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CAN GENERALIZED DIMENSION (Dq) AND f(�)BE USED IN STRUCTURE-MORPHOLOGYANALYSIS?�Zbigniew J. Grzywnay, Monika Krasowska, �ukasz Ostrowskiand Ja
ek Stolar
zykDepartment of Physi
al Chemistry and Te
hnology of PolymersSilesian University of Te
hnologyKs. M. Strzody 9, 44-100 Gliwi
e, Poland(Re
eived De
ember 11, 2000)The family of model (prototype) stru
tures (Sierpi«ski 
arpet, Sier-pi«ski gasket, dendrites, et
.) have been 
hosen to testDq and f(�) as toolsfor stru
ture-morphology analysis. It turns out that both are very sensitiveto deviations from global regularity as well as, to some extent, also to lo
al
hanges. Based on monotoni
 in
reasing property of log fun
tion and dif-feomorphism of Dq=f(�) the problems of uniqueness and inversibility areformulated and dis
ussed.PACS numbers: 61.43.Hv 1. Introdu
tionStru
ture and morphology are very often used inter
hangeably [1, 2℄.For the sake of 
larity we will be using here the term �stru
ture� with anadditive �low� or �high resolution� to be able to distinguish 
ases in whi
hthe nature of a generator (stru
tural element) is visible (high resolution) ornot (low resolution) within an aggregate of generators (sample). The term�morphology� will be used to des
ribe texture (outlook) of an aggregate ofgenerators forming the sample, no matter the resolution. The intentionof this paper is to investigate the self-similar sets, whi
h, in pra
ti
e, aresupposed to be outputs of di�erent sort of mi
ros
opies. As a tool for thatthe generalized dimension (Dq) and its Legendre transform f(�) will beused [3℄. To avoid 
onfusion let us brie�y re
all the notion of a fra
tal� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.y e-mail: grzywna�zeus.polsl.gliwi
e.pl(1561)



1562 Z.J. Grzywna et al.dimension, and, in spite of its spe
ta
ular su

ess [4℄, show the reasons forwhi
h we should use Dq instead. For the self-similar sets the number ofnonempty 
overings N(") s
ales with the 
urrent size of 
overing " in thefollowing way [5, 6℄: N(") / "�dF ; (1)where dF is a fra
tal (or box) dimension. Taking the logarithm at the limit"! 0 we get dF = lim"!0 lnN(")ln(1=") : (2)A �weak point� of relation (2) is the nature of a 
overing set ". It 
an 
overjust one or many points, and if �nonempty� it 
ontributes to N(") with thesame �weight�. In some appli
ations, it does not matter [5℄. It matters a lothowever, when the number of points represents the mass surfa
e density,like in stru
ture-morphology analysis. To get rid of this weak point thegeneralized dimension Dq was introdu
ed [7℄:Dq = 1q � 1 lim"!0 lnN(")Pi=1 P qiln " ; (3)where Pi equals the number of points in a parti
ular 
overing (ni) over thetotal number of points N(")Pi=1 ni, q 2 R . Dq is also 
alled Renyi generalizedentropy in information theory [8℄.It is easy to see that (3) gives (2) for q = 0. For some te
hni
al reasonsas well as for showing analogies with statisti
al thermodynami
s so 
alledf(�) formalism was introdu
ed whi
h is, essentially, a Legendre transformof Dq [9℄. To get a �feeling� for f(�) let us re
all its derivation in a fewsteps:(i) from (3) we have to make a 
on
ave fun
tion of q to ful�ll 
onditionsfor Legendre transform�q = (q � 1)Dq = lim"!0 lnN(")Pi=1 P qiln " ; (4)(ii) take the family of straight lines �q and 
onstru
t a fun
tionF (�; q) = �q � �q ; (5)



