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INTERMEDIATE SCALING REGIME IN THE PHASEORDERING KINETICS�M. Fiaªkowski and R. HoªystInstitute of Physi
al Chemistry, Polish A
ademy of S
ien
esand College of S
ien
eKasprzaka 44/52, 01-224 Warsaw, Poland(Re
eived O
tober 31, 2000)We have investigated the intermediate s
aling regime in the phaseordering/separating kineti
s of the three-dimensional system of the non-
onserved s
alar order parameter. It is demonstrated that the observeds
aling behavior 
an be des
ribed in terms of two length s
ales LH(t) � t2=5and LK(t) � t3=10. The quantity LH(t) is related to the geometri
al proper-ties of the phase interfa
e and des
ribes time evolution of the 
hara
teristi
domain size, surfa
e area, and the mean 
urvature. The se
ond lengths
ale, LK(t), determining the Gaussian 
urvature and the Euler 
hara
ter-isti
, 
an be regarded as the topologi
al measure of the phase interfa
e.Also, we have shown that the existen
e of the two length s
ales has a sim-ple physi
al interpretation and is related to the domains-ne
ks de
ouplingpro
ess observed in the intermediate regime.PACS numbers: 64.60.Cn, 68.55.Jk, 75.40.Gb, 75.40.Mg1. Introdu
tionPerhaps the simplest example of a system exhibiting the phase separat-ing/ordering kineti
s [1�4℄ is a ferromagnet quen
hed from a temperatureabove its 
riti
al temperature T
 to a temperature below T
. After loweringthe temperature, su
h a system is brought into thermodynami
ally unstable,two-phase region. The two phases are 
hara
terized by positive or negativemagnetization. The system starts to evolve towards one of the two equilib-rium states. Sin
e both the 
oexisting � phases are equally likely to appear,the system 
onsists of domains of these two phases. During the phase sep-arating/ordering pro
ess the domains 
oarsen and the system orders overlarger and larger length s
ales.� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.(1579)



1580 M. Fiaªkowski, R. HoªystAt early stages of the phase ordering pro
ess the order parameter is smalland the � domains are separated by broad interfa
es. In this regime thedynami
s of the system is linear [5,6℄ and its evolution advan
es di�usively.In the late stage the order parameter is saturated and the walls separatingthe domains are sharp. The dynami
s of the system is then determined bythe lo
al 
urvature of the phase interfa
e. Lifshiz [7℄, Allen and Cahn [8℄showed that in the late stage of the evolution the domain 
oarsening is drivenby lo
al displa
ement of the domain walls, whi
h move with the velo
ity vproportional to the lo
al mean 
urvatureH of the interfa
e. A

ording to theLifshiz�Cahn�Allen (LCA) theory, typi
al time t needed to 
lose the domainof size L(t) is t � L(t)=v = L(t)=H(t), where H(t) is the 
hara
teristi
 mean
urvature of the system. Thus, under the assumption thatH(t) � 1=L(t) ; (1.1)the LCA theory predi
ts the growth law L(t) � t1=2. The late s
aling withthe growth exponent n = 0:5 has been 
on�rmed for the non-
onservedsystems in many 2D simulations [9�11℄.Although both the early and the late stage of the phase ordering kineti
sseem to be rather well des
ribed theoreti
ally, the pathway of the transitionfrom the early to the late stage is far from being understood. A new insightinto the phase separating/ordering kineti
s provided however the methoddeveloped re
ently in Ref. [12℄, based on the geometry and topology of thephase interfa
e. In the paper 
ited the nature of the 
rossover from the earlyto the intermediate stage s
aling was pre
isely stated and related to thesaturation of the order parameter inside the domains. Here, we 
ontinue thestudy of the phase ordering kineti
s, based on the analysis of the morphologyof the phase interfa
e, whi
h was started in [12℄. It is the purpose of thispaper to investigate the intermediate stage of the evolution. In parti
ular,we seek to explain the s
aling behavior observed in the system in this regime.The rest of the paper pro
eeds as follows. The dynami
al s
aling hy-pothesis is brie�y summarized in the next se
tion. S
aling properties of thesystem, obtained in 
omputer simulations of the phase ordering pro
ess, arepresented in Se
. 3. In Se
. 4 the 
on
ept of the two length s
ales is intro-du
ed and used to des
ribe the s
aling properties exhibited by the systemin the intermediate regime. The paper ends with the 
on
luding Se
. 5.2. Dynami
al s
alingThe systems undergoing phase transitions, su
h as the phase separat-ing/ordering pro
ess 
onsidered here, exhibit usually s
aling phenomena[1�4℄. Qualitatively, this means that a morphologi
al pattern of the do-mains at earlier times looks statisti
ally similar to a pattern at later times,apart from the global 
hange of s
ale implied by the growth of the average



