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FRACTIONAL BROWNIAN MOTION AS A MODELOF THE SELF-SIMILAR ION CHANNEL KINETICS�Szymon Merik and Karina WeronInstitute of Physis, Wroªaw University of TehnologyWyb. Wyspia«skiego 27, 50-370 Wroªaw, Polande-mail: merik�rainbow.if.pwr.wro.ple-mail: karina�rainbow.if.pwr.wro.pl(Reeived Deember 28, 2000)The orrespondene of the frational Brownian motion to the statisti-ally self-similar on di�erent time sales kinetis of a single loust potassiumhannel is disussed. The parameters of the non-Markovian long-memoryproess, modelling the ioni transport, are derived in terms of the mainstatistial harateristis of the reorded urrent signal.PACS numbers: 87.17.�d, 87.22.�q, 05.40.+j1. IntrodutionIoni urrents are one of the basi proesses in living ells [1�3℄. Theyenable living ells to ontrol its volume, to generate and ondut eletrialand hemial impulses, to maintain ioni onentration desired for biohem-ial reations, et. The problem of determination of the ion urrent natureis hene of great importane [4�12℄. Its solution may provide a lue to betterunderstanding of the membrane hannels ation.A subjet of intensive disussions is the question of the stohasti originsof the ioni urrent �utuations. However the single hannel reordings areoften analyzed in terms of models assuming that the basi hannel kinetisis a Markov proess [13�15℄, suh an assumption an be questioned [16�20℄.It was already reported [16�20℄ that the non-Markovian nature of the ioniurrents reorded from a single hannel an be also observed. The non-Markovian properties of the investigated signals have been brought to lightby means of di�erent statistial tools [18�21℄. The most e�etive of themare: the Hurst, detrended �utuation, and autoorrelation analyses. The� Presented at the XIII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 10�17, 2000.(1621)



1622 S. Merik, K. Werondetailed statistial studies (inluding the dwell-time distributions) have re-vealed, for example, the non-Markovian long-memory nature of the urrentsignal reorded from a single loust potassium hannel [18�20℄. Suh prop-erties are urrently interpreted as an example of the frational Brownianmotion (fBm). The long-range orrelations were also observed in mem-brane potential �utuations of human T-lymphoytes [22℄, bateria DNAsequenes [23℄, ardia rhythm [24℄, Ethernet tra� [25℄, and insuranes [26℄.Despite some theoretial studies inlude mathematial justi�ation [25, 26℄,a lak of rigorous mathematial proofs is often observed in the relationshipbetween the long-range orrelations of a signal and the fBm.In this paper we show how the dynamis of a dihotomous stationaryproess with the long-range orrelation, suh as underlying the ioni urrent�utuations reorded from a single loust potassium hannel, is related tothe fBm. The proposed model is ompatible with the known biologial andphysial onstraints, and also onsistent with the information on hannelkinetis obtained by the detailed statistial analysis of the experimentaldata [18�20℄.2. Basi statistial properties of the experimental signalThe statistial analysis presented reently, for details see [18�20℄, on-erns a data set that was reorded from ell attahed pathes of adult loust(Shistoera gregaria) extensor tibiae musle �bres [18, 27℄. The ompletedata onsists of one reord omposed of N = 250 000 values of the hannelurrent measured at equal intervals �t = 0:1 ms, the whole duration being25 s. The error of measurements of ioni urrent is equal to �I = 1 pA.A sample of the data set is shown in Fig. 1.
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Fig. 1. A part of path lamp reording of the single BK hannel urrent I(pA) vstime (ms), at a pipette potential of +100 mV.



Frational Brownian Motion as a Model of the Self-Similar Ion : : : 1623The ioni urrent signal reorded from a single membrane hannel, Fig. 1,re�ets the fat that the hannel is not permanently open for ondution ofions but ontinuously swith between losed and open states. The hangesare of random nature resulting from e.g. thermal �utuations, variationsof the voltage di�erene aross the ell membrane, or from onformationalhanges of hannel proteins. The states of low and high urrents orrespondto the losed and open hannel states, respetively [18�20,27℄. Dividing theinvestigated signal into periods of losed and open states one an get theperiods of losed- and open-states and their distributions. It was shown[19, 20℄ that the losed-time distribution has a power tailPfT > tg = 1� F(t) / t�D ; (1)with D = 1:24 � 0:06. As it is seen in Fig. 2 the tail of the losed-timedistribution is heavier than the tail of the open-time distribution, i.e., itholds PfT > tg � PfTo > tg:
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Fig. 2. The tails of the losed- (rosses) and open-time (irles) distributions inlog�log sale. The tail of the losed-time distribution is heavier than the tail of theopen-time distribution: PfT > tg � PfTo > tg.The time struture of the ioni urrent time series fIngNn=1 reorded ina sequene of moments ftn = n�tgNn=1 yields the autoorrelation funtion�(t) [20℄ deaying in time with a power-law�(t) / K t��� ; as t!1; (2)



