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INTERMEDIATE SCALING REGIME IN THE PHASEORDERING KINETICS�M. Fiaªkowski and R. HoªystInstitute of Physial Chemistry, Polish Aademy of Sienesand College of SieneKasprzaka 44/52, 01-224 Warsaw, Poland(Reeived Otober 31, 2000)We have investigated the intermediate saling regime in the phaseordering/separating kinetis of the three-dimensional system of the non-onserved salar order parameter. It is demonstrated that the observedsaling behavior an be desribed in terms of two length sales LH(t) � t2=5and LK(t) � t3=10. The quantity LH(t) is related to the geometrial proper-ties of the phase interfae and desribes time evolution of the harateristidomain size, surfae area, and the mean urvature. The seond lengthsale, LK(t), determining the Gaussian urvature and the Euler harater-isti, an be regarded as the topologial measure of the phase interfae.Also, we have shown that the existene of the two length sales has a sim-ple physial interpretation and is related to the domains-neks deouplingproess observed in the intermediate regime.PACS numbers: 64.60.Cn, 68.55.Jk, 75.40.Gb, 75.40.Mg1. IntrodutionPerhaps the simplest example of a system exhibiting the phase separat-ing/ordering kinetis [1�4℄ is a ferromagnet quenhed from a temperatureabove its ritial temperature T to a temperature below T. After loweringthe temperature, suh a system is brought into thermodynamially unstable,two-phase region. The two phases are haraterized by positive or negativemagnetization. The system starts to evolve towards one of the two equilib-rium states. Sine both the oexisting � phases are equally likely to appear,the system onsists of domains of these two phases. During the phase sep-arating/ordering proess the domains oarsen and the system orders overlarger and larger length sales.� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.(1579)



1580 M. Fiaªkowski, R. HoªystAt early stages of the phase ordering proess the order parameter is smalland the � domains are separated by broad interfaes. In this regime thedynamis of the system is linear [5,6℄ and its evolution advanes di�usively.In the late stage the order parameter is saturated and the walls separatingthe domains are sharp. The dynamis of the system is then determined bythe loal urvature of the phase interfae. Lifshiz [7℄, Allen and Cahn [8℄showed that in the late stage of the evolution the domain oarsening is drivenby loal displaement of the domain walls, whih move with the veloity vproportional to the loal mean urvatureH of the interfae. Aording to theLifshiz�Cahn�Allen (LCA) theory, typial time t needed to lose the domainof size L(t) is t � L(t)=v = L(t)=H(t), where H(t) is the harateristi meanurvature of the system. Thus, under the assumption thatH(t) � 1=L(t) ; (1.1)the LCA theory predits the growth law L(t) � t1=2. The late saling withthe growth exponent n = 0:5 has been on�rmed for the non-onservedsystems in many 2D simulations [9�11℄.Although both the early and the late stage of the phase ordering kinetisseem to be rather well desribed theoretially, the pathway of the transitionfrom the early to the late stage is far from being understood. A new insightinto the phase separating/ordering kinetis provided however the methoddeveloped reently in Ref. [12℄, based on the geometry and topology of thephase interfae. In the paper ited the nature of the rossover from the earlyto the intermediate stage saling was preisely stated and related to thesaturation of the order parameter inside the domains. Here, we ontinue thestudy of the phase ordering kinetis, based on the analysis of the morphologyof the phase interfae, whih was started in [12℄. It is the purpose of thispaper to investigate the intermediate stage of the evolution. In partiular,we seek to explain the saling behavior observed in the system in this regime.The rest of the paper proeeds as follows. The dynamial saling hy-pothesis is brie�y summarized in the next setion. Saling properties of thesystem, obtained in omputer simulations of the phase ordering proess, arepresented in Se. 3. In Se. 4 the onept of the two length sales is intro-dued and used to desribe the saling properties exhibited by the systemin the intermediate regime. The paper ends with the onluding Se. 5.2. Dynamial salingThe systems undergoing phase transitions, suh as the phase separat-ing/ordering proess onsidered here, exhibit usually saling phenomena[1�4℄. Qualitatively, this means that a morphologial pattern of the do-mains at earlier times looks statistially similar to a pattern at later times,apart from the global hange of sale implied by the growth of the average



