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I review the theoretical foundations of QCD Factorization in nonlep-
tonic B-Decays. This approach, developed in collaboration with Mar-
tin Beneke, Gerhard Buchalla and Matthias Neubert, provides a rigorous
framework for the analysis of these decays in the heavy-quark limit. The
significance of power corrections, terms which are formally suppressed by
powers of Aqcp/myp and which are not calculable in perturbation theory
but which may have a significant impact on phenomenologically important
decays, is discussed.

PACS numbers: 12.38.Lg, 13.28. Hw

1. Introduction

Exclusive B-decays are a particularly important source of information
about CP-violation and the parameters of the standard model (for an in-
troduction to B-Physics see the excellent textbook by Branco, Lavoura and
Silva [1] or the BaBar Physics Book [2]|, where the reader can also find ref-
erences to the original literature). However, apart from the golden mode
B — KgJ/¥ from which we get sin(2/3), attempts to obtain fundamental
information from experimental data are made difficult by our inability to
quantify the non-perturbative strong-interaction effects. For example, in
the decay By — w7~ there are both tree and penguin contributions, with
different CKM phases
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and it is necessary to determine the relative contributions to the amplitude
from these two sources.

In this talk I will report on the conceptual framework developed in col-
laboration with Beneke, Buchalla and Neubert for the evaluation of strong
interaction effects on non-leptonic two-body B-decays [3-6]. The framework
is based on a detailed analysis of Feynman diagrams and our observation that
it is possible to separate long and short-distance effects in these B-decays.
This allows us to derive a factorization formula, in an analogous way to those
used in other applications of QCD to hard processes, both inclusive, such
as deep inelastic scattering or the Drell-Yan process, and exclusive, such as
the electromagnetic form-factors of hadrons at large momentum transfers.
The factorization formula leads to a model-independent treatment of exclu-
sive hadronic B-decays in the heavy-quark limit. The corrections to our
results are of O(Aqcn/my), and for these factorization does not hold. As
will be discussed below, improved estimates of the power corrections will
be necessary for a successful phenomenology, at least for some important
decays.

The starting point for the study of hadronic B-decays is the Operator
Product Expansion (OPE). Strong interaction effects which involve virtuali-
ties above my can be summed using perturbation theory and renormalization
group techniques, leading to an amplitude for the decay of the B into two
mesons M o of the form:

A(B = MiMa) = ZE 57 X, Glp) (MM | 010) | B, (1)

where ); is the CKM-matrix element; C;(p) is the Wilson coefficient func-
tion; p is the renormalization scale and the hadronic matrix elements
( M1M5]O;(0) | B) contain all the non-perturbative QCD-effects. These ma-
trix elements are the object of our study. We study the long-distance proper-
ties of these decays in the limit m; — oo and find that there
is a considerable simplification leading to a Generalized Factorization
Formula.
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Note that standard approaches to the evaluation of non-perturbative
QCD effects, such as Lattice QCD, QCD Sum-Rules and large N expansions,
have so far made little progress in quantifying these effects in B-decays.

The plan for the remainder of this talk is as follows. In the following
section I will introduce the factorization formula and explain its ingredients.
Although T am unable in this talk to derive the formula in detail, in Sec-
tion 3 I demonstrate its validity, at one-loop order, for B — D7 decays.
The motivation for this is to show how the long-distance effects (i.e. the
mass-singularities) factorize in this simple case, and how this leads to our
generalized factorization formula. The implications of factorization for the
phenomenology of two-body B-decays is briefly summarised in section 4 and
applications to B — wK decays are outlined in Section 5. Finally in Sec. 6
I present the conclusions.

2. The generalized factorization formula

Before presenting our factorization formula I will remind you of what is
meant by (naive) factorization in B-decays.

2.1. Naive factorization

Fig.1. Quark flow diagram contributing to the amplitude for the decay B; —
mtm~. The two black dots represent the product of two currents in the weak
Hamiltonian.

As an example consider the decay By — ntn~. A quark flow diagram
for this decay is shown in Fig. 1. The diagram has the appearance of being
composed of two independent parts and the naive factorization assumption
is to take this literally and to write

(m* 7™ [(@)v-a (du)v-a|Bag) = (" [(du)y-a|0) (x| (@b)y_a|Ba).
(2)
The two-matrix elements on the right-hand side are known in principle, the
first is simply proportional to the pion decay constant, f,, and the second
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is proportional to F?7™(m2)), one of the form-factors for B — 7 semilep-

tonic decays. Thus naive factorization relates the amplitude for nonleptonic
decays to simpler quantities, the decays constants and semileptonic form
factors.

Clearly this simple picture cannot be correct. The diagram in Fig. 1 does
not show the gluonic effects which are necessarily present. Naive factoriza-
tion therefore has no rescattering in the final state and no strong interaction
phase-shifts. The short-distance behaviour is also wrong, the renormaliza-
tion scale dependence does not match on the two sides of (2). Various
generalizations of naive factorization have been proposed leading to new pa-
rameters. Below we will demonstrate the rather surprising result that naive
factorization is actually the leading term in QCD at large my, with correc-
tions of O(as(myp)) and O(Aqgep/me). Thus in fact that it seems so simple
and arbitrary, naive factorization is true in the large quark-mass limit of

QCD.

2.2. The generalized factorization formula

From an analysis of mass-singularities in higher-order Feynman diagrams
we