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The family of model (prototype) structures (Sierpinski carpet, Sier-
pinski gasket, dendrites, etc.) have been chosen to test D, and f(«) as tools
for structure-morphology analysis. It turns out that both are very sensitive
to deviations from global regularity as well as, to some extent, also to local
changes. Based on monotonic increasing property of log function and dif-
feomorphism of D,/ f(a) the problems of uniqueness and inversibility are
formulated and discussed.

PACS numbers: 61.43.Hv

1. Introduction

Structure and morphology are very often used interchangeably [1,2].
For the sake of clarity we will be using here the term “structure” with an
additive “low” or “high resolution” to be able to distinguish cases in which
the nature of a generator (structural element) is visible (high resolution) or
not (low resolution) within an aggregate of generators (sample). The term
“morphology” will be used to describe texture (outlook) of an aggregate of
generators forming the sample, no matter the resolution. The intention
of this paper is to investigate the self-similar sets, which, in practice, are
supposed to be outputs of different sort of microscopies. As a tool for that
the generalized dimension (D,) and its Legendre transform f(a) will be
used [3]. To avoid confusion let us briefly recall the notion of a fractal
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dimension, and, in spite of its spectacular success [4], show the reasons for
which we should use D, instead. For the self-similar sets the number of
nonempty coverings N (g) scales with the current size of covering e in the
following way [5, 6]:

N(e) oc e 9F (1)

where dr is a fractal (or box) dimension. Taking the logarithm at the limit
e — 0 we get
. InN(e)
dp = lim ———. 2
F =0 n(1/e) @)

A “weak point” of relation (2) is the nature of a covering set €. It can cover
just one or many points, and if “nonempty” it contributes to N(e) with the
same “weight”. In some applications, it does not matter [5]. It matters a lot
however, when the number of points represents the mass surface density,
like in structure-morphology analysis. To get rid of this weak point the
generalized dimension D, was introduced [7]:

_ 1 . =1
Dq_q—lglg(l) Ine ' 3)

where P; equals the number of points in a particular covering (n;) over the
N(e)

total number of points ) n;, ¢ € R. D, is also called Renyi generalized
i=1

entropy in information theory [8].

It is easy to see that (3) gives (2) for ¢ = 0. For some technical reasons
as well as for showing analogies with statistical thermodynamics so called
f(a) formalism was introduced which is, essentially, a Legendre transform
of Dy [9]. To get a “feeling” for f(c) let us recall its derivation in a few
steps:

(7) from (3) we have to make a concave function of ¢ to fulfill conditions
for Legendre transform

N)
In 3 Pf
o 1 i=1 .
7g=(¢=1)Dg = lim — —— (4)

(#i) take the family of straight lines ag and construct a function

Fle,q) = aq — 143 (5)
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(7i7) take extremum of (5) through

oF
=0 6
and establish one-to-one relation between ¢ and o = 8%?

NE)
| 2 (B np)
T S |
olg) =lm o= — g (7)
f)iq
i=1

There is a little chance, if any, to get inverse of (7) analytically so, we
have to accept the table form of ¢ on «;

(iv) f(«) spectrum is a function F'(«, §(a)) i.e. the Legendre transform of
Eq. (4) )
fla) = ag(a) — 740) - (8)

As pointed out elsewhere [10-12] the function f(«) plays a role analogous to
the entropy with « being the analog of the energy E (see the plots of f(«)
further in the text).

2. Prototype structures

The concept of using a collection of different prototype structures to
check the potential of D,/ f(a) formalism can be compared with the “teach-
ing procedure of neuronal nets” [13]. In both cases the system (and its
user) is supposed to learn how to detect, firstly, the way in which differ-
ent structure-morphology features are reflected in D,/ f(a) curves, secondly,
what sort of changes are detected and, what is the sensitivity of D,/ f(«)
curves to the differences in structure-morphology features. Three groups of
the prototypes with different generations have been chosen:
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Fig. 1. Sierpinski gasket type set with different generators.
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Fig. 2. Sierpinski triangle type set with different generators.

(a) (b) (c)

Fig. 3. Dendritic aggregates with cores of different functionality.

Note: Although some of the chosen prototype structures are known to model
the real objects, this was not a primary task, at the moment.

