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CAN GENERALIZED DIMENSION (Dq) AND f(�)BE USED IN STRUCTURE-MORPHOLOGYANALYSIS?�Zbigniew J. Grzywnay, Monika Krasowska, �ukasz Ostrowskiand Jaek StolarzykDepartment of Physial Chemistry and Tehnology of PolymersSilesian University of TehnologyKs. M. Strzody 9, 44-100 Gliwie, Poland(Reeived Deember 11, 2000)The family of model (prototype) strutures (Sierpi«ski arpet, Sier-pi«ski gasket, dendrites, et.) have been hosen to testDq and f(�) as toolsfor struture-morphology analysis. It turns out that both are very sensitiveto deviations from global regularity as well as, to some extent, also to loalhanges. Based on monotoni inreasing property of log funtion and dif-feomorphism of Dq=f(�) the problems of uniqueness and inversibility areformulated and disussed.PACS numbers: 61.43.Hv 1. IntrodutionStruture and morphology are very often used interhangeably [1, 2℄.For the sake of larity we will be using here the term �struture� with anadditive �low� or �high resolution� to be able to distinguish ases in whihthe nature of a generator (strutural element) is visible (high resolution) ornot (low resolution) within an aggregate of generators (sample). The term�morphology� will be used to desribe texture (outlook) of an aggregate ofgenerators forming the sample, no matter the resolution. The intentionof this paper is to investigate the self-similar sets, whih, in pratie, aresupposed to be outputs of di�erent sort of mirosopies. As a tool for thatthe generalized dimension (Dq) and its Legendre transform f(�) will beused [3℄. To avoid onfusion let us brie�y reall the notion of a fratal� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.y e-mail: grzywna�zeus.polsl.gliwie.pl(1561)



1562 Z.J. Grzywna et al.dimension, and, in spite of its spetaular suess [4℄, show the reasons forwhih we should use Dq instead. For the self-similar sets the number ofnonempty overings N(") sales with the urrent size of overing " in thefollowing way [5, 6℄: N(") / "�dF ; (1)where dF is a fratal (or box) dimension. Taking the logarithm at the limit"! 0 we get dF = lim"!0 lnN(")ln(1=") : (2)A �weak point� of relation (2) is the nature of a overing set ". It an overjust one or many points, and if �nonempty� it ontributes to N(") with thesame �weight�. In some appliations, it does not matter [5℄. It matters a lothowever, when the number of points represents the mass surfae density,like in struture-morphology analysis. To get rid of this weak point thegeneralized dimension Dq was introdued [7℄:Dq = 1q � 1 lim"!0 lnN(")Pi=1 P qiln " ; (3)where Pi equals the number of points in a partiular overing (ni) over thetotal number of points N(")Pi=1 ni, q 2 R . Dq is also alled Renyi generalizedentropy in information theory [8℄.It is easy to see that (3) gives (2) for q = 0. For some tehnial reasonsas well as for showing analogies with statistial thermodynamis so alledf(�) formalism was introdued whih is, essentially, a Legendre transformof Dq [9℄. To get a �feeling� for f(�) let us reall its derivation in a fewsteps:(i) from (3) we have to make a onave funtion of q to ful�ll onditionsfor Legendre transform�q = (q � 1)Dq = lim"!0 lnN(")Pi=1 P qiln " ; (4)(ii) take the family of straight lines �q and onstrut a funtionF (�; q) = �q � �q ; (5)