Can Generalized Dimension (Dq) and f(�) Be Used in : : : 1563(iii) take extremum of (5) through �F�q̂ = 0 ; (6)and establish one-to-one relation between q̂ and � = ��q̂�q̂�(q̂) = lim"!0 1ln " N(")Pi=1 (P q̂i lnPi)N(")Pi=1 P q̂i : (7)There is a little 
han
e, if any, to get inverse of (7) analyti
ally so, wehave to a

ept the table form of q̂ on � ;(iv) f(�) spe
trum is a fun
tion F (�; q̂(�)) i.e. the Legendre transform ofEq. (4) f(�) = �q̂(�) � �q̂(�) : (8)As pointed out elsewhere [10�12℄ the fun
tion f(�) plays a role analogous tothe entropy with � being the analog of the energy E (see the plots of f(�)further in the text). 2. Prototype stru
turesThe 
on
ept of using a 
olle
tion of di�erent prototype stru
tures to
he
k the potential of Dq/f(�) formalism 
an be 
ompared with the �tea
h-ing pro
edure of neuronal nets� [13℄. In both 
ases the system (and itsuser) is supposed to learn how to dete
t, �rstly, the way in whi
h di�er-ent stru
ture-morphology features are re�e
ted in Dq/f(�) 
urves, se
ondly,what sort of 
hanges are dete
ted and, what is the sensitivity of Dq/f(�)
urves to the di�eren
es in stru
ture-morphology features. Three groups ofthe prototypes with di�erent generations have been 
hosen:
(a) (b)(
) (d)Fig. 1. Sierpi«ski gasket type set with di�erent generators.
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(a) (b)
(
) (d)Fig. 2. Sierpi«ski triangle type set with di�erent generators.

(a) (b) (
)Fig. 3. Dendriti
 aggregates with 
ores of di�erent fun
tionality.Note: Although some of the 
hosen prototype stru
tures are known to modelthe real obje
ts, this was not a primary task, at the moment.3. Results and dis
ussionA single fra
tal dimension dF is not su�
ient to des
ribe and dis
riminateneither all fra
tal obje
ts nor 
hara
terize the parti
ular one in details. Infa
t, there are about ten distin
t fra
tal dimensions of di�erent origin intro-du
ed to des
ribe various properties and features of fra
tal sets [3℄. Not all ofthem are independent quantities like the 
riti
al point exponents, whi
h arerelated by the s
aling laws. But unlike the s
aling laws the relation betweendi�erent fra
tal dimensions is rather heuristi
 [11℄. An alternative, in somesense, is a generalized fra
tal dimension Dq whi
h provides in�nitely manydimensions, stri
tly related but still with a �weak physi
s� behind. Beforerefering to results obtained from the prototype stru
ture studies let us pointout several useful properties of Dq/f(�) fun
tions emerging just from theirde�nitions. First observation leads to the 
on
lusion that uniform distribu-tion gives a straight line for Dq ! q, and a single point in �rst quarter off(�)! � plane, what 
an be easily derived from Eq. (3) i.e.:
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Dq = 1q � 1 lim"!0 lnN(")Pi=1 � 1N(")�qln " = 11� q lim"!0 ln�N(") � 1N(")�q�ln 1"= 11� q lim"!0 (1� q) lnN(")ln 1" = lim"!0 lnN(")ln 1" = dF = D0 : (9)From Eqs. (4) and (7) it follows that� = d�q̂dq̂ = d(q̂ � 1)Dqdq̂ = d(q̂ � 1)dFdq̂ = dF ; (10)and f(�) = �q̂ � (q̂ � 1)Dq = dFq̂ � (q̂ � 1)dF = dF : (11)Note: This only 
on�rms an obvious fa
t that �nonempty box� requirement,in a simple box 
ounting, is equivalent to the uniform Pi distribution in ageneralized dimension approa
h. The se
ond observation 
on
erns the rootsof f(�) fun
tion. As 
an be seen from Eq. (8) with the help of Eqs. (4)and (7) the 
ondition for that reads:N(")Xi=1 P qi lnP qi �= N(")Xi=1 P qi lnN(")Xi=1 P qi ; (12)and holds if:(i) 9j8i 6=j Pj � Pi ) limq!�1 lnN(")Xi=1 P qi = lnP qj ; (13)for the right root, and(ii) 9j8i 6=j Pj � Pi ) limq!+1 lnN(")Xi=1 P qi = lnP qj ; (14)for the left root of f(�).Note: In 
ase there is no root of f(�) present the wings of f(�) spe
-trum are lifted proportionally to the multipli
ity of extremum values of Pi.The third, and the last observation, at the moment, binds the width of f(�)spe
trum with (Pmax�Pmin), value (this is an indi
ation, 
hara
teristi
s, ofheterogeneity of a set in question). Being aware of the above let us see



