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We have investigated the intermediate scaling regime in the phase
ordering/separating kinetics of the three-dimensional system of the non-
conserved scalar order parameter. It is demonstrated that the observed
scaling behavior can be described in terms of two length scales Ly (t) ~ t2/°
and Lg (t) ~ t3/1°. The quantity L () is related to the geometrical proper-
ties of the phase interface and describes time evolution of the characteristic
domain size, surface area, and the mean curvature. The second length
scale, Lk (t), determining the Gaussian curvature and the Euler character-
istic, can be regarded as the topological measure of the phase interface.
Also, we have shown that the existence of the two length scales has a sim-
ple physical interpretation and is related to the domains-necks decoupling
process observed in the intermediate regime.

PACS numbers: 64.60.Cn, 68.55.Jk, 75.40.Gb, 75.40.Mg

1. Introduction

Perhaps the simplest example of a system exhibiting the phase separat-
ing/ordering kinetics [1-4] is a ferromagnet quenched from a temperature
above its critical temperature T, to a temperature below T.. After lowering
the temperature, such a system is brought into thermodynamically unstable,
two-phase region. The two phases are characterized by positive or negative
magnetization. The system starts to evolve towards one of the two equilib-
rium states. Since both the coexisting + phases are equally likely to appear,
the system consists of domains of these two phases. During the phase sep-
arating/ordering process the domains coarsen and the system orders over
larger and larger length scales.
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At early stages of the phase ordering process the order parameter is small
and the £ domains are separated by broad interfaces. In this regime the
dynamics of the system is linear [5,6] and its evolution advances diffusively.
In the late stage the order parameter is saturated and the walls separating
the domains are sharp. The dynamics of the system is then determined by
the local curvature of the phase interface. Lifshiz [7], Allen and Cahn [§]
showed that in the late stage of the evolution the domain coarsening is driven
by local displacement of the domain walls, which move with the velocity v
proportional to the local mean curvature H of the interface. According to the
Lifshiz—Cahn—Allen (LCA) theory, typical time ¢ needed to close the domain
of size L(t) ist ~ L(t)/v = L(t)/H(t), where H(t) is the characteristic mean
curvature of the system. Thus, under the assumption that

H(t) ~1/L(t), (1.1)
the LCA theory predicts the growth law L(t) ~ t'/2. The late scaling with
the growth exponent m = 0.5 has been confirmed for the non-conserved
systems in many 2D simulations [9-11].

Although both the early and the late stage of the phase ordering kinetics
seem to be rather well described theoretically, the pathway of the transition
from the early to the late stage is far from being understood. A new insight
into the phase separating/ordering kinetics provided however the method
developed recently in Ref. [12], based on the geometry and topology of the
phase interface. In the paper cited the nature of the crossover from the early
to the intermediate stage scaling was precisely stated and related to the
saturation of the order parameter inside the domains. Here, we continue the
study of the phase ordering kinetics, based on the analysis of the morphology
of the phase interface, which was started in [12]. It is the purpose of this
paper to investigate the intermediate stage of the evolution. In particular,
we seek to explain the scaling behavior observed in the system in this regime.

The rest of the paper proceeds as follows. The dynamical scaling hy-
pothesis is briefly summarized in the next section. Scaling properties of the
system, obtained in computer simulations of the phase ordering process, are
presented in Sec. 3. In Sec. 4 the concept of the two length scales is intro-
duced and used to describe the scaling properties exhibited by the system
in the intermediate regime. The paper ends with the concluding Sec. 5.

2. Dynamical scaling

The systems undergoing phase transitions, such as the phase separat-
ing/ordering process considered here, exhibit usually scaling phenomena
[1-4]. Qualitatively, this means that a morphological pattern of the do-
mains at earlier times looks statistically similar to a pattern at later times,
apart from the global change of scale implied by the growth of the average
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domain size. Quantitatively, the scaling hypothesis says that, for example,
the correlation function g(r,t) of the order parameter (here: the magnetiza-
tion density) satisfies the following relation: g(r,t) = g(r/L(t)), where L(t)
is the characteristic length scale in the system, which scales algebraically
with time ¢,

L(t) ~ t". (2.1)
The growth exponent n depends on the universality class [1| of the sys-
tem. Note that the system of the non-conserved order parameter following
a quench which is considered in the present paper belongs to the universal-
ity class characterized by the exponent n = 0.5. In the theory of critical
phenomena [13] it is also referred to as the model A.