Can Generalized Dimension (Dq) and f(�) Be Used in : : : 1563(iii) take extremum of (5) through �F�q̂ = 0 ; (6)and establish one-to-one relation between q̂ and � = ��q̂�q̂�(q̂) = lim"!0 1ln " N(")Pi=1 (P q̂i lnPi)N(")Pi=1 P q̂i : (7)There is a little hane, if any, to get inverse of (7) analytially so, wehave to aept the table form of q̂ on � ;(iv) f(�) spetrum is a funtion F (�; q̂(�)) i.e. the Legendre transform ofEq. (4) f(�) = �q̂(�) � �q̂(�) : (8)As pointed out elsewhere [10�12℄ the funtion f(�) plays a role analogous tothe entropy with � being the analog of the energy E (see the plots of f(�)further in the text). 2. Prototype struturesThe onept of using a olletion of di�erent prototype strutures tohek the potential of Dq/f(�) formalism an be ompared with the �teah-ing proedure of neuronal nets� [13℄. In both ases the system (and itsuser) is supposed to learn how to detet, �rstly, the way in whih di�er-ent struture-morphology features are re�eted in Dq/f(�) urves, seondly,what sort of hanges are deteted and, what is the sensitivity of Dq/f(�)urves to the di�erenes in struture-morphology features. Three groups ofthe prototypes with di�erent generations have been hosen:
(a) (b)() (d)Fig. 1. Sierpi«ski gasket type set with di�erent generators.
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(a) (b)
() (d)Fig. 2. Sierpi«ski triangle type set with di�erent generators.

(a) (b) ()Fig. 3. Dendriti aggregates with ores of di�erent funtionality.Note: Although some of the hosen prototype strutures are known to modelthe real objets, this was not a primary task, at the moment.3. Results and disussionA single fratal dimension dF is not su�ient to desribe and disriminateneither all fratal objets nor haraterize the partiular one in details. Infat, there are about ten distint fratal dimensions of di�erent origin intro-dued to desribe various properties and features of fratal sets [3℄. Not all ofthem are independent quantities like the ritial point exponents, whih arerelated by the saling laws. But unlike the saling laws the relation betweendi�erent fratal dimensions is rather heuristi [11℄. An alternative, in somesense, is a generalized fratal dimension Dq whih provides in�nitely manydimensions, stritly related but still with a �weak physis� behind. Beforerefering to results obtained from the prototype struture studies let us pointout several useful properties of Dq/f(�) funtions emerging just from theirde�nitions. First observation leads to the onlusion that uniform distribu-tion gives a straight line for Dq ! q, and a single point in �rst quarter off(�)! � plane, what an be easily derived from Eq. (3) i.e.:
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Dq = 1q � 1 lim"!0 lnN(")Pi=1 � 1N(")�qln " = 11� q lim"!0 ln�N(") � 1N(")�q�ln 1"= 11� q lim"!0 (1� q) lnN(")ln 1" = lim"!0 lnN(")ln 1" = dF = D0 : (9)From Eqs. (4) and (7) it follows that� = d�q̂dq̂ = d(q̂ � 1)Dqdq̂ = d(q̂ � 1)dFdq̂ = dF ; (10)and f(�) = �q̂ � (q̂ � 1)Dq = dFq̂ � (q̂ � 1)dF = dF : (11)Note: This only on�rms an obvious fat that �nonempty box� requirement,in a simple box ounting, is equivalent to the uniform Pi distribution in ageneralized dimension approah. The seond observation onerns the rootsof f(�) funtion. As an be seen from Eq. (8) with the help of Eqs. (4)and (7) the ondition for that reads:N(")Xi=1 P qi lnP qi �= N(")Xi=1 P qi lnN(")Xi=1 P qi ; (12)and holds if:(i) 9j8i 6=j Pj � Pi ) limq!�1 lnN(")Xi=1 P qi = lnP qj ; (13)for the right root, and(ii) 9j8i 6=j Pj � Pi ) limq!+1 lnN(")Xi=1 P qi = lnP qj ; (14)for the left root of f(�).Note: In ase there is no root of f(�) present the wings of f(�) spe-trum are lifted proportionally to the multipliity of extremum values of Pi.The third, and the last observation, at the moment, binds the width of f(�)spetrum with (Pmax�Pmin), value (this is an indiation, harateristis, ofheterogeneity of a set in question). Being aware of the above let us see