Intermediate Saling Regime in : : : 1581domain size. Quantitatively, the saling hypothesis says that, for example,the orrelation funtion g(r; t) of the order parameter (here: the magnetiza-tion density) satis�es the following relation: g(r; t) = g(r=L(t)), where L(t)is the harateristi length sale in the system, whih sales algebraiallywith time t, L(t) � tn: (2.1)The growth exponent n depends on the universality lass [1℄ of the sys-tem. Note that the system of the non-onserved order parameter followinga quenh whih is onsidered in the present paper belongs to the universal-ity lass haraterized by the exponent n = 0:5. In the theory of ritialphenomena [13℄ it is also referred to as the model A.Assuming the saling hypothesis, we an derive all the saling laws fordi�erent morphologial measures suh as: the Euler harateristi, �(t),surfae area, S(t), the distribution of the mean, PH(H; t), and Gaussian,PK(K; t), urvatures. The saling hypothesis implies the following salinglaws for any phase separating/ordering symmetri system irrespetive of theuniversality lass: S(t) � L(t)�1; (2.2)�(t) � L(t)�d; (2.3)PH(H; t) = P �H (HL(t))L(t) ; (2.4)PK(K; t) = P �K �KL(t)(d�1)�L(t)(d�1) : (2.5)where d is the dimensionality of the system. The �rst law follows fromthe ongrueny of the domains [14℄. The saling law (2.3) results from theGauss�Bonnet theorem [15℄, whih relates the Euler harateristi to theGaussian urvature and the surfae area� =  Z K(S)dS ; (2.6)where R dS denotes the integral over the surfae, and  is twie the inverseof the volume of a (d�1)-dimensional sphere of the unit radius ( = 1=2�for d = 3). K(t) � L(t)�d+1 ; (2.7)and S(t) � L(t)�1 we �nd saling (2.3). The probability densities PH(H; t)and PK(K; t) are normalized to unity. The relation (2.4) is a simple onse-quene of the saling of the mean urvatureH(t) � L(t)�1 : (2.8)The last relation results from the saling (2.7) of the Gaussian urvature.Note that for d = 2 the salings (2.4) and (2.5) are equivalent.



1582 M. Fiaªkowski, R. Hoªyst3. Results of numerial simulations3.1. The modelThe dynamis of the system of the non-onserved salar order parameter (r; t) following a quenh from the temperature T =1 to T = 0 is governedby the Time Dependent Ginzburg�Landau (TDGL) equation [1, 7, 8, 13℄:� (r; t)�t = �ÆF [ ℄Æ ; (3.1)with the free-energy funtional taken to have the form of the oarse-grainedGinzburg�Landau free energy:F [ ℄ = Z dr �12 ���r (r)���2 + f( (r))� : (3.2)The bulk potential f( ) has the Landau�Ginzburg double-well struturef( ) = 14 4 � 12 2 (3.3)with two degenerate minima at  = �1. The TDGL equation with thepotential given by (3.3) leads to the following kineti equation governing thetime evolution of the �eld  (r; t):��t (r; t) = � (r; t) +  (r; t)�  3(r; t) ; (3.4)where � stands for the Laplaian.The results disussed in this paper were obtained by numerial solving ofthe TDGL equation (3.4) on the ubi lattie, using simple Euler integrationsheme with the time step �t = 0:05 and the mesh size �x = 1. The initialondition were hosen from the uniform distribution of the �eld  with zeromean. 3.2. Saling regimesIt was found in Ref. [12℄ that the system desribed by the TDGL equationexhibits two saling regimes: (i) the early regime where the harateristidomain size L(t) sales with t1=2, and (ii) the intermediate regime whereL(t) � t2=5. The transition between the early and the intermediate regimeswas found to be marked by the saturation of the order parameter inside thedomains. The late stage dynamis predited by the LCA theory with the



