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FRACTIONAL BROWNIAN MOTION AS A MODELOF THE SELF-SIMILAR ION CHANNEL KINETICS�Szymon Mer
ik and Karina WeronInstitute of Physi
s, Wro
ªaw University of Te
hnologyWyb. Wyspia«skiego 27, 50-370 Wro
ªaw, Polande-mail: mer
ik�rainbow.if.pwr.wro
.ple-mail: karina�rainbow.if.pwr.wro
.pl(Re
eived De
ember 28, 2000)The 
orresponden
e of the fra
tional Brownian motion to the statisti-
ally self-similar on di�erent time s
ales kineti
s of a single lo
ust potassium
hannel is dis
ussed. The parameters of the non-Markovian long-memorypro
ess, modelling the ioni
 transport, are derived in terms of the mainstatisti
al 
hara
teristi
s of the re
orded 
urrent signal.PACS numbers: 87.17.�d, 87.22.�q, 05.40.+j1. Introdu
tionIoni
 
urrents are one of the basi
 pro
esses in living 
ells [1�3℄. Theyenable living 
ells to 
ontrol its volume, to generate and 
ondu
t ele
tri
aland 
hemi
al impulses, to maintain ioni
 
on
entration desired for bio
hem-i
al rea
tions, et
. The problem of determination of the ion 
urrent natureis hen
e of great importan
e [4�12℄. Its solution may provide a 
lue to betterunderstanding of the membrane 
hannels a
tion.A subje
t of intensive dis
ussions is the question of the sto
hasti
 originsof the ioni
 
urrent �u
tuations. However the single 
hannel re
ordings areoften analyzed in terms of models assuming that the basi
 
hannel kineti
sis a Markov pro
ess [13�15℄, su
h an assumption 
an be questioned [16�20℄.It was already reported [16�20℄ that the non-Markovian nature of the ioni

urrents re
orded from a single 
hannel 
an be also observed. The non-Markovian properties of the investigated signals have been brought to lightby means of di�erent statisti
al tools [18�21℄. The most e�e
tive of themare: the Hurst, detrended �u
tuation, and auto
orrelation analyses. The� Presented at the XIII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 10�17, 2000.(1621)



1622 S. Mer
ik, K. Werondetailed statisti
al studies (in
luding the dwell-time distributions) have re-vealed, for example, the non-Markovian long-memory nature of the 
urrentsignal re
orded from a single lo
ust potassium 
hannel [18�20℄. Su
h prop-erties are 
urrently interpreted as an example of the fra
tional Brownianmotion (fBm). The long-range 
orrelations were also observed in mem-brane potential �u
tuations of human T-lympho
ytes [22℄, ba
teria DNAsequen
es [23℄, 
ardia
 rhythm [24℄, Ethernet tra�
 [25℄, and insuran
es [26℄.Despite some theoreti
al studies in
lude mathemati
al justi�
ation [25, 26℄,a la
k of rigorous mathemati
al proofs is often observed in the relationshipbetween the long-range 
orrelations of a signal and the fBm.In this paper we show how the dynami
s of a di
hotomous stationarypro
ess with the long-range 
orrelation, su
h as underlying the ioni
 
urrent�u
tuations re
orded from a single lo
ust potassium 
hannel, is related tothe fBm. The proposed model is 
ompatible with the known biologi
al andphysi
al 
onstraints, and also 
onsistent with the information on 
hannelkineti
s obtained by the detailed statisti
al analysis of the experimentaldata [18�20℄.2. Basi
 statisti
al properties of the experimental signalThe statisti
al analysis presented re
ently, for details see [18�20℄, 
on-
erns a data set that was re
orded from 
ell atta
hed pat
hes of adult lo
ust(S
histo
er
a gregaria) extensor tibiae mus
le �bres [18, 27℄. The 
ompletedata 
onsists of one re
ord 
omposed of N = 250 000 values of the 
hannel
urrent measured at equal intervals �t = 0:1 ms, the whole duration being25 s. The error of measurements of ioni
 
urrent is equal to �I = 1 pA.A sample of the data set is shown in Fig. 1.
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Fig. 1. A part of pat
h 
lamp re
ording of the single BK 
hannel 
urrent I(pA) vstime (ms), at a pipette potential of +100 mV.