1566 Z.J. Grzywna et al.what new an we learn from the systemati studies of the prototype stru-tures. Di�erent prototype strutures are supposed to deliver, a lear thoughpartial, answer to the question posed as a title of this work. Namely, inSe. 3.1, we would like to investigate the sensitivity of Dq/f(�) on the kindof perturbation done with respet to original set, in Se. 3.2, we intent tohek the in�uene of generators as well as e�et of resolution, and lastly,in Se. 3.3, we try to visualize the in�uene of �more realisti� generators(strutural elements) on value and shape of Dq/f(�) i.e. we try to showthe orrespondene between morphology of Dq/f(�), and morphology of 2Dsets in question.
(a) (b) () (d)
(e) (f) (g) (h)Fig. 4. Generator (a), subsequent generations (b)�(e), distorted fourth generationwith 100 (f), 1000 (g) distortions, and fully distorted (h) Sierpi«ski arpet.3.1. Sierpi«ski arpetAs we stated before this set of prototype strutures has been used todemonstrate the sensitivity of Dq/f(�) for deviations from the original reg-ularity (self-similarity). The most spetaular behaviour was shown for thease of the set generated by 1(a) (see Fig. 5).As an be learned from Figs. 5 and 6 Dq/f(�) spetra are very sensitiveto reord displaement of even one strutural element (see Fig. 5). Our�experiment� of destroying original regularity onsists of shifting some ofelements (pores). It is interesting that this operation hanges Dq/f(�) a lotleaving however the range of self-similarity saling almost on the same level(see the sub�gure 5). Please, note that inreasing number of disturbaniesan be measured �almost� quantitatively as (D�1 � D+1) di�erene (seeFig. 5). Please observe, however, that the distortions a�et almost onlynegative part of Dq spetrum, whih orresponds to low values of Pis. Ittakes at least a few hundred distortions to a�et the positive (inluding D0)part of the spetrum.
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Fig. 5. Subsequent generations of Sierpi«ski arpet and the in�uene of distortionsimposed on initially stritly regular set shown on generalized dimension graphs.
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Fig. 6. Subsequent generations of Sierpi«ski arpet and the in�uene of distortionsimposed on initially stritly regular set shown on f(�) graphs.One more observation is worthy to be disussed. Namely, the har-ater of Dq/f(�) spetra for the sets generated by three other generators(Figs. 1(b), 1(), 1(d)) � give no straight lines in general, i.e. not for afull range of overing (Fig. 8). Without going into details we an say thatthis is due to geometry of overing (in our ase it was a square). If the