1566 Z.J. Grzywna et al.what new 
an we learn from the systemati
 studies of the prototype stru
-tures. Di�erent prototype stru
tures are supposed to deliver, a 
lear thoughpartial, answer to the question posed as a title of this work. Namely, inSe
. 3.1, we would like to investigate the sensitivity of Dq/f(�) on the kindof perturbation done with respe
t to original set, in Se
. 3.2, we intent to
he
k the in�uen
e of generators as well as e�e
t of resolution, and lastly,in Se
. 3.3, we try to visualize the in�uen
e of �more realisti
� generators(stru
tural elements) on value and shape of Dq/f(�) i.e. we try to showthe 
orresponden
e between morphology of Dq/f(�), and morphology of 2Dsets in question.
(a) (b) (
) (d)
(e) (f) (g) (h)Fig. 4. Generator (a), subsequent generations (b)�(e), distorted fourth generationwith 100 (f), 1000 (g) distortions, and fully distorted (h) Sierpi«ski 
arpet.3.1. Sierpi«ski 
arpetAs we stated before this set of prototype stru
tures has been used todemonstrate the sensitivity of Dq/f(�) for deviations from the original reg-ularity (self-similarity). The most spe
ta
ular behaviour was shown for the
ase of the set generated by 1(a) (see Fig. 5).As 
an be learned from Figs. 5 and 6 Dq/f(�) spe
tra are very sensitiveto re
ord displa
ement of even one stru
tural element (see Fig. 5). Our�experiment� of destroying original regularity 
onsists of shifting some ofelements (pores). It is interesting that this operation 
hanges Dq/f(�) a lotleaving however the range of self-similarity s
aling almost on the same level(see the sub�gure 5). Please, note that in
reasing number of disturban
ies
an be measured �almost� quantitatively as (D�1 � D+1) di�eren
e (seeFig. 5). Please observe, however, that the distortions a�e
t almost onlynegative part of Dq spe
trum, whi
h 
orresponds to low values of Pis. Ittakes at least a few hundred distortions to a�e
t the positive (in
luding D0)part of the spe
trum.
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Fig. 5. Subsequent generations of Sierpi«ski 
arpet and the in�uen
e of distortionsimposed on initially stri
tly regular set shown on generalized dimension graphs.
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Fig. 6. Subsequent generations of Sierpi«ski 
arpet and the in�uen
e of distortionsimposed on initially stri
tly regular set shown on f(�) graphs.One more observation is worthy to be dis
ussed. Namely, the 
har-a
ter of Dq/f(�) spe
tra for the sets generated by three other generators(Figs. 1(b), 1(
), 1(d)) � give no straight lines in general, i.e. not for afull range of 
overing (Fig. 8). Without going into details we 
an say thatthis is due to geometry of 
overing (in our 
ase it was a square). If the



1568 Z.J. Grzywna et al.shape of 
overing (") mat
hes the geometry of elements the set 
onsists of,the �regularity� of a set is re
orded by Dq/f(�) as �ideal� (straight lineor/and a point), if this is not the 
ase, then the Dq/f(�) registers somedeviations from ideal self-similarity (Fig. 7). For su
h 
ases the Dq/f(�)are less sensitive to small number of distortions. Their larger numbers, how-ever, still 
ause dramati
 
