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The correspondence of the fractional Brownian motion to the statisti-
cally self-similar on different time scales kinetics of a single locust potassium
channel is discussed. The parameters of the non-Markovian long-memory
process, modelling the ionic transport, are derived in terms of the main
statistical characteristics of the recorded current signal.

PACS numbers: 87.17.—d, 87.22.—q, 05.40.+j

1. Introduction

Ionic currents are one of the basic processes in living cells [1-3]. They
enable living cells to control its volume, to generate and conduct electrical
and chemical impulses, to maintain ionic concentration desired for biochem-
ical reactions, etc. The problem of determination of the ion current nature
is hence of great importance [4-12]. Its solution may provide a clue to better
understanding of the membrane channels action.

A subject of intensive discussions is the question of the stochastic origins
of the ionic current fluctuations. However the single channel recordings are
often analyzed in terms of models assuming that the basic channel kinetics
is a Markov process [13-15], such an assumption can be questioned [16-20].
It was already reported [16-20] that the non-Markovian nature of the ionic
currents recorded from a single channel can be also observed. The non-
Markovian properties of the investigated signals have been brought to light
by means of different statistical tools [18-21]. The most effective of them
are: the Hurst, detrended fluctuation, and autocorrelation analyses. The
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detailed statistical studies (including the dwell-time distributions) have re-
vealed, for example, the non-Markovian long-memory nature of the current
signal recorded from a single locust potassium channel [18-20]. Such prop-
erties are currently interpreted as an example of the fractional Brownian
motion (fBm). The long-range correlations were also observed in mem-
brane potential fluctuations of human T-lymphocytes [22]|, bacteria DNA
sequences [23], cardiac rhythm [24], Ethernet traffic [25], and insurances [26].
Despite some theoretical studies include mathematical justification [25,26],
a lack of rigorous mathematical proofs is often observed in the relationship
between the long-range correlations of a signal and the fBm.

In this paper we show how the dynamics of a dichotomous stationary
process with the long-range correlation, such as underlying the ionic current
fluctuations recorded from a single locust potassium channel, is related to
the fBm. The proposed model is compatible with the known biological and
physical constraints, and also consistent with the information on channel
kinetics obtained by the detailed statistical analysis of the experimental
data [18-20].

2. Basic statistical properties of the experimental signal

The statistical analysis presented recently, for details see [18-20], con-
cerns a data set that was recorded from cell attached patches of adult locust
(Schistocerca gregaria) extensor tibiae muscle fibres [18,27|. The complete
data consists of one record composed of N = 250 000 values of the channel
current measured at equal intervals At = 0.1 ms, the whole duration being
25 s. The error of measurements of ionic current is equal to Al = 1 pA.
A sample of the data set is shown in Fig. 1.
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Fig. 1. A part of patch clamp recording of the single BK channel current I(pA) vs
time (ms), at a pipette potential of +100 mV.
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The ionic current signal recorded from a single membrane channel, Fig. 1,
reflects the fact that the channel is not permanently open for conduction of
ions but continuously switch between closed and open states. The changes
are of random nature resulting from e.g. thermal fluctuations, variations
of the voltage difference across the cell membrane, or from conformational
changes of channel proteins. The states of low and high currents correspond
to the closed and open channel states, respectively [18-20,27|. Dividing the
investigated signal into periods of closed and open states one can get the
periods of closed- and open-states and their distributions. It was shown
[19,20] that the closed-time distribution has a power tail

P{T. >t} =1— F.(t) oct P, (1)

with D, = 1.24 £ 0.06. As it is seen in Fig. 2 the tail of the closed-time
distribution is heavier than the tail of the open-time distribution, i.e., it
holds

P{T, >t} > P{T, > t}.
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Fig.2. The tails of the closed- (crosses) and open-time (circles) distributions in
log—log scale. The tail of the closed-time distribution is heavier than the tail of the
open-time distribution: P{T. > t} > P{T, > t}.