1624 S. Merik, K. Weronwhere �� = D � 1. The onstant K readsK = hTi2 (M �m)2(D � 1)(hTi+ hToi)3 ; (3)where hTi and hToi is the mean of losed- and open-time, and m and Mis the mean of ion urrent �ow in losed and open state, respetively. Asit has been already shown [19℄, the means are �nite and take the followingvalues: hTi = 0:84� 0:01 ms, hToi = 0:79� 0:01 ms, m = 3:2� 0:1 pA, andM = 11:0� 0:1 pA.The non-Markovian long-memory property of the investigated signal hasbeen on�rmed [20℄ by the self-similarity index H obtained from the Hurst,detrended �utuation and Orey analyses. The values of H are equal, respe-tively, HH = 0:84 � 0:08 ;HD = 0:89 � 0:07 ;HO = 0:84 � 0:04 :The Hurst exponent H provides information on the orrelations in the timeseries measured at di�erent time sales. It is related to the autoorrelationpower exponent �� [13℄ by means of the following relationH = 1� ��2 : (4)3. Frational Brownian motion and its main propertiesFrational Brownian motion BH(t), introdued by Mandelbrot andvan Ness [28℄, an be simply onsidered as an extension of the MarkovianBrownian proess into the non-Markovian ase. For every moment t > 0 thefBm is de�ned asBH(t) = 1� (H + 12)�8<: 0Z�1 hjt� sjH�1=2 � jsjH�1=2i dB(s) + tZ0 jt� sjH�1=2dB(s)9=; ; (5)where H 2 (0; 1) is the self-similarity index and B(t) is the Brownian motionwith mean 0 and variane �2(t) = t. The proess de�ned in (5) has mean



Frational Brownian Motion as a Model of the Self-Similar Ion : : : 16250 and variane �2H(t) = t2H . Inrements of the fBm (5) are Gaussian andstationary, and its autoovariation funtion �(t) deays with a power law�(t) � t2H�2: (6)Let us note that the fBm is the only Gaussian self-similar proess with theself-similarity index H [29℄, i.e. for all a > 0 it holdsBH(at) = aHBH(t): (7)Eq. (7) denotes the equality of the �nite-dimensional distributions of theproess on the right- and left-hand side of the equation [30℄. Brownianmotion is a speial ase of the fBm when H = 1=2 (its inrements arethen purely random and therefore unorrelated with eah other). When0 < H < 1=2, every positive inrement is likely to be followed by a neg-ative one and, onversely, dereases of the BH(t) value are more likelyto be followed by inreases. Suh a ase is alled antipersistent. When1=2 < H < 1, inreases in the values of a proess are more likely to be fol-lowed by inreases, and, onversely, every negative inrement is more likelyto be followed by another negative one. Suh a proess is alled persistentand it has a long-memory property [13℄.Frational Brownian motion an be obtained via summation of Gaussianand orrelated random variables [31℄. If the sequene fXig1i=1 is Gaussianand stationary with mean 0 and autoovariation �(i�j) = EXiXj satisfyingthe following ondition NXi=1 NXj=1 �(i� j) � KN2HL(N) (8)for N !1, H 2 (0; 1), and K > 0, thenlimN!1 1dN [Nt℄Xi=1 Xi = pKBH(t) (9)for dN � NHpL(N); [Nt℄ denotes the largest integer number less or equalNt. Funtion L denotes a slowly varying in in�nity funtion, i.e.limx!1 L(ax)L(x) = 1for every a > 0. The onvergene in (9) is weak in the Skorokhod topology[26, 31℄; for every bounded ontinuous funtional f it holdslimN!1E24f 0� 1dN [Nt℄Xi=1 Xi1A35 = E hf �pKBH(t)�i ; (10)