hanges in the spe
tra. This means that we donot need to adjust a 
overage (squares, triangles, hexagonals) to the investi-gated (possibly experimental) obje
ts and still expe
t valid results. It seemsunreasonable to expe
t real obje
ts, like pores, to follow a stri
tly regularpattern whi
h we 
an easily impose on prototype stru
tures.
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Fig. 7. Spe
tra of Sierpi«ski 
arpet for hexagonal generator (see Fig. 1(b)).3.2. Sierpi«ski gasketAs we have seen from the previous se
tion the kind of a generator, even ofsu
h a simple stru
ture, plays an important role in gathering knowledge onstru
ture-morphology analysis. In this se
tion we would like to demonstratemore about an importan
e of a generator but, �rst of all, about a resolutionwith whi
h the outputs are presented. The idea of this 
on
ept is 
learlyseen from Table I.
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tural elements (see Fig. 2) seen with de
reasing resolution 
onvergeto ideally self-similar stru
ture of Sierpi«ski gasket.
I
IIIIIIVVVIVIIVIII
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Can Generalized Dimension (Dq) and f(�) Be Used in : : : 1571It is rather obvious that high resolution output shows more di�erentdetails, and 
onsequently, its Dq/f(�) spe
tra are more 
ompli
ated. We
an see the way of 
hanging Dq/f(�) spe
tra from high resolution (the �rstfew generations) where stru
ture of generators is signi�
ant, to low resolutionoutputs (the higher generations 
f. Table I), by looking at the patterns inFigs. 9, 10. For the sake of 
larity we omitted the results for generators 2(b)and 2(
) as they exhibit similar behaviour to those already presented.This is quite obvious expe
tation to see a sort of 
onvergen
e betweengaskets, built up (aggregated) from di�erent generators, to the standard, ide-ally self-similar one. Please note that we 
an build up a sort of �diagnosti
�system for stru
ture-morphology analysis based on:� 
hara
teristi
 values of Dq (like D0, D1);� the width of f(�) spe
trum (D�1 �D+1);� symmetry of f(�) bran
hes;� altitude of f(�) maximum;� pla
ements of ends of the f(�) graph;� presen
e of f(�) roots.More regular stru
tural elements (whi
h s
ale better and preserve their sym-metries) produ
e more regular Dq and f(�) graphs (
ompare Figs. 9 and 10).Note that in both 
ases the positive parts of Dq show similar output. Stillthe graphs di�er in their negative parts, whi
h are mu
h more sensitive tosmall deviations from regularity.3.3. Dendriti
 polymersTrees, nervous system, some syntheti
 polymers show a fas
inating ar-
hite
tures of fra
tal 
onstru
tion that is not only beautiful and 
omplex butalso very useful, and still far from being well understood [15℄. In this se
tionwe would like to 
he
k whether the properties dete
ted by Dq/f(�) 
an beof any help in 
ontribution to the understanding of their 
ompli
ated nature.Evolving around a 
ore atoms or mole
ule, they possess repeating �gener-ations� of bran
hes that bran
h again and again until an almost globularshape with a dense surfa
e is rea
hed. To emulate various dendriti
 growthwe have 
hosen three di�erent fun
tionalities (see Table II), and ranged thenumber of generations from 1 to 10.