3. Results and discussion

A single fractal dimension dr is not sufficient to describe and discriminate
neither all fractal objects nor characterize the particular one in details. In
fact, there are about ten distinct fractal dimensions of different origin intro-
duced to describe various properties and features of fractal sets [3]. Not all of
them are independent quantities like the critical point exponents, which are
related by the scaling laws. But unlike the scaling laws the relation between
different fractal dimensions is rather heuristic [11]. An alternative, in some
sense, is a generalized fractal dimension D, which provides infinitely many
dimensions, strictly related but still with a “weak physics” behind. Before
refering to results obtained from the prototype structure studies let us point
out several useful properties of D,/ f(c) functions emerging just from their
definitions. First observation leads to the conclusion that uniform distribu-
tion gives a straight line for D, — ¢, and a single point in first quarter of
f(a) = «a plane, what can be easily derived from Eq. (3) i.e.:
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1 )7 q
. In ZZI <N(5‘)) 1 In (N(e) (N%€)> )
D, = lim = lim T
q—1¢e-0 Ine 1—¢qe>0 In -
S ) I?N(g) = lim lnNﬁe) =drp = Dy. (9)
1—¢qge>0 In 2 e=0 Inz

From Eqgs. (4) and (7) it follows that

dt; d(g —1)D d(g—1)d
dq dq dq

a

and
fla)=aq—(¢—-1)Dg =drg— (¢ —1)dr =dp. (11)

Note: This only confirms an obvious fact that “nonempty box” requirement,
in a simple box counting, is equivalent to the uniform P; distribution in a
generalized dimension approach. The second observation concerns the roots
of f(a) function. As can be seen from Eq. (8) with the help of Egs. (4)
and (7) the condition for that reads:

N(e) N(e) N(e)
D PmPI=} Py P (12
i=1 i=1 i=1
and holds if:
(4)
N(e)
N, . . 3 q _ q
Vs P <<PZ;»qLu_noolnz;Pi =In P!, (13)
1=
for the right root, and
(44)
N(e)
IVizg P> Pr= lim In Zl Pl =mP!, (14)

for the left root of f(a).

Note: In case there is no root of f(«) present the wings of f(«a) spec-
trum are lifted proportionally to the multiplicity of extremum values of P;.
The third, and the last observation, at the moment, binds the width of f ()
spectrum with (Ppax—Pmin), value (this is an indication, characteristics, of
heterogeneity of a set in question). Being aware of the above let us see
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what new can we learn from the systematic studies of the prototype struc-
tures. Different prototype structures are supposed to deliver, a clear though
partial, answer to the question posed as a title of this work. Namely, in
Sec. 3.1, we would like to investigate the sensitivity of D,/f(a) on the kind
of perturbation done with respect to original set, in Sec. 3.2, we intent to
check the influence of generators as well as effect of resolution, and lastly,
in Sec. 3.3, we try to visualize the influence of “more realistic” generators
(structural elements) on value and shape of D,/ f(«) i.e. we try to show
the correspondence between morphology of D,/ f(a), and morphology of 2D
sets in question.

(f) () (h)

Fig.4. Generator (a), subsequent generations (b)—(e), distorted fourth generation
with 100 (f), 1000 (g) distortions, and fully distorted (h) Sierpinski carpet.

3.1. Sierpiniski carpet

As we stated before this set of prototype structures has been used to
demonstrate the sensitivity of D,/ f(«a) for deviations from the original reg-
ularity (self-similarity). The most spectacular behaviour was shown for the
case of the set generated by 1(a) (see Fig. 5).

As can be learned from Figs. 5 and 6 D,/ f(c) spectra are very sensitive
to record displacement of even one structural element (see Fig. 5). Our
“experiment” of destroying original regularity consists of shifting some of
elements (pores). It is interesting that this operation changes D,/ f(a) a lot
leaving however the range of self-similarity scaling almost on the same level
(see the subfigure 5). Please, note that increasing number of disturbancies
can be measured “almost” quantitatively as (D_o — Do) difference (see
Fig. 5). Please observe, however, that the distortions affect almost only
negative part of D, spectrum, which corresponds to low values of Pjs. It
takes at least a few hundred distortions to affect the positive (including D)
part of the spectrum.
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Fig.5. Subsequent generations of Sierpiriski carpet and the influence of distortions
imposed on initially strictly regular set shown on generalized dimension graphs.
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Fig. 6. Subsequent generations of Sierpiriski carpet and the influence of distortions
imposed on initially strictly regular set shown on f(a) graphs.

One more observation is worthy to be discussed. Namely, the char-
acter of D,/ f(c) spectra for the sets generated by three other generators
(Figs. 1(b), 1(c), 1(d)) — give no straight lines in general, i.e. not for a
full range of covering (Fig. 8). Without going into details we can say that
this is due to geometry of covering (in our case it was a square). If the
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shape of covering (¢) matches the geometry of elements the set consists of,
the “regularity” of a set is recorded by D,/f(a) as “ideal” (straight line
or/and a point), if this is not the case, then the D,/f(a) registers some
deviations from ideal self-similarity (Fig. 7). For such cases the D,/ f(a)
are less sensitive to small number of distortions. Their larger numbers, how-
ever, still cause dramatic changes in the spectra. This means that we do
not need to adjust a coverage (squares, triangles, hexagonals) to the investi-
gated (possibly experimental) objects and still expect valid results. It seems
unreasonable to expect real objects, like pores, to follow a strictly regular
pattern which we can easily impose on prototype structures.