1626 S. Merik, K. Weronwhere E denotes the expeted value. The ondition (8) is ful�lled if the or-relation �(n) = EXiXi+n between two observations Xi and Xi+n separatedby n time lags deays as �(n) � Kn2H�2L(n) (11)for large n [31℄. The presene of the slowly varying in in�nity funtion Lin Eqs (8) and (11) enables one to use the above theorem in the ase whenthe power-law ondition (6) is slightly disturbed due to the limited lengthof the time series. Let us note that from the point of relationship betweenthe hannel kinetis and the fBm the stationarity of the experimental se-quene fXigNi=1 is of great importane. In ase of the signal examined (seeChapter 2), it has been tested by means of quantile lines [20, 32℄.4. Frational Brownian motion of the e�etive hargeOn the basis of experimental data analysis [19, 20℄ we an onstrut astationary sequene of Gaussian random variables satisfying ondition (11).Taking into aount that reordings were made with the experimental fre-queny fex = 1�t , we may assume that the urrent �ow between the momentsof sampling an be approximated by an interpolation. We assume the ur-rent to be onstant between two onseutive reordings (one an also applyanother linear approximation of the urrent in time interval �t but it doesnot a�et the onstrution proposed below). Let us also assume that theonsidered ion hannel has onstant ross setion S and is �lled up with aneletrolyte with onstant volume onentration  of x-valued ions (see Fig. 3).The urrent In �owing through the hannel in n-th moment orresponds toa shift rn of the e�etive harge inside the hannelrn = �In�t; (12)where � is the linear onentration of ions� = FSx (13)and F is the Faraday onstant. The urrent reorded in experiment is oforder 1�10 pA with the sampling frequeny 10 kHz. The single urrentreording orresponds hene to �ow of about 102�104 potassium ions. Thissuggests that we an only trak a path of a mean harge representing theions and not a single ion itself.It follows from (12) and power-law property of the urrent autoorrela-tion funtion �(t), see Eq. (2), that the ovariation of two shifts separatedby n time lags �t has also the power-law property�r(n) / �2Hr (�t)2Hn2H�2; (14)



Frational Brownian Motion as a Model of the Self-Similar Ion : : : 1627where 2H = 3 � D and �2Hr = �2K. A total shift R(t) of the e�etiveharge in the hannel is then a sum of all shifts until moment tR(t) = [ t�t ℄Xn=1 rn: (15)The random proess R(t) onverges to the fBm if the frequeny of reordingsinreases, i.e. the duration of the time lag dereases �t! 0 [26℄.
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Fig. 3. Shift rn of the e�etive harge in a hannel with onstant ross setion (seeEq. (11)).In order to show the onvergene let us onsider the sum at the right-hand side of Eq. (15). One an rewrite it in the form[ t�t ℄Xn=1 rn = t� �� t�t � � t�t + 1���+ (�r�t)H [ t�t ℄Xn=1 yn; (16)where nyn = rn��(�r�t)Ho1n=1 denotes a stationary series with mean 0 and o-variation funtion of the form�y(n) / n2H�2; (17)following from Eq. (14). The parameter � denotes the mean value of rn andreads � = ��t = �M hToi+m hTihToi+ hTi �t :



1628 S. Merik, K. WeronThe �rst term on the right-hand side of Eq. (16) is a onstant � multipliedby time and denotes the proess drift. The seond one onverges to 0 while�t tends to 0. If we assume that the experimental frequeny inreases k-times we have to substitute �t in Eq. (16) by �tk . It follows from Eq. (9)that the third term in (16) onverges to the fBm for �xed t and k !1(�r�t)H 1kH [k t�t ℄Xn=1 yn �! (�r�t)HBH � t�t� :Due to the self-similarity property (7) of the fBm, we get(�r�t)HBH � t�t� = BH (�rt) :The onsiderations presented above have shown that with an inrease ofthe experimental frequeny the shift R(t) of the e�etive harge in a singleioni hannel is well desribed by the fBmR(t) = �t+BH (�rt) (18)with the self-similarity index H = 3�D2 ;the drift � = �M hToi+m hTihToi+ hTi ;and the sale parameter�2Hr = �2 hTi2 (M �m)2(D � 1)(hTi+ hToi)3 :The fBm is not, however, observed in an experiment. It is only a mathemat-ial, idealized onstrution with properties similar to those observed in realdata. The agreement follows from the fat that applying the statistial tools(suh as the Hurst, detrended �utuation and Orey analyses, or quantiles)we simply alulate mean values of di�erent funtionals. Sine the onver-gene holds in the Skorokhod topology, see Eq. (10), we get the statistialproperties similar to that alulated for the fBm.
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