1572 Z.J. Grzywna et al. TABLE IISubsequent generations for varying 
ores and Y-shaped generator.Core
IIIIVVIIIXThe 
orresponding Dq/f(�) spe
tra are 
olle
ted in Fig. 11. It 
an beseen in Fig. 11 that as the dendrite grows, all Dq moment grow propor-tionally, independent of the 
ore fun
tionality. Moreover, the fun
tionalitya�e
ts sele
tively the mass s
aling, thus it 
hanges only the fra
tal dimen-sion dF, and not the shape of Dq/f(�) spe
tra.The size of the 
ore is also �dete
table� by the Dq/f(�) formalism (seeFig. 13). It may be observed that the larger the 
ore the wider the f(�)spe
trum. Finer analysis shows that the presen
e of the left root on thef(�) graph indi
ates that the size of the dendrite 
ore is larger then thewidth of its bran
hes, still being smaller than 
overage size. For larger 
orestheir sizes 
orrespond to the value f(�) for � = D+1 (the left ending of thegraph), see Fig. 13.
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es only one Dq and f(�) spe
tra.4. UniquenessLast but not least we would like to make a few remarks on uniquenessof Dq/f(�) 
hara
terization of 2D sets as well as 
omment on �an inverse�problem. By the uniqueness here we mean the fa
t that one set gives one,and only one, Dq ! q and f(�)! � spe
trum.This is not very di�
ult to demonstrate, espe
ially when the prin
ipleproperty of log fun
tion i.e. monotoni
ity is re
alled. Namely, from Eq. (3)one 
an see that for a �xed Pi the expression N(")Pi=1 P qi generates the distin
tnumbers whi
h, in turn, gives a distin
t (and unique) values of Dq the 
aseof q = 1 is trivial to handle (so well known that we would not 
omment onit!). Altogether, it leads to a 
on
lusion that the Dq/f(�) 
oding is unique.Quite a di�erent situation is 
onne
ted to, so 
alled, �inverse problem� [16℄i.e. the situation, in whi
h we try to point out 
onditions under whi
h thedetermination of original set is possible from Dq/f(�) spe
tra. In a way ofdoing this, we have to noti
e that Dq/f(�) is invariant under the di�eomor-phism [17℄ i.e. is the same for a set of images obtained one from another bypie
ewiese translation, rotation, shifting and other di�erentiable operations.It simply means that it is obvious to expe
t quite a few di�erently lookingsets to share the same Dq/f(�). In 
on
lusion then, we have to state that aninverse problem is not unique! Now, the question is; is this a real drawba
kor rather a feature of the method? The images (sets) may be di�erentlylooking but they need to be pie
ewise similar and, 
onsequently, produ
ethe same distribution of Pi values. We tend to think that espe
ially for nat-ural obje
ts (like mi
ros
opy outputs) the 
olle
tion of 
overages, the obje
tis subje
ted to, forms a representation of the properties of the whole ana-lyzed obje
t. Hen
e we 
ould rotate the sample or perhaps pi
k the image
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ation yet still get the same distribution of Pi values� and Dq/f(�) spe
tra. Apparently the method fails to re
over from thespe
tra any spe
i�
 pla
ement information but it provides important infor-mation about stru
tural elements (like pores) size distribution and s
alingor about deviations from any regular pla
ement patterns (i.e. defe
ts).5. Con
luding remarksWe have presented generalized dimension and f(�) spe
tra for three
lasses of prototype stru
tures, with the hope that the results would beextendable to analysis of other stru
tures, espe
ially experimental ones. In-deed they seem to 
on�rm the appli
ability of the suggested approa
h tostru
ture and morphology analysis. It turned out, however, that it was dif-�
ult to get the 
omprehensive information from solely one of these tools.Even though both share a
tually the same features (be
ause both are trans-forms of ea
h other), some aspe
ts are easier to read from one of them. f(�)spe
trum, thanks to its 
learer output, seems to provide deeper insight intothe analysis.Both tools appear to be very sensitive to 
hanges in the analyzed set,espe
ially to regularity breaking 
hanges (defe
ts). For stri
tly regular pro-totype stru
tures (see Fig. 4) the defe
ts are re�e
ted in almost quantitativemanner. Even one distortion 
an be dete
ted. However, the less regularthe original image the worse sensitivity of the method appears (
ompareFigs. 5 and 7). The shape of the stru
tural elements also plays an importantrole. Figs. 9 and 10 show that it may be the loss of internal symmetriesthat severely a�e
ts the spe
tra (
ompare almost ideal 
hanges on Figs. 9and 10).Some properties of Dq/f(�) spe
tra proved to be the most useful ones.Su
h list 
ontains: 
hara
teristi
 values of Dq (some of them have a putativephysi
al meaning, like D0, D1 or D2), the width of f(�) spe
trum (equalto D�1 � D+1), symmetry of f(�) bran
hes, altitude of f(�) maximum,position of ends of the f(�) graph and presense of f(�) roots.There is a 
ommon understanding that regular stru
tures have a verysimple spe
tra (�at Dq, short f(�)). While generally true, it should be notedthat Dq is redu
ed to a straight line (and f(�) to a point) only in ratherrare 
ases when the shape of the stru
tural element mat
hes its 
overing. Inmore realisti
 
ir
umstan
es the method is less sensitive, though the generaltenden
y of enri
hing the spe
tra for more internally varied stru
tures stillholds.Even though the inverse problem is non-unique, still we 
an re
over someof the properties of the original set. Merged with the knowledge about the
lass of analyzed obje
ts Dq/f(�) signi�
antly help in the analysis. For



1576 Z.J. Grzywna et al.example both methods make a 
lear distin
tion between elements of 
overage(") and sub
overage (i.e. size of the stru
tural element is smaller than ") size.The former 
orrespond to positive part of the Dq and left bran
h of f(�) and
an be bound with features like 
ore (kernel) size, number of main bran
hes,s
aling of the stru
tural elements. The latter re�e
ts (
orresponding to thenegative part of the Dq and right bran
h of f(�)) small s
ale features likeminor irregularities, minor bran
hes, shape and symmetries of the stru
turalelement et
. Perhaps the most important is the e�e
t of various distortionsand defe
ts whi
h is mu
h more pronoun
ed on this part of the spe
tra.This paper deals ex
lusively with 2D (bla
k & white) images whi
h la
kthe depth information. There is however a 
olle
tion of methods (like [18,19℄)whi
h 
an be su

esfully applied to 3D images to 
al
ulate both Dq andf(�)). Hen
e this analysis should be fairly extendable to handle su
h datalike mi
ros
opy outputs (whi
h usually 
omes as a 3D image and wherethe depth information is 
ru
ial), as the properties visualized by these toolsremain the same.This work was partially supported by the Polish State Committee forS
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