Assuming the scaling hypothesis, we can derive all the scaling laws for
different morphological measures such as: the Euler characteristic, x(),
surface area, S(t), the distribution of the mean, Py (H,t), and Gaussian,
Pr (K, t), curvatures. The scaling hypothesis implies the following scaling
laws for any phase separating/ordering symmetric system irrespective of the
universality class:

S(t) ~ L(t) 1, (2.2)

x(t) ~ L(t)™,
Pr (HL(#))

Py(H,t) = O (2.4)
P} (KL(t)4-Y
Pr(K ) = — (L(t)(d_l) ) . (2.5)

where d is the dimensionality of the system. The first law follows from
the congruency of the domains [14]. The scaling law (2.3) results from the
Gauss-Bonnet theorem [15|, which relates the Euler characteristic to the
Gaussian curvature and the surface area

x=n [ K(8)ds. (2.6)
where [dS denotes the integral over the surface, and - is twice the inverse
of the volume of a (d—1)-dimensional sphere of the unit radius (y = 1/27
for d = 3).

K(t) ~ L(t) 1, (2.7)
and S(t) ~ L(t)~! we find scaling (2.3). The probability densities Py (H,t)
and Pk (K, t) are normalized to unity. The relation (2.4) is a simple conse-
quence of the scaling of the mean curvature

H(t) ~ L(t)™". (2.8)
The last relation results from the scaling (2.7) of the Gaussian curvature.
Note that for d = 2 the scalings (2.4) and (2.5) are equivalent.
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3. Results of numerical simulations
3.1. The model

The dynamics of the system of the non-conserved scalar order parameter
(r,t) following a quench from the temperature T = oo to T' = 0 is governed
by the Time Dependent Ginzburg-Landau (TDGL) equation [1,7,8,13]:

dp(r.t) _ SF[Y]

ot o

(3.1)

with the free-energy functional taken to have the form of the coarse-grained
Ginzburg-Landau free energy:

1 2
Pl = [ ar|g|ove] + swen]. (32)
The bulk potential f(1) has the Landau—Ginzburg double-well structure
F) = 39* — 547 (33)

with two degenerate minima at ¢ = +1. The TDGL equation with the
potential given by (3.3) leads to the following kinetic equation governing the
time evolution of the field (7, t):

0

a(nﬂ:AWﬁﬂ+Wﬁﬂ—wa% (3.4)

where A stands for the Laplacian.

The results discussed in this paper were obtained by numerical solving of
the TDGL equation (3.4) on the cubic lattice, using simple Euler integration
scheme with the time step At = 0.05 and the mesh size Az = 1. The initial
condition were chosen from the uniform distribution of the field ¢ with zero
mean.

3.2. Scaling regimes

It was found in Ref. [12] that the system described by the TDGL equation
exhibits two scaling regimes: (i) the early regime where the characteristic
domain size L(t) scales with ¢'/2, and (ii) the intermediate regime where
L(t) ~ t*/5. The transition between the early and the intermediate regimes
was found to be marked by the saturation of the order parameter inside the
domains. The late stage dynamics predicted by the LCA theory with the
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growth exponent n = 0.5 was not observed due to finite-size effects. During
the whole evolution the system has a bicontinuos morphology with a single
interface and two percolating + domains.