Intermediate S
aling Regime in : : : 1581domain size. Quantitatively, the s
aling hypothesis says that, for example,the 
orrelation fun
tion g(r; t) of the order parameter (here: the magnetiza-tion density) satis�es the following relation: g(r; t) = g(r=L(t)), where L(t)is the 
hara
teristi
 length s
ale in the system, whi
h s
ales algebrai
allywith time t, L(t) � tn: (2.1)The growth exponent n depends on the universality 
lass [1℄ of the sys-tem. Note that the system of the non-
onserved order parameter followinga quen
h whi
h is 
onsidered in the present paper belongs to the universal-ity 
lass 
hara
terized by the exponent n = 0:5. In the theory of 
riti
alphenomena [13℄ it is also referred to as the model A.Assuming the s
aling hypothesis, we 
an derive all the s
aling laws fordi�erent morphologi
al measures su
h as: the Euler 
hara
teristi
, �(t),surfa
e area, S(t), the distribution of the mean, PH(H; t), and Gaussian,PK(K; t), 
urvatures. The s
aling hypothesis implies the following s
alinglaws for any phase separating/ordering symmetri
 system irrespe
tive of theuniversality 
lass: S(t) � L(t)�1; (2.2)�(t) � L(t)�d; (2.3)PH(H; t) = P �H (HL(t))L(t) ; (2.4)PK(K; t) = P �K �KL(t)(d�1)�L(t)(d�1) : (2.5)where d is the dimensionality of the system. The �rst law follows fromthe 
ongruen
y of the domains [14℄. The s
aling law (2.3) results from theGauss�Bonnet theorem [15℄, whi
h relates the Euler 
hara
teristi
 to theGaussian 
urvature and the surfa
e area� = 
 Z K(S)dS ; (2.6)where R dS denotes the integral over the surfa
e, and 
 is twi
e the inverseof the volume of a (d�1)-dimensional sphere of the unit radius (
 = 1=2�for d = 3). K(t) � L(t)�d+1 ; (2.7)and S(t) � L(t)�1 we �nd s
aling (2.3). The probability densities PH(H; t)and PK(K; t) are normalized to unity. The relation (2.4) is a simple 
onse-quen
e of the s
aling of the mean 
urvatureH(t) � L(t)�1 : (2.8)The last relation results from the s
aling (2.7) of the Gaussian 
urvature.Note that for d = 2 the s
alings (2.4) and (2.5) are equivalent.



1582 M. Fiaªkowski, R. Hoªyst3. Results of numeri
al simulations3.1. The modelThe dynami
s of the system of the non-
onserved s
alar order parameter (r; t) following a quen
h from the temperature T =1 to T = 0 is governedby the Time Dependent Ginzburg�Landau (TDGL) equation [1, 7, 8, 13℄:� (r; t)�t = �ÆF [ ℄Æ ; (3.1)with the free-energy fun
tional taken to have the form of the 
oarse-grainedGinzburg�Landau free energy:F [ ℄ = Z dr �12 ���r (r)���2 + f( (r))� : (3.2)The bulk potential f( ) has the Landau�Ginzburg double-well stru
turef( ) = 14 4 � 12 2 (3.3)with two degenerate minima at  = �1. The TDGL equation with thepotential given by (3.3) leads to the following kineti
 equation governing thetime evolution of the �eld  (r; t):��t (r; t) = � (r; t) +  (r; t)�  3(r; t) ; (3.4)where � stands for the Lapla
ian.The results dis
ussed in this paper were obtained by numeri
al solving ofthe TDGL equation (3.4) on the 
ubi
 latti
e, using simple Euler integrations
heme with the time step �t = 0:05 and the mesh size �x = 1. The initial
ondition were 
hosen from the uniform distribution of the �eld  with zeromean. 3.2. S
aling regimesIt was found in Ref. [12℄ that the system des
ribed by the TDGL equationexhibits two s
aling regimes: (i) the early regime where the 
hara
teristi
domain size L(t) s
ales with t1=2, and (ii) the intermediate regime whereL(t) � t2=5. The transition between the early and the intermediate regimeswas found to be marked by the saturation of the order parameter inside thedomains. The late stage dynami
s predi
ted by the LCA theory with the