The time structure of the ionic current time series {In},jzle recorded in

a sequence of moments {t, = nAt}flv:l yields the autocorrelation function
k(t) [20] decaying in time with a power-law

K(t) oc Kt~ ", as t — o0, (2)
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where a, = D. — 1. The constant K reads

<Tc>2 (M — m)2

K= 10— D@ T

(3)

where (T,) and (T;) is the mean of closed- and open-time, and m and M
is the mean of ion current flow in closed and open state, respectively. As
it has been already shown [19]|, the means are finite and take the following
values: (T¢) = 0.84+0.01 ms, (7o) = 0.79+0.01 ms, m = 3.2+0.1 pA, and
M =11.0£0.1 pA.

The non-Markovian long-memory property of the investigated signal has
been confirmed [20] by the self-similarity index H obtained from the Hurst,
detrended fluctuation and Orey analyses. The values of H are equal, respec-
tively,

Hy = 0.84 +0.08,
Hp = 0.89 +0.07,
Hp = 0.84 £0.04.

The Hurst exponent H provides information on the correlations in the time
series measured at different time scales. It is related to the autocorrelation
power exponent «, [13] by means of the following relation

H=1-= (4)

3. Fractional Brownian motion and its main properties

Fractional Brownian motion By (t), introduced by Mandelbrot and
van Ness [28|, can be simply considered as an extension of the Markovian

Brownian process into the non-Markovian case. For every moment ¢ > 0 the
fBm is defined as

1
By(t) = TH+D
0 t
<8 [ le=slm < s aps) + [ 1= s 24B() |9
e 0

where H € (0,1) is the self-similarity index and B(¢) is the Brownian motion
with mean 0 and variance 0%(t) = ¢t. The process defined in (5) has mean
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0 and variance 0% (t) = t*//. Increments of the fBm (5) are Gaussian and
stationary, and its autocovariation function p(t) decays with a power law

plt) ~ 12, (6)

Let us note that the fBm is the only Gaussian self-similar process with the
self-similarity index H [29], i.e. for all @ > 0 it holds

By (at) = o By (t). (7)

Eq. (7) denotes the equality of the finite-dimensional distributions of the
process on the right- and left-hand side of the equation [30]. Brownian
motion is a special case of the fBm when H = 1/2 (its increments are
then purely random and therefore uncorrelated with each other). When
0 < H < 1/2, every positive increment is likely to be followed by a neg-
ative one and, conversely, decreases of the Bp(t) value are more likely
to be followed by increases. Such a case is called antipersistent. When
1/2 < H < 1, increases in the values of a process are more likely to be fol-
lowed by increases, and, conversely, every negative increment is more likely
to be followed by another negative one. Such a process is called persistent
and it has a long-memory property [13].

Fractional Brownian motion can be obtained via summation of Gaussian
and correlated random variables [31]. If the sequence {X;}2, is Gaussian
and stationary with mean 0 and autocovariation p(i —j) = EX; X satisfying
the following condition

N N
>N pli - ) ~ KN*PL(N) (8)

=1 j=1
for N — oo, H € (0,1), and K > 0, then

[Nt]

lim — " X; = VEBy(1) (9)

for dy ~ N"\/L(N); [Nt] denotes the largest integer number less or equal
Nt. Function L denotes a slowly varying in infinity function, i.e.

. L(ax)
S T

=1

for every a > 0. The convergence in (9) is weak in the Skorokhod topology
[26,31]; for every bounded continuous functional f it holds

N—o0

lim E | f %%Xi :E[f(\/f_(BH(t))], (10)
=1
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where E denotes the expected value. The condition (8) is fulfilled if the cor-
relation p(n) = EX;X;,, between two observations X; and X;, separated
by n time lags decays as

p(n) ~ Kn*" 2L (n) (11)

for large n [31]. The presence of the slowly varying in infinity function L
in Egs (8) and (11) enables one to use the above theorem in the case when
the power-law condition (6) is slightly disturbed due to the limited length
of the time series. Let us note that from the point of relationship between
the channel kinetics and the fBm the stationarity of the experimental se-
quence {X;}Y, is of great importance. In case of the signal examined (see
Chapter 2), it has been tested by means of quantile lines [20, 32].