The early stage of the phase ordering kinetics is governed by the satura-
tion of the order parameter inside the domains. The phase interface follows
then the bulk evolution and the exponent n = 0.5 results simply from the
linearized TDGL equation. If we drop the 1/® term in Eq. (3.4), the solution
1, (t) in the Fourier space reads

Pr () = ¥ (0) exp [— (k* — 1) ], (3.5)

where k& = |k|; the function 1y, (0) is assumed to be a constant, what cor-
responds to the initial conditions with the uncorrelated field 4 (r,0). Since
in the early stage the average domain size is very small, we have k > 1 and
the argument of the exponent in (3.5) can be approximated by —k?t. The
linearized equation (3.4) describes then a purely diffusive process and its
real space solution is written as

(e, t) ~ exp (—r?/4t) = exp [— (r/L(t))2] . (3.6)

In view of the above solution, it is clear why in the early stage of the evolution
the characteristic length scale L(t) growths as t'/2. Note that the four scaling
relations (2.2)—(2.5) are satisfied in the early stage.

The behavior of the system in the intermediate regime is much more in-
teresting; In this regime the order parameter is saturated and the &+ domains
are separated by sharp walls. The time evolution of the system is driven by
the local curvature of the interface. However, the LCA assumption (1.1)
does not hold; instead, it was found that in this regime the morphological
measures of the phase interface behave as:

L(t) ~ ¢/, (3.7)
x(t) ~ 71, (3.8)
S(t) ~ t72/5.

It was also found that the distribution of the curvatures satisfies the relations
Py (H,t) = Pj; (HL(t)) /L(t), with L(t) given by (3.7), and Px(K,t) =
P (Kt3/°)/t3/5 Thus, the scaling relations (2.2)-(2.5), based on a single
length scale L(t), do not hold in the intermediate regime. In the next sec-
tion we demonstrate that the scaling behavior observed in the intermediate
regime is successfully described in terms of two length scales, which can be
inferred from the scaling properties of the distributions of the mean and the
Gaussian curvatures.
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4. The concept of two length scales in the intermediate regime

Scaling of the distributions of the mean H and the Gaussian K curvatures
in the intermediate regime are shown in Fig. 1(a) and Fig. 1(b), respectively.
As seen, for different times the data collapse onto single master curves.
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Fig. 1. The rescaled distributions of the mean (a) and the Gaussian (b) curvature
in the intermediate regime. The distributions obey the scaling relations Py (H,t) =
P;I (HLH(t)) /LH(t), with LH(t) ~ t2/5’ and PK(K, t) = PI*( (KLK(t)Q) /LK(t)Q,
with Ly (t) ~ t3/1°. The curvatures are given in dimensionless units. The system
size is 50 x 50 x 30.

This means that the scaling relations (2.4) and (2.5) are satisfied. However,
there is not one common length scale for the mean and Gaussian curvatures.
Instead, the curvatures H and K scale independently with two different
length scales, Ly (t) and Lg(t), respectively. They vary with time ¢ as:
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Lu(t) ~ 2%, (4.1)
Li(t) ~ 310,

In terms of the two quantities Ly (t) and Ly (t) the scaling relations
(2.2)—(2.5) can be rewritten in the following form:

S(t) ~ Lu(t)™', (4.3)
X(t) ~ L) *Lu(t)™", (4.4)
_ Py(HLg(1))
Py(H,t) = HLT (4.5)
P (KLk(t)?)
Px(K,t) = —ar (4.6)

Note that the second relation, Eq. (4.4), expresses the Gauss—Bonnet theo-
rem (2.6), with the average Gaussian curvature K (¢) ~ Ly ()72

In view of the four relations (4.3)-(4.6), we see that that the length scale
Ly (t) can be interpreted as the geometrical measure of the phase interface.
It determines such quantities as the characteristic domain size, the area of
the interface, and the mean curvature. The second length scale, Lk (t), is
related to the topology of the system and characterizes its Euler characteristic
and the Gaussian curvature.