Intermediate S
aling Regime in : : : 1583growth exponent n = 0:5 was not observed due to �nite-size e�e
ts. Duringthe whole evolution the system has a bi
ontinuos morphology with a singleinterfa
e and two per
olating � domains.The early stage of the phase ordering kineti
s is governed by the satura-tion of the order parameter inside the domains. The phase interfa
e followsthen the bulk evolution and the exponent n = 0:5 results simply from thelinearized TDGL equation. If we drop the  3 term in Eq. (3.4), the solution k(t) in the Fourier spa
e reads k(t) =  k(0) exp �� �k2 � 1� t� ; (3.5)where k = jkj; the fun
tion  k(0) is assumed to be a 
onstant, what 
or-responds to the initial 
onditions with the un
orrelated �eld  (r; 0). Sin
ein the early stage the average domain size is very small, we have k � 1 andthe argument of the exponent in (3.5) 
an be approximated by �k2t. Thelinearized equation (3.4) des
ribes then a purely di�usive pro
ess and itsreal spa
e solution is written as (r; t) � exp ��r2=4t� � exp h� (r=L(t))2i : (3.6)In view of the above solution, it is 
lear why in the early stage of the evolutionthe 
hara
teristi
 length s
ale L(t) growths as t1=2. Note that the four s
alingrelations (2.2)�(2.5) are satis�ed in the early stage.The behavior of the system in the intermediate regime is mu
h more in-teresting; In this regime the order parameter is saturated and the � domainsare separated by sharp walls. The time evolution of the system is driven bythe lo
al 
urvature of the interfa
e. However, the LCA assumption (1.1)does not hold; instead, it was found that in this regime the morphologi
almeasures of the phase interfa
e behave as:L(t) � t2=5; (3.7)�(t) � t�1; (3.8)S(t) � t�2=5: (3.9)It was also found that the distribution of the 
urvatures satis�es the relationsPH(H; t) = P �H (HL(t)) =L(t), with L(t) given by (3.7), and PK(K; t) =P �K(Kt3=5)=t3=5 Thus, the s
aling relations (2.2)�(2.5), based on a singlelength s
ale L(t), do not hold in the intermediate regime. In the next se
-tion we demonstrate that the s
aling behavior observed in the intermediateregime is su

essfully des
ribed in terms of two length s
ales, whi
h 
an beinferred from the s
aling properties of the distributions of the mean and theGaussian 
urvatures.



1584 M. Fiaªkowski, R. Hoªyst4. The 
on
ept of two length s
ales in the intermediate regimeS
aling of the distributions of the meanH and the GaussianK 
urvaturesin the intermediate regime are shown in Fig. 1(a) and Fig. 1(b), respe
tively.As seen, for di�erent times the data 
ollapse onto single master 
urves.
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Fig. 1. The res
aled distributions of the mean (a) and the Gaussian (b) 
urvaturein the intermediate regime. The distributions obey the s
aling relations PH(H; t) =P �H (HLH(t)) =LH(t), with LH(t) � t2=5, and PK(K; t) = P �K �KLK(t)2� =LK(t)2,with LK(t) � t3=10. The 
urvatures are given in dimensionless units. The systemsize is 50� 50� 50.This means that the s
aling relations (2.4) and (2.5) are satis�ed. However,there is not one 
ommon length s
ale for the mean and Gaussian 
urvatures.Instead, the 
urvatures H and K s
ale independently with two di�erentlength s
ales, LH(t) and LK(t), respe
tively. They vary with time t as:



Intermediate S
aling Regime in : : : 1585LH(t) � t2=5; (4.1)LK(t) � t3=10: (4.2)In terms of the two quantities LH(t) and LK(t) the s
aling relations(2.2)�(2.5) 
an be rewritten in the following form:S(t) � LH(t)�1; (4.3)�(t) � LK(t)�2LH(t)�1; (4.4)PH(H; t) = P ?H(HLH(t))LH(t) ; (4.5)PK(K; t) = P ?K�KLK(t)2�LK(t)2 : (4.6)Note that the se
ond relation, Eq. (4.4), expresses the Gauss�Bonnet theo-rem (2.6), with the average Gaussian 
urvature K(t) � LK(t)�2.In view of the four relations (4.3)�(4.6), we see that that the length s
aleLH(t) 
an be interpreted as the geometri
al measure of the phase interfa
e.It determines su
h quantities as the 
hara
teristi
 domain size, the area ofthe interfa
e, and the mean 
urvature. The se
ond length s
ale, LK(t), isrelated to the topology of the system and 
hara
terizes its Euler 
hara
teristi
and the Gaussian 
urvature.The existen
e of the two length s
ales in the intermediate regime hasa simple physi
al interpretation and 
an be explained in terms of the LCAtheory, whi
h links the velo
ity of the interfa
e with its lo
al 
urvature.Below, we demonstrate that it is related to the domains-ne
ks de
ouplingpro
esses [12℄ taking pla
e in the intermediate stage of the evolution. Letus denote by n(t) the average number of domains in the system, whi
h areassumed to be spheres of the radius LH(t). The Euler 
hara
teristi
 is thenproportional to the produ
t �(t) � n(t)p(t); (4.7)where p(t) is the number of ne
ks or passages pier
ing the surfa
e of thesphere. On the other hand, a

ording to the Gauss�Bonnet theorem, theEuler 
hara
teristi
 
an be written as �(t) � K(t)S(t). Sin
e the total areaS(t) of the interfa
e is proportional to the produ
t of the surfa
e of thesphere of radius LH(t) and the number n(t) of the domains, we get�(t) � LK(t)�2n(t)LH(t)2: (4.8)