1568 Z.J. Grzywna et al.shape of overing (") mathes the geometry of elements the set onsists of,the �regularity� of a set is reorded by Dq/f(�) as �ideal� (straight lineor/and a point), if this is not the ase, then the Dq/f(�) registers somedeviations from ideal self-similarity (Fig. 7). For suh ases the Dq/f(�)are less sensitive to small number of distortions. Their larger numbers, how-ever, still ause dramati hanges in the spetra. This means that we donot need to adjust a overage (squares, triangles, hexagonals) to the investi-gated (possibly experimental) objets and still expet valid results. It seemsunreasonable to expet real objets, like pores, to follow a stritly regularpattern whih we an easily impose on prototype strutures.
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Can Generalized Dimension (Dq) and f(�) Be Used in : : : 1569TABLE IDi�erent strutural elements (see Fig. 2) seen with dereasing resolution onvergeto ideally self-similar struture of Sierpi«ski gasket.
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Can Generalized Dimension (Dq) and f(�) Be Used in : : : 1571It is rather obvious that high resolution output shows more di�erentdetails, and onsequently, its Dq/f(�) spetra are more ompliated. Wean see the way of hanging Dq/f(�) spetra from high resolution (the �rstfew generations) where struture of generators is signi�ant, to low resolutionoutputs (the higher generations f. Table I), by looking at the patterns inFigs. 9, 10. For the sake of larity we omitted the results for generators 2(b)and 2() as they exhibit similar behaviour to those already presented.This is quite obvious expetation to see a sort of onvergene betweengaskets, built up (aggregated) from di�erent generators, to the standard, ide-ally self-similar one. Please note that we an build up a sort of �diagnosti�system for struture-morphology analysis based on:� harateristi values of Dq (like D0, D1);� the width of f(�) spetrum (D�1 �D+1);� symmetry of f(�) branhes;� altitude of f(�) maximum;� plaements of ends of the f(�) graph;� presene of f(�) roots.More regular strutural elements (whih sale better and preserve their sym-metries) produe more regular Dq and f(�) graphs (ompare Figs. 9 and 10).Note that in both ases the positive parts of Dq show similar output. Stillthe graphs di�er in their negative parts, whih are muh more sensitive tosmall deviations from regularity.3.3. Dendriti polymersTrees, nervous system, some syntheti polymers show a fasinating ar-hitetures of fratal onstrution that is not only beautiful and omplex butalso very useful, and still far from being well understood [15℄. In this setionwe would like to hek whether the properties deteted by Dq/f(�) an beof any help in ontribution to the understanding of their ompliated nature.Evolving around a ore atoms or moleule, they possess repeating �gener-ations� of branhes that branh again and again until an almost globularshape with a dense surfae is reahed. To emulate various dendriti growthwe have hosen three di�erent funtionalities (see Table II), and ranged thenumber of generations from 1 to 10.



1572 Z.J. Grzywna et al. TABLE IISubsequent generations for varying ores and Y-shaped generator.Core
IIIIVVIIIXThe orresponding Dq/f(�) spetra are olleted in Fig. 11. It an beseen in Fig. 11 that as the dendrite grows, all Dq moment grow propor-tionally, independent of the ore funtionality. Moreover, the funtionalitya�ets seletively the mass saling, thus it hanges only the fratal dimen-sion dF, and not the shape of Dq/f(�) spetra.The size of the ore is also �detetable� by the Dq/f(�) formalism (seeFig. 13). It may be observed that the larger the ore the wider the f(�)spetrum. Finer analysis shows that the presene of the left root on thef(�) graph indiates that the size of the dendrite ore is larger then thewidth of its branhes, still being smaller than overage size. For larger orestheir sizes orrespond to the value f(�) for � = D+1 (the left ending of thegraph), see Fig. 13.
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a(1) b(4) (8) d(16)Fig. 12. Dendrites with varying ore size (given in parentheses).

-40 -20 0 20 40

2.0

1.8

1.6

1.4

qD

q

a
b

c

d

1.2 1.4 1.6 1.8 2.0
0.0

0.4

0.8

1.2

1.6

a

f( )a

a

b

c

d

Fig. 13. Spetra for dendrites with varying ore size (shown on Fig. 12).



