.The BCs applied, f. Table I, mostly imply a ertain re�etion fromupper and lower parts of the border of the lattie. For the elasti re�etiona maximum re�etion, dref , is an integer part of 2�(1 + Lsql10 ), and it desribeshow long ould be a bak step after a re�etion from the border, measuredin lattie onstants, an be experiened by a walker. The values of dref �dref(Lsql) are 3, 5, 6, 8, 11, 14, 21, 27, and orrespond to the values of Lsqllisted above.We see that the quantity dref(Lsql) is a linear funtion of Lsql. We anquantitatively desribe this relationship by proposing a simple linear �tdref(Lsql) = A+BLsql ; (9)where A = 1:4648 and B = 0:2002. Even suh a spei� though linear (it isimportant!) hoie ensures a kind of regular reation from the border whileinreasing the linear lattie size [15℄. It looks also that our RW system isgoing to be stable against a linear (boundary-in�uened) perturbation.As was stated before, in our omputer experiment we have used fourtypes of drifts: Max, max, mid and min. The values of this drifts are:Max = Lsql�2, max = Lsql�4, mid = (Lsql�2)=2 and min = 2 [15℄. These5 E.g., while evaluating the exponents near the perolation threshold for pper = 0:6,the obtained values are inreased by a. 0.01 when ompared to those gathered inTable I.



1558 A. Gadomski, J. Siódmiak, J.J. Uherare, however, some assumed values, beause in pratie after performing adrifted shift, the partile ould land on an empty plae, so that it must beshifted bak along the longitudinal diretion until a non-empty plae hassuessfully been met. Looking at the values in Table II, we may statethat the magnitude of the drift makes no essential di�erene when hosenappreiably large, at least near the perolation threshold as well as isotropilattie limits. At some intermediate values one may expet some di�erenes.While being hosen �unproperly�, however (last three rows of Table II), themeasure of information �ow manifests a ertain abnormal behavior, andwould tend to behave as in the undrifted ase near the perolation threshold,but then quite unexpetedly, rather. This an be explained as a separatetype of temporal behavior in the disordered struture under study.Moreover, one should note that if we hange pper in range between 0:6and 1, i.e. we do observe some inrease of pper in value by 23 (still the driftedase is onsidered), but in the same time, one has to observe strong growthof the exponent ~dw from 0:28 to 1, i.e. by about fator 4. However for theundrifted ase and for the same inrease in pper, one experienes a growthof the expenent by fator 32 , whih means a. three times slower than in thedrifted ase, see Table I and Table II.For those who may have some opportunity to go over [15℄ a more tra-ditional way of studying suh problems an be envisaged [44℄. It has tobe done by de�ning a (time-lag in�uened) di�usion oe�ient D = Lsql24Tmfp ,and thereafter, by heking its basi tendenies while using data availablein seven tables presented in [15℄. The ross-heking proposed aggres wellwith what was revealed in our study, f. Setions 2 and 3.REFERENCES[1℄ D. Stau�er, Physia A242, 1 (1997); M. Aizenman, Nul. Phys. B485, 551(1997).[2℄ T. Baker, L. Chayes, J. Stat. Phys. 93, 1 (1998).[3℄ Sh. Havlin, D. Ben-Avraham, Adv. Phys. 36, 695 (1987); C. Aslangul, M.Barthélémy, N. Pottier, D. Saint-James, J. Stat. Phys. 65, 673 (1991).[4℄ A. Aharony, D. Stau�er, in: Enylopedia of Siene and Tehnology, Vol.10, ed. by R.A. Meyers, Aademi Press, In., Orlando 1987, pp. 227-244.[5℄ A. Bunde, Sh. Havlin, Fratals and Disordered Systems, Springer, Berlin1996.[6℄ R.M. Mazo, Ata Phys. Pol. B29, 1539 (1998).[7℄ D.J. Bailey, W. Otten, C.A. Gilligan, New Phytol. 146, 535 (2000).[8℄ M. Takayasu, K. Fukuda, H. Takayasu, Physia A274, 144 (1999).
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