Intermediate Saling Regime in : : : 1583growth exponent n = 0:5 was not observed due to �nite-size e�ets. Duringthe whole evolution the system has a biontinuos morphology with a singleinterfae and two perolating � domains.The early stage of the phase ordering kinetis is governed by the satura-tion of the order parameter inside the domains. The phase interfae followsthen the bulk evolution and the exponent n = 0:5 results simply from thelinearized TDGL equation. If we drop the  3 term in Eq. (3.4), the solution k(t) in the Fourier spae reads k(t) =  k(0) exp �� �k2 � 1� t� ; (3.5)where k = jkj; the funtion  k(0) is assumed to be a onstant, what or-responds to the initial onditions with the unorrelated �eld  (r; 0). Sinein the early stage the average domain size is very small, we have k � 1 andthe argument of the exponent in (3.5) an be approximated by �k2t. Thelinearized equation (3.4) desribes then a purely di�usive proess and itsreal spae solution is written as (r; t) � exp ��r2=4t� � exp h� (r=L(t))2i : (3.6)In view of the above solution, it is lear why in the early stage of the evolutionthe harateristi length sale L(t) growths as t1=2. Note that the four salingrelations (2.2)�(2.5) are satis�ed in the early stage.The behavior of the system in the intermediate regime is muh more in-teresting; In this regime the order parameter is saturated and the � domainsare separated by sharp walls. The time evolution of the system is driven bythe loal urvature of the interfae. However, the LCA assumption (1.1)does not hold; instead, it was found that in this regime the morphologialmeasures of the phase interfae behave as:L(t) � t2=5; (3.7)�(t) � t�1; (3.8)S(t) � t�2=5: (3.9)It was also found that the distribution of the urvatures satis�es the relationsPH(H; t) = P �H (HL(t)) =L(t), with L(t) given by (3.7), and PK(K; t) =P �K(Kt3=5)=t3=5 Thus, the saling relations (2.2)�(2.5), based on a singlelength sale L(t), do not hold in the intermediate regime. In the next se-tion we demonstrate that the saling behavior observed in the intermediateregime is suessfully desribed in terms of two length sales, whih an beinferred from the saling properties of the distributions of the mean and theGaussian urvatures.



1584 M. Fiaªkowski, R. Hoªyst4. The onept of two length sales in the intermediate regimeSaling of the distributions of the meanH and the GaussianK urvaturesin the intermediate regime are shown in Fig. 1(a) and Fig. 1(b), respetively.As seen, for di�erent times the data ollapse onto single master urves.
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Fig. 1. The resaled distributions of the mean (a) and the Gaussian (b) urvaturein the intermediate regime. The distributions obey the saling relations PH(H; t) =P �H (HLH(t)) =LH(t), with LH(t) � t2=5, and PK(K; t) = P �K �KLK(t)2� =LK(t)2,with LK(t) � t3=10. The urvatures are given in dimensionless units. The systemsize is 50� 50� 50.This means that the saling relations (2.4) and (2.5) are satis�ed. However,there is not one ommon length sale for the mean and Gaussian urvatures.Instead, the urvatures H and K sale independently with two di�erentlength sales, LH(t) and LK(t), respetively. They vary with time t as:



Intermediate Saling Regime in : : : 1585LH(t) � t2=5; (4.1)LK(t) � t3=10: (4.2)In terms of the two quantities LH(t) and LK(t) the saling relations(2.2)�(2.5) an be rewritten in the following form:S(t) � LH(t)�1; (4.3)�(t) � LK(t)�2LH(t)�1; (4.4)PH(H; t) = P ?H(HLH(t))LH(t) ; (4.5)PK(K; t) = P ?K�KLK(t)2�LK(t)2 : (4.6)Note that the seond relation, Eq. (4.4), expresses the Gauss�Bonnet theo-rem (2.6), with the average Gaussian urvature K(t) � LK(t)�2.In view of the four relations (4.3)�(4.6), we see that that the length saleLH(t) an be interpreted as the geometrial measure of the phase interfae.It determines suh quantities as the harateristi domain size, the area ofthe interfae, and the mean urvature. The seond length sale, LK(t), isrelated to the topology of the system and haraterizes its Euler harateristiand the Gaussian urvature.The existene of the two length sales in the intermediate regime hasa simple physial interpretation and an be explained in terms of the LCAtheory, whih links the veloity of the interfae with its loal urvature.Below, we demonstrate that it is related to the domains-neks deouplingproesses [12℄ taking plae in the intermediate stage of the evolution. Letus denote by n(t) the average number of domains in the system, whih areassumed to be spheres of the radius LH(t). The Euler harateristi is thenproportional to the produt �(t) � n(t)p(t); (4.7)where p(t) is the number of neks or passages piering the surfae of thesphere. On the other hand, aording to the Gauss�Bonnet theorem, theEuler harateristi an be written as �(t) � K(t)S(t). Sine the total areaS(t) of the interfae is proportional to the produt of the surfae of thesphere of radius LH(t) and the number n(t) of the domains, we get�(t) � LK(t)�2n(t)LH(t)2: (4.8)