1574 Z.J. Grzywna et al.
2.7

2.4

2.1

1.8

1.5

-40 -20 0 20 40

q

Dq

1.5 1.8 2.1 2.4 2.7

2.0

1.5

1.0

0.5

0.0

f( )a
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Can Generalized Dimension (Dq) and f(�) Be Used in : : : 1575in slightly di�erent loation yet still get the same distribution of Pi values� and Dq/f(�) spetra. Apparently the method fails to reover from thespetra any spei� plaement information but it provides important infor-mation about strutural elements (like pores) size distribution and salingor about deviations from any regular plaement patterns (i.e. defets).5. Conluding remarksWe have presented generalized dimension and f(�) spetra for threelasses of prototype strutures, with the hope that the results would beextendable to analysis of other strutures, espeially experimental ones. In-deed they seem to on�rm the appliability of the suggested approah tostruture and morphology analysis. It turned out, however, that it was dif-�ult to get the omprehensive information from solely one of these tools.Even though both share atually the same features (beause both are trans-forms of eah other), some aspets are easier to read from one of them. f(�)spetrum, thanks to its learer output, seems to provide deeper insight intothe analysis.Both tools appear to be very sensitive to hanges in the analyzed set,espeially to regularity breaking hanges (defets). For stritly regular pro-totype strutures (see Fig. 4) the defets are re�eted in almost quantitativemanner. Even one distortion an be deteted. However, the less regularthe original image the worse sensitivity of the method appears (ompareFigs. 5 and 7). The shape of the strutural elements also plays an importantrole. Figs. 9 and 10 show that it may be the loss of internal symmetriesthat severely a�ets the spetra (ompare almost ideal hanges on Figs. 9and 10).Some properties of Dq/f(�) spetra proved to be the most useful ones.Suh list ontains: harateristi values of Dq (some of them have a putativephysial meaning, like D0, D1 or D2), the width of f(�) spetrum (equalto D�1 � D+1), symmetry of f(�) branhes, altitude of f(�) maximum,position of ends of the f(�) graph and presense of f(�) roots.There is a ommon understanding that regular strutures have a verysimple spetra (�at Dq, short f(�)). While generally true, it should be notedthat Dq is redued to a straight line (and f(�) to a point) only in ratherrare ases when the shape of the strutural element mathes its overing. Inmore realisti irumstanes the method is less sensitive, though the generaltendeny of enrihing the spetra for more internally varied strutures stillholds.Even though the inverse problem is non-unique, still we an reover someof the properties of the original set. Merged with the knowledge about thelass of analyzed objets Dq/f(�) signi�antly help in the analysis. For



1576 Z.J. Grzywna et al.example both methods make a lear distintion between elements of overage(") and suboverage (i.e. size of the strutural element is smaller than ") size.The former orrespond to positive part of the Dq and left branh of f(�) andan be bound with features like ore (kernel) size, number of main branhes,saling of the strutural elements. The latter re�ets (orresponding to thenegative part of the Dq and right branh of f(�)) small sale features likeminor irregularities, minor branhes, shape and symmetries of the struturalelement et. Perhaps the most important is the e�et of various distortionsand defets whih is muh more pronouned on this part of the spetra.This paper deals exlusively with 2D (blak & white) images whih lakthe depth information. There is however a olletion of methods (like [18,19℄)whih an be suesfully applied to 3D images to alulate both Dq andf(�)). Hene this analysis should be fairly extendable to handle suh datalike mirosopy outputs (whih usually omes as a 3D image and wherethe depth information is ruial), as the properties visualized by these toolsremain the same.This work was partially supported by the Polish State Committee forSienti� Researh (KBN) grant under the symbol PB 1136/T08/99/16,and also by SUT grant BW�515/RCh4/2000/9.REFERENCES[1℄ Enylopedia of Polymer Siene and Engineering, John Wiley & Sons In.,1988.[2℄ Ullmann's Enylopedia of Industrial Chemistry, Weinheim, Germany, Wiley-VCH, New York 1997.[3℄ The Fratal Approah to Heterogenous Chemistry, Surfaes, Colloids, Poly-mers, Ed. D. Avnir, Wiley, Chihester 1989.[4℄ K.S. Birdi, Fratals in Chemistry, Geohemistry and Biophysis, PlenumPress, New York & London 1993.[5℄ J.B. Bassingthwaighte, L.S. Liebovith, B.J. West, Fratal Physiology, OxfordUniversity Press, New York 1994.[6℄ Z.J. Grzywna, Chem. Eng. Si. 51, 4115 (1996).[7℄ T. Tel, Z. Naturforsh. A43, 1154 (1988).[8℄ J. Sporring, J. Weikert, IEEE Trans. Inf. Theory 45, 1051 (1999).[9℄ V.I. Arnold, Mathematial Methods of Classial Mehanis, Springer Verlag,New York 1989.[10℄ H.G. Shuster, Deterministi Chaos, VCH Verlagsgesellshaft GmbH Publ.,Weinheim 1988.
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