2.74Dq

1000 dist.

100 dist.

rd
0 _ 3 gen.
4%gen. 10 dist.

-40 20 0 20 40 9
1f(a) d
b 3 gen. .
1.8 1000 dist.
] all dist.
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0 6: ISt,angen. .
] 4hgen. 10 dist. 100 dist.
0.0 &

18 20 22 24 26 28
Fig. 7. Spectra of Sierpinski carpet for hexagonal generator (see Fig. 1(b)).

3.2. Sierpiriski gasket

As we have seen from the previous section the kind of a generator, even of
such a simple structure, plays an important role in gathering knowledge on
structure-morphology analysis. In this section we would like to demonstrate
more about an importance of a generator but, first of all, about a resolution
with which the outputs are presented. The idea of this concept is clearly
seen from Table I.
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TABLE 1

Different structural elements (see Fig. 2) seen with decreasing resolution converge
to ideally self-similar structure of Sierpinski gasket.

A
A A
I AAAA
AA
A A
I AAAA
M
Mk,
W, A,
I11 AAAAAAAA
v : 5 A B0 Ary &«
Vv
VI
VII
VIII
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Fig.8. Comparison of D,/ f(a) spectra of Sierpinski carpet for four different gen-
erators.
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Fig.9. Convergence of D,/ f(a) spectra of Sierpiriski gasket for generator presented
on Fig. 2(a).
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Fig.10. Convergence of D,/ f(a) spectra of Sierpiniski gasket for generator pre-
sented on Fig. 2(d).
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It is rather obvious that high resolution output shows more different
details, and consequently, its D,/ f(a) spectra are more complicated. We
can see the way of changing D,/ f(a) spectra from high resolution (the first
few generations) where structure of generators is significant, to low resolution
outputs (the higher generations cf. Table I), by looking at the patterns in
Figs. 9, 10. For the sake of clarity we omitted the results for generators 2(b)
and 2(c) as they exhibit similar behaviour to those already presented.

This is quite obvious expectation to see a sort of convergence between
gaskets, built up (aggregated) from different generators, to the standard, ide-
ally self-similar one. Please note that we can build up a sort of “diagnostic”
system for structure-morphology analysis based on:

e characteristic values of D, (like Dy, Dy);

e the width of f(a) spectrum (D_oo — Dioo);
e symmetry of f(«) branches;

e altitude of f(«) maximum,;

e placements of ends of the f(«) graph;

e presence of f(a) roots.

More regular structural elements (which scale better and preserve their sym-
metries) produce more regular D, and f(«) graphs (compare Figs. 9 and 10).
Note that in both cases the positive parts of D, show similar output. Still
the graphs differ in their negative parts, which are much more sensitive to
small deviations from regularity.

3.3. Dendritic polymers

Trees, nervous system, some synthetic polymers show a fascinating ar-
chitectures of fractal construction that is not only beautiful and complex but
also very useful, and still far from being well understood [15]|. In this section
we would like to check whether the properties detected by D,/ f(a) can be
of any help in contribution to the understanding of their complicated nature.
Evolving around a core atoms or molecule, they possess repeating “gener-
ations” of branches that branch again and again until an almost globular
shape with a dense surface is reached. To emulate various dendritic growth
we have chosen three different functionalities (see Table II), and ranged the
number of generations from 1 to 10.
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TABLE II

Subsequent generations for varying cores and Y-shaped generator.

Core

II1

VII

IX

The corresponding D,/ f(«) spectra are collected in Fig. 11. It can be
seen in Fig. 11 that as the dendrite grows, all D, moment grow propor-
tionally, independent of the core functionality. Moreover, the functionality
affects selectively the mass scaling, thus it changes only the fractal dimen-
sion dp, and not the shape of D,/ f(a) spectra.

The size of the core is also “detectable” by the D,/ f(a) formalism (see
Fig. 13). It may be observed that the larger the core the wider the f(«)
spectrum. Finer analysis shows that the presence of the left root on the
f(a) graph indicates that the size of the dendrite core is larger then the
width of its branches, still being smaller than coverage size. For larger cores
their sizes correspond to the value f(a) for &« = Dy (the left ending of the
graph), see Fig. 13.
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Fig.11. D,/f(a) spectra for dendrites with 3-valent core for generations 1-10.
Arrows show increasing number of generations.

Fig. 12. Dendrites with varying core size (given in parentheses).
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Fig. 13. Spectra for dendrites with varying core size (shown on Fig. 12).
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Fig.14. Any image produces only one D, and f(a) spectra.

4. Uniqueness

Last but not least we would like to make a few remarks on uniqueness
of D,/ f() characterization of 2D sets as well as comment on “an inverse”
problem. By the uniqueness here we mean the fact that one set gives one,
and only one, D, — ¢ and f(«) — a spectrum.