Fra
tional Brownian Motion as a Model of the Self-Similar Ion : : : 1623The ioni
 
urrent signal re
orded from a single membrane 
hannel, Fig. 1,re�e
ts the fa
t that the 
hannel is not permanently open for 
ondu
tion ofions but 
ontinuously swit
h between 
losed and open states. The 
hangesare of random nature resulting from e.g. thermal �u
tuations, variationsof the voltage di�eren
e a
ross the 
ell membrane, or from 
onformational
hanges of 
hannel proteins. The states of low and high 
urrents 
orrespondto the 
losed and open 
hannel states, respe
tively [18�20,27℄. Dividing theinvestigated signal into periods of 
losed and open states one 
an get theperiods of 
losed- and open-states and their distributions. It was shown[19, 20℄ that the 
losed-time distribution has a power tailPfT
 > tg = 1� F
(t) / t�D
 ; (1)with D
 = 1:24 � 0:06. As it is seen in Fig. 2 the tail of the 
losed-timedistribution is heavier than the tail of the open-time distribution, i.e., itholds PfT
 > tg � PfTo > tg:
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Fig. 2. The tails of the 
losed- (
rosses) and open-time (
ir
les) distributions inlog�log s
ale. The tail of the 
losed-time distribution is heavier than the tail of theopen-time distribution: PfT
 > tg � PfTo > tg.The time stru
ture of the ioni
 
urrent time series fIngNn=1 re
orded ina sequen
e of moments ftn = n�tgNn=1 yields the auto
orrelation fun
tion�(t) [20℄ de
aying in time with a power-law�(t) / K t��� ; as t!1; (2)



1624 S. Mer
ik, K. Weronwhere �� = D
 � 1. The 
onstant K readsK = hT
i2 (M �m)2(D
 � 1)(hT
i+ hToi)3 ; (3)where hT
i and hToi is the mean of 
losed- and open-time, and m and Mis the mean of ion 
urrent �ow in 
losed and open state, respe
tively. Asit has been already shown [19℄, the means are �nite and take the followingvalues: hT
i = 0:84� 0:01 ms, hToi = 0:79� 0:01 ms, m = 3:2� 0:1 pA, andM = 11:0� 0:1 pA.The non-Markovian long-memory property of the investigated signal hasbeen 
on�rmed [20℄ by the self-similarity index H obtained from the Hurst,detrended �u
tuation and Orey analyses. The values of H are equal, respe
-tively, HH = 0:84 � 0:08 ;HD = 0:89 � 0:07 ;HO = 0:84 � 0:04 :The Hurst exponent H provides information on the 
orrelations in the timeseries measured at di�erent time s
ales. It is related to the auto
orrelationpower exponent �� [13℄ by means of the following relationH = 1� ��2 : (4)3. Fra
tional Brownian motion and its main propertiesFra
tional Brownian motion BH(t), introdu
ed by Mandelbrot andvan Ness [28℄, 
an be simply 
onsidered as an extension of the MarkovianBrownian pro
ess into the non-Markovian 
ase. For every moment t > 0 thefBm is de�ned asBH(t) = 1� (H + 12)�8<: 0Z�1 hjt� sjH�1=2 � jsjH�1=2i dB(s) + tZ0 jt� sjH�1=2dB(s)9=; ; (5)where H 2 (0; 1) is the self-similarity index and B(t) is the Brownian motionwith mean 0 and varian
e �2(t) = t. The pro
ess de�ned in (5) has mean