1586 M. Fiaªkowski, R. HoªystBy 
omparing Eqs. (4.7) and (4.8) we obtainp(t) � �LH(t)LK(t)�2 : (4.9)In the early regime we have LH(t) = LK(t) = L(t) � t1=2 and, therefore,p(t) � 1 is independent of time. This means that for ea
h sphere of sizeL(t) we have the same number of passages. In the intermediate regime wehave LH(t) � t2=5 and LK(t) � t3=10, what gives p(t) � t1=5 indi
ating thede
oupling between the domains and the 
onne
tions joining them.Sin
e in the intermediate regime the average mean 
urvature is equal tozero and its distribution is peaked at H = 0 (Fig. 1(a)), we dedu
e that thephase interfa
e possesses large pat
hes of the minimal-like (saddle-like) shape[16℄ with zero mean 
urvature. Furthermore, the apparen
e of the domains-ne
ks de
oupling pro
ess indi
ates that these areas are lo
alized mainly atthe ne
ks 
onne
ting the domains. This means that in the intermediateregime the ne
ks are in �partially frozen� state and slow down the kineti
sof the system. They evolve slower (with the exponent n = 0:3) 
ompared tothe domains following the evolution with the growth exponent n = 0:4. Of
ourse, the LCA argument, based on the assumption (1.1), does not workin the intermediate regime. However, during the evolution the morphologyof the system 
hanges and transforms su

essively from the �minimal-like�stru
ture (with the mean 
urvature H(t) equal to zero) to the �
onstantmean 
urvature like� stru
ture [17℄, where the average mean 
urvature isproportional to the inverse of the 
hara
teristi
 size of the domains, i.e.H(t) � 1=L(t). On
e the morphologi
al transformation is 
ompleted theLCA argument works and the late s
aling with the growth exponent n = 0:5is rea
hed.To sum up, in the intermediate regime the evolution of the morphologyof the phase interfa
e splits o� and the �geometry� and the �topology� startto evolve independently with two di�erent growth exponents, n = 0:4 andn = 0:3, respe
tively. This pro
ess manifests as the breaking down of thes
aling laws, Eqs. (2.2)�(2.5). The existen
e of the two length s
ales inthe intermediate regime is a 
onsequen
e of the fa
t that the late-stagemorphology and the early-stage morphology di�er signi�
antly and by nomeans 
annot be transformed ea
h to other by s
aling operations based ona single length s
ale.



Intermediate S
aling Regime in : : : 15875. SummaryIn this paper we have investigated the intermediate regime of the phaseseparating/ordering pro
ess of the system with non-
onserved order param-eter, using tools based on the morphology of the phase interfa
e. As themain result, we have demonstrated that the observed s
aling properties ofthe morphologi
al measures of the interfa
e 
an be su

essfully des
ribedin terms of two lengths s
ales LH(t) and LK(t). They 
hara
terize, respe
-tively, s
aling of the distributions of the meanH and GaussianK 
urvatures.LH(t) varies with the time as t2=5 and is related to the geometri
al prop-erties of the system su
h as the average size of the domains, the surfa
earea, and 
hara
teristi
 radius of the 
urvature. The se
ond length s
ale,LK(t) � t3=10, is asso
iated with the topologi
al features of the system's in-terfa
e and determines its Euler 
hara
teristi
 and the Gaussian 
urvature.We have also demonstrated that the appearan
e of the two length s
ales inthe intermediate regime is related to the domains-ne
ks de
oupling pro
essand a

ompanies the morphologi
al transformation from the �minimal-like�stru
ture formed at the early stage of the evolution to the �
onstant mean
urvature like� stru
ture, whi
h is 
hara
teristi
 for the late-stage dynami
s.Although both the early- and the late-stage morphologies are bi
ontinuos,they di�er signi�
antly and the system 
annot be brought from the earlystage to the late stage by simple s
aling. For this reason the s
aling isbroken in the intermediate regime and the two length s
ales appear.This work was supported by the Polish State Committee for S
ienti�
Resear
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