This is not very difficult to demonstrate, especially when the principle

property of log function i.e. monotonicity is recalled. Namely, from Eq. (3)
N(e
one can see that for a fixed F; the expression Z(:) P generates the distinct
i=1

numbers which, in turn, gives a distinct (and unique) values of D, the case
of ¢ = 1 is trivial to handle (so well known that we would not comment on
it!). Altogether, it leads to a conclusion that the D,/ f(a) coding is unique.
Quite a different situation is connected to, so called, “inverse problem” [16]
1.e. the situation, in which we try to point out conditions under which the
determination of original set is possible from D,/ f(«) spectra. In a way of
doing this, we have to notice that D,/ f(«) is invariant under the diffeomor-
phism [17] i.e. is the same for a set of images obtained one from another by
piecewiese translation, rotation, shifting and other differentiable operations.
It simply means that it is obvious to expect quite a few differently looking
sets to share the same D,/ f(«). In conclusion then, we have to state that an
inverse problem is not unique! Now, the question is; is this a real drawback
or rather a feature of the method? The images (sets) may be differently
looking but they need to be piecewise similar and, consequently, produce
the same distribution of P; values. We tend to think that especially for nat-
ural objects (like microscopy outputs) the collection of coverages, the object
is subjected to, forms a representation of the properties of the whole ana-
lyzed object. Hence we could rotate the sample or perhaps pick the image
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in slightly different location yet still get the same distribution of P; values
— and D,/ f(a) spectra. Apparently the method fails to recover from the
spectra any specific placement information but it provides important infor-
mation about structural elements (like pores) size distribution and scaling
or about deviations from any regular placement patterns (i.e. defects).

5. Concluding remarks

We have presented generalized dimension and f(«) spectra for three
classes of prototype structures, with the hope that the results would be
extendable to analysis of other structures, especially experimental ones. In-
deed they seem to confirm the applicability of the suggested approach to
structure and morphology analysis. It turned out, however, that it was dif-
ficult to get the comprehensive information from solely one of these tools.
Even though both share actually the same features (because both are trans-
forms of each other), some aspects are easier to read from one of them. f(«)
spectrum, thanks to its clearer output, seems to provide deeper insight into
the analysis.

Both tools appear to be very sensitive to changes in the analyzed set,
especially to regularity breaking changes (defects). For strictly regular pro-
totype structures (see Fig. 4) the defects are reflected in almost quantitative
manner. Even one distortion can be detected. However, the less regular
the original image the worse sensitivity of the method appears (compare
Figs. 5 and 7). The shape of the structural elements also plays an important
role. Figs. 9 and 10 show that it may be the loss of internal symmetries
that severely affects the spectra (compare almost ideal changes on Figs. 9
and 10).

Some properties of D,/ f(c) spectra proved to be the most useful ones.
Such list contains: characteristic values of D, (some of them have a putative
physical meaning, like Dy, Dy or Dy), the width of f(«) spectrum (equal
t0 D_oo — Dioo), symmetry of f(«) branches, altitude of f(«) maximum,
position of ends of the f(a) graph and presense of f(a) roots.

There is a common understanding that regular structures have a very
simple spectra (flat D, short f(«)). While generally true, it should be noted
that D, is reduced to a straight line (and f(a) to a point) only in rather
rare cases when the shape of the structural element matches its covering. In
more realistic circumstances the method is less sensitive, though the general
tendency of enriching the spectra for more internally varied structures still
holds.

Even though the inverse problem is non-unique, still we can recover some
of the properties of the original set. Merged with the knowledge about the
class of analyzed objects Dg/f(c) significantly help in the analysis. For
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example both methods make a clear distinction between elements of coverage
(¢) and subcoverage (i.e. size of the structural element is smaller than ) size.
The former correspond to positive part of the Dy and left branch of f(«) and
can be bound with features like core (kernel) size, number of main branches,
scaling of the structural elements. The latter reflects (corresponding to the
negative part of the D, and right branch of f(a)) small scale features like
minor irregularities, minor branches, shape and symmetries of the structural
element etc. Perhaps the most important is the effect of various distortions
and defects which is much more pronounced on this part of the spectra.

This paper deals exclusively with 2D (black & white) images which lack
the depth information. There is however a collection of methods (like [18,19])
which can be succesfully applied to 3D images to calculate both D, and
f(a)). Hence this analysis should be fairly extendable to handle such data
like microscopy outputs (which usually comes as a 3D image and where
the depth information is crucial), as the properties visualized by these tools
remain the same.

This work was partially supported by the Polish State Committee for
Scientific Research (KBN) grant under the symbol PB 1136/T08/99/16,
and also by SUT grant BW-515/RCh4/2000/9.
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