The existence of the two length scales in the intermediate regime has
a simple physical interpretation and can be explained in terms of the LCA
theory, which links the velocity of the interface with its local curvature.
Below, we demonstrate that it is related to the domains-necks decoupling
processes [12] taking place in the intermediate stage of the evolution. Let
us denote by n(t) the average number of domains in the system, which are
assumed to be spheres of the radius Ly (¢). The Euler characteristic is then
proportional to the product

x(t) ~ n(t)p(t), (4.7)

where p(t) is the number of necks or passages piercing the surface of the
sphere. On the other hand, according to the Gauss—Bonnet theorem, the
Euler characteristic can be written as x(¢) ~ K (t)S(¢). Since the total area
S(t) of the interface is proportional to the product of the surface of the
sphere of radius Ly(t) and the number n(t) of the domains, we get

X(t) ~ Lr(t)*n(t)Lu(t). (4.8)
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By comparing Egs. (4.7) and (4.8) we obtain

2
o) ~ (7249) . (49)

In the early regime we have Ly (t) = L (t) = L(t) ~ t'/? and, therefore,
p(t) ~ 1 is independent of time. This means that for each sphere of size
L(t) we have the same number of passages. In the intermediate regime we
have Ly (t) ~ t2/5 and Ly (t) ~ t3/1, what gives p(t) ~ t'/> indicating the
decoupling between the domains and the connections joining them.

Since in the intermediate regime the average mean curvature is equal to
zero and its distribution is peaked at H = 0 (Fig. 1(a)), we deduce that the
phase interface possesses large patches of the minimal-like (saddle-like) shape
[16] with zero mean curvature. Furthermore, the apparence of the domains-
necks decoupling process indicates that these areas are localized mainly at
the necks connecting the domains. This means that in the intermediate
regime the necks are in “partially frozen” state and slow down the kinetics
of the system. They evolve slower (with the exponent n = 0.3) compared to
the domains following the evolution with the growth exponent n = 0.4. Of
course, the LCA argument, based on the assumption (1.1), does not work
in the intermediate regime. However, during the evolution the morphology
of the system changes and transforms successively from the “minimal-like”
structure (with the mean curvature H(t) equal to zero) to the “constant
mean curvature like” structure [17], where the average mean curvature is
proportional to the inverse of the characteristic size of the domains, i.e.
H(t) ~ 1/L(t). Once the morphological transformation is completed the
LCA argument works and the late scaling with the growth exponent n = 0.5
is reached.

To sum up, in the intermediate regime the evolution of the morphology
of the phase interface splits off and the “geometry” and the “topology” start
to evolve independently with two different growth exponents, n = 0.4 and
n = 0.3, respectively. This process manifests as the breaking down of the
scaling laws, Eqgs. (2.2)-(2.5). The existence of the two length scales in
the intermediate regime is a consequence of the fact that the late-stage
morphology and the early-stage morphology differ significantly and by no
means cannot be transformed each to other by scaling operations based on
a single length scale.
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5. Summary

In this paper we have investigated the intermediate regime of the phase
separating/ordering process of the system with non-conserved order param-
eter, using tools based on the morphology of the phase interface. As the
main result, we have demonstrated that the observed scaling properties of
the morphological measures of the interface can be successfully described
in terms of two lengths scales Ly (t) and Ly (t). They characterize, respec-
tively, scaling of the distributions of the mean H and Gaussian K curvatures.
Ly (t) varies with the time as t*/° and is related to the geometrical prop-
erties of the system such as the average size of the domains, the surface
area, and characteristic radius of the curvature. The second length scale,
L (t) ~ t3/10 is associated with the topological features of the system’s in-
terface and determines its Euler characteristic and the Gaussian curvature.
We have also demonstrated that the appearance of the two length scales in
the intermediate regime is related to the domains-necks decoupling process
and accompanies the morphological transformation from the “minimal-like”
structure formed at the early stage of the evolution to the “constant mean
curvature like” structure, which is characteristic for the late-stage dynamics.
Although both the early- and the late-stage morphologies are bicontinuos,
they differ significantly and the system cannot be brought from the early
stage to the late stage by simple scaling. For this reason the scaling is
broken in the intermediate regime and the two length scales appear.

This work was supported by the Polish State Committee for Scientific
Research (KBN) grant No. 2P03B12516.
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