1586 M. Fiaªkowski, R. HoªystBy omparing Eqs. (4.7) and (4.8) we obtainp(t) � �LH(t)LK(t)�2 : (4.9)In the early regime we have LH(t) = LK(t) = L(t) � t1=2 and, therefore,p(t) � 1 is independent of time. This means that for eah sphere of sizeL(t) we have the same number of passages. In the intermediate regime wehave LH(t) � t2=5 and LK(t) � t3=10, what gives p(t) � t1=5 indiating thedeoupling between the domains and the onnetions joining them.Sine in the intermediate regime the average mean urvature is equal tozero and its distribution is peaked at H = 0 (Fig. 1(a)), we dedue that thephase interfae possesses large pathes of the minimal-like (saddle-like) shape[16℄ with zero mean urvature. Furthermore, the apparene of the domains-neks deoupling proess indiates that these areas are loalized mainly atthe neks onneting the domains. This means that in the intermediateregime the neks are in �partially frozen� state and slow down the kinetisof the system. They evolve slower (with the exponent n = 0:3) ompared tothe domains following the evolution with the growth exponent n = 0:4. Ofourse, the LCA argument, based on the assumption (1.1), does not workin the intermediate regime. However, during the evolution the morphologyof the system hanges and transforms suessively from the �minimal-like�struture (with the mean urvature H(t) equal to zero) to the �onstantmean urvature like� struture [17℄, where the average mean urvature isproportional to the inverse of the harateristi size of the domains, i.e.H(t) � 1=L(t). One the morphologial transformation is ompleted theLCA argument works and the late saling with the growth exponent n = 0:5is reahed.To sum up, in the intermediate regime the evolution of the morphologyof the phase interfae splits o� and the �geometry� and the �topology� startto evolve independently with two di�erent growth exponents, n = 0:4 andn = 0:3, respetively. This proess manifests as the breaking down of thesaling laws, Eqs. (2.2)�(2.5). The existene of the two length sales inthe intermediate regime is a onsequene of the fat that the late-stagemorphology and the early-stage morphology di�er signi�antly and by nomeans annot be transformed eah to other by saling operations based ona single length sale.



Intermediate Saling Regime in : : : 15875. SummaryIn this paper we have investigated the intermediate regime of the phaseseparating/ordering proess of the system with non-onserved order param-eter, using tools based on the morphology of the phase interfae. As themain result, we have demonstrated that the observed saling properties ofthe morphologial measures of the interfae an be suessfully desribedin terms of two lengths sales LH(t) and LK(t). They haraterize, respe-tively, saling of the distributions of the meanH and GaussianK urvatures.LH(t) varies with the time as t2=5 and is related to the geometrial prop-erties of the system suh as the average size of the domains, the surfaearea, and harateristi radius of the urvature. The seond length sale,LK(t) � t3=10, is assoiated with the topologial features of the system's in-terfae and determines its Euler harateristi and the Gaussian urvature.We have also demonstrated that the appearane of the two length sales inthe intermediate regime is related to the domains-neks deoupling proessand aompanies the morphologial transformation from the �minimal-like�struture formed at the early stage of the evolution to the �onstant meanurvature like� struture, whih is harateristi for the late-stage dynamis.Although both the early- and the late-stage morphologies are biontinuos,they di�er signi�antly and the system annot be brought from the earlystage to the late stage by simple saling. For this reason the saling isbroken in the intermediate regime and the two length sales appear.This work was supported by the Polish State Committee for Sienti�Researh (KBN) grant No. 2P03B12516.REFERENCES[1℄ A.J. Bray, Adv. Phys. 43, 357 (1994).[2℄ J.S. Langer Solids Far from Equilibrium, Ed. C. Godrehe, Cambridge Univer-sity Press, Cambridge 1992, p. 297.[3℄ K. Binder, Rep. Prog. Phys. 50, 783 (1987).[4℄ J.D. Gunton, M. San Miguel, P. Sahni, in Phase Transitions and Critial Phe-nomena Eds. C. Domb, J.L. Lebowitz, vol. 8, Aademi Press, New York 1983,p. 267.[5℄ J.W. Cahn, J.E. Hiliard, J. Chem. Phys. 31, 688 (1959); H.E. Cook, AtaMetall. 18, 297 (1970).[6℄ N.A. Gross, W. Klein, K. Ludwig, Phys. Rev. E56, 5160 (1997).[7℄ I.M. Lifshitz, Zh. Exp. Teor. Fiz. 42, 1354 (1962).[8℄ S.M. Allen, J.W. Cahn, Ata Metall. 27, 1085 (1979).
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