4. Fractional Brownian motion of the effective charge

On the basis of experimental data analysis [19,20] we can construct a
stationary sequence of Gaussian random variables satisfying condition (11).
Taking into account that recordings were made with the experimental fre-
quency fex = Ait, we may assume that the current flow between the moments
of sampling can be approximated by an interpolation. We assume the cur-
rent to be constant between two consecutive recordings (one can also apply
another linear approximation of the current in time interval At but it does
not affect the construction proposed below). Let us also assume that the
considered ion channel has constant cross section S and is filled up with an
electrolyte with constant volume concentration c of z-valued ions (see Fig. 3).
The current I,, flowing through the channel in n-th moment corresponds to
a shift r, of the effective charge inside the channel

rn = M At, (12)
where ) is the linear concentration of ions
A =FSzc (13)

and F is the Faraday constant. The current recorded in experiment is of
order 1-10 pA with the sampling frequency 10 kHz. The single current
recording corresponds hence to flow of about 102-10* potassium ions. This
suggests that we can only track a path of a mean charge representing the
ions and not a single ion itself.

It follows from (12) and power-law property of the current autocorrela-
tion function k(t), see Eq. (2), that the covariation of two shifts separated
by n time lags At has also the power-law property

pr(n) oc o2 (AH)H 2T 2, (14)
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where 2H = 3 — D, and 02 = X\2K. A total shift R(t) of the effective
charge in the channel is then a sum of all shifts until moment ¢

[ 2]
Rt =S 1. (15)
1

&~

n

The random process R(t) converges to the fBm if the frequency of recordings
increases, i.e. the duration of the time lag decreases At — 0 [26].

Fig. 3. Shift 7, of the effective charge in a channel with constant cross section (see
Eq. (11)).

In order to show the convergence let us consider the sum at the right-
hand side of Eq. (15). One can rewrite it in the form

rn:ty—<£—[£+1]>,u+ arAtH?:]y (16)

=1

o
where {yn = ("MTt)}n—l denotes a stationary series with mean 0 and co-

variation function of the form
py(n) ox n2T2, (17)

following from Eq. (14). The parameter p denotes the mean value of r, and

reads
M (Ty) + m (T¢)

RS AN

u=vAt=2X\
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The first term on the right-hand side of Eq. (16) is a constant v multiplied
by time and denotes the process drift. The second one converges to 0 while
At tends to 0. If we assume that the experimental frequency increases k-
times we have to substitute A¢ in Eq. (16) by %. It follows from Eq. (9)
that the third term in (16) converges to the fBm for fixed ¢ and k — oo

[k a7

SR t
H H

Due to the self-similarity property (7) of the {Bm, we get

t

(o, At) T By <E) = By (o,t) .

The considerations presented above have shown that with an increase of
the experimental frequency the shift R(¢) of the effective charge in a single
ionic channel is well described by the fBm

R(t) = vt + By (0,1) (18)

with the self-similarity index

the drift

and the scale parameter

o2H _ 32 (Te)* (M — m)? ‘

T D= (T + (To)?
The fBm is not, however, observed in an experiment. It is only a mathemat-
ical, idealized construction with properties similar to those observed in real
data. The agreement follows from the fact that applying the statistical tools
(such as the Hurst, detrended fluctuation and Orey analyses, or quantiles)
we simply calculate mean values of different functionals. Since the conver-
gence holds in the Skorokhod topology, see Eq. (10), we get the statistical
properties similar to that calculated for the fBm.
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5. Conclusions

The main objective of the paper was to present a rigorous mathematical
basis for the interpretation of the non-Markovian long-memory nature of
ionic current signals as an example of a fractional Brownian motion. Our aim
was to explain why the statistical properties of the investigated data seem to
be compatible with the properties of this self-similar stochastic process and
also to find the experimental conditions under which the correspondence of
the fractional Brownian motion to the single channel kinetics holds.

The analysis presented in this paper shows that the total shift of an
effective charge in the ionic membrane channel can be well approximated by
the fractional Brownian motion if the recorded current signal is stationary
and exhibits long-range correlations. The higher the sampling frequency is
the better approximation can be made.

We are grateful to Prof. P.N.R. Usherwood and Dr. I. Mellor from the
University of Nottingham (UK), and to Dr. Z. Siwy from the Silesian Uni-
versity of Technology (Poland) for providing us with the experimental data
of ion current through high conductance locust potassium channel.
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