Fra
tional Brownian Motion as a Model of the Self-Similar Ion : : : 16250 and varian
e �2H(t) = t2H . In
rements of the fBm (5) are Gaussian andstationary, and its auto
ovariation fun
tion �(t) de
ays with a power law�(t) � t2H�2: (6)Let us note that the fBm is the only Gaussian self-similar pro
ess with theself-similarity index H [29℄, i.e. for all a > 0 it holdsBH(at) = aHBH(t): (7)Eq. (7) denotes the equality of the �nite-dimensional distributions of thepro
ess on the right- and left-hand side of the equation [30℄. Brownianmotion is a spe
ial 
ase of the fBm when H = 1=2 (its in
rements arethen purely random and therefore un
orrelated with ea
h other). When0 < H < 1=2, every positive in
rement is likely to be followed by a neg-ative one and, 
onversely, de
reases of the BH(t) value are more likelyto be followed by in
reases. Su
h a 
ase is 
alled antipersistent. When1=2 < H < 1, in
reases in the values of a pro
ess are more likely to be fol-lowed by in
reases, and, 
onversely, every negative in
rement is more likelyto be followed by another negative one. Su
h a pro
ess is 
alled persistentand it has a long-memory property [13℄.Fra
tional Brownian motion 
an be obtained via summation of Gaussianand 
orrelated random variables [31℄. If the sequen
e fXig1i=1 is Gaussianand stationary with mean 0 and auto
ovariation �(i�j) = EXiXj satisfyingthe following 
ondition NXi=1 NXj=1 �(i� j) � KN2HL(N) (8)for N !1, H 2 (0; 1), and K > 0, thenlimN!1 1dN [Nt℄Xi=1 Xi = pKBH(t) (9)for dN � NHpL(N); [Nt℄ denotes the largest integer number less or equalNt. Fun
tion L denotes a slowly varying in in�nity fun
tion, i.e.limx!1 L(ax)L(x) = 1for every a > 0. The 
onvergen
e in (9) is weak in the Skorokhod topology[26, 31℄; for every bounded 
ontinuous fun
tional f it holdslimN!1E24f 0� 1dN [Nt℄Xi=1 Xi1A35 = E hf �pKBH(t)�i ; (10)



1626 S. Mer
ik, K. Weronwhere E denotes the expe
ted value. The 
ondition (8) is ful�lled if the 
or-relation �(n) = EXiXi+n between two observations Xi and Xi+n separatedby n time lags de
ays as �(n) � Kn2H�2L(n) (11)for large n [31℄. The presen
e of the slowly varying in in�nity fun
tion Lin Eqs (8) and (11) enables one to use the above theorem in the 
ase whenthe power-law 
ondition (6) is slightly disturbed due to the limited lengthof the time series. Let us note that from the point of relationship betweenthe 
hannel kineti
s and the fBm the stationarity of the experimental se-quen
e fXigNi=1 is of great importan
e. In 
ase of the signal examined (seeChapter 2), it has been tested by means of quantile lines [20, 32℄.4. Fra
tional Brownian motion of the e�e
tive 
hargeOn the basis of experimental data analysis [19, 20℄ we 
an 
onstru
t astationary sequen
e of Gaussian random variables satisfying 
ondition (11).Taking into a

ount that re
ordings were made with the experimental fre-quen
y fex = 1�t , we may assume that the 
urrent �ow between the momentsof sampling 
an be approximated by an interpolation. We assume the 
ur-rent to be 
onstant between two 
onse
utive re
ordings (one 
an also applyanother linear approximation of the 
urrent in time interval �t but it doesnot a�e
t the 
onstru
tion proposed below). Let us also assume that the
onsidered ion 
hannel has 
onstant 
ross se
tion S and is �lled up with anele
trolyte with 
onstant volume 
on
entration 
 of x-valued ions (see Fig. 3).The 
urrent In �owing through the 
hannel in n-th moment 
orresponds toa shift rn of the e�e
tive 
harge inside the 
hannelrn = �In�t; (12)where � is the linear 
on
entration of ions� = FSx
 (13)and F is the Faraday 
onstant. The 
urrent re
orded in experiment is oforder 1�10 pA with the sampling frequen
y 10 kHz. The single 
urrentre
ording 
orresponds hen
e to �ow of about 102�104 potassium ions. Thissuggests that we 
an only tra
k a path of a mean 
harge representing theions and not a single ion itself.It follows from (12) and power-law property of the 
urrent auto
orrela-tion fun
tion �(t), see Eq. (2), that the 
ovariation of two shifts separatedby n time lags �t has also the power-law property�r(n) / �2Hr (�t)2Hn2H�2; (14)



Fra
tional Brownian Motion as a Model of the Self-Similar Ion : : : 1627where 2H = 3 � D
 and �2Hr = �2K. A total shift R(t) of the e�e
tive
harge in the 
hannel is then a sum of all shifts until moment tR(t) = [ t�t ℄Xn=1 rn: (15)The random pro
ess R(t) 
onverges to the fBm if the frequen
y of re
ordingsin
reases, i.e. the duration of the time lag de
reases �t! 0 [26℄.
rn

c

Fig. 3. Shift rn of the e�e
tive 
harge in a 
hannel with 
onstant 
ross se
tion (seeEq. (11)).In order to show the 
onvergen
e let us 
onsider the sum at the right-hand side of Eq. (15). One 
an rewrite it in the form[ t�t ℄Xn=1 rn = t� �� t�t � � t�t + 1���+ (�r�t)H [ t�t ℄Xn=1 yn; (16)where nyn = rn��(�r�t)Ho1n=1 denotes a stationary series with mean 0 and 
o-variation fun
tion of the form�y(n) / n2H�2; (17)following from Eq. (14). The parameter � denotes the mean value of rn andreads � = ��t = �M hToi+m hT
ihToi+ hT
i �t :



1628 S. Mer
ik, K. WeronThe �rst term on the right-hand side of Eq. (16) is a 
onstant � multipliedby time and denotes the pro
ess drift. The se
ond one 
onverges to 0 while�t tends to 0. If we assume that the experimental frequen
y in
reases k-times we have to substitute �t in Eq. (16) by �tk . It follows from Eq. (9)that the third term in (16) 
onverges to the fBm for �xed t and k !1(�r�t)H 1kH [k t�t ℄Xn=1 yn �! (�r�t)HBH � t�t� :Due to the self-similarity property (7) of the fBm, we get(�r�t)HBH � t�t� = BH (�rt) :The 
onsiderations presented above have shown that with an in
rease ofthe experimental frequen
y the shift R(t) of the e�e
tive 
harge in a singleioni
 
hannel is well des
ribed by the fBmR(t) = �t+BH (�rt) (18)with the self-similarity index H = 3�D
2 ;the drift � = �M hToi+m hT
ihToi+ hT
i ;and the s
ale parameter�2Hr = �2 hT
i2 (M �m)2(D
 � 1)(hT
i+ hToi)3 :The fBm is not, however, observed in an experiment. It is only a mathemat-i
al, idealized 
onstru
tion with properties similar to those observed in realdata. The agreement follows from the fa
t that applying the statisti
al tools(su
h as the Hurst, detrended �u
tuation and Orey analyses, or quantiles)we simply 
al
ulate mean values of di�erent fun
tionals. Sin
e the 
onver-gen
e holds in the Skorokhod topology, see Eq. (10), we get the statisti
alproperties similar to that 
al
ulated for the fBm.



Fra
tional Brownian Motion as a Model of the Self-Similar Ion : : : 16295. Con
lusionsThe main obje
tive of the paper was to present a rigorous mathemati
albasis for the interpretation of the non-Markovian long-memory nature ofioni
 
urrent signals as an example of a fra
tional Brownian motion. Our aimwas to explain why the statisti
al properties of the investigated data seem tobe 
ompatible with the properties of this self-similar sto
hasti
 pro
ess andalso to �nd the experimental 
onditions under whi
h the 
orresponden
e ofthe fra
tional Brownian motion to the single 
hannel kineti
s holds.The analysis presented in this paper shows that the total shift of ane�e
tive 
harge in the ioni
 membrane 
hannel 
an be well approximated bythe fra
tional Brownian motion if the re
orded 
urrent signal is stationaryand exhibits long-range 
orrelations. The higher the sampling frequen
y isthe better approximation 
an be made.We are grateful to Prof. P.N.R. Usherwood and Dr. I. Mellor from theUniversity of Nottingham (UK), and to Dr. Z. Siwy from the Silesian Uni-versity of Te
hnology (Poland) for providing us with the experimental dataof ion 
urrent through high 
ondu
tan
e lo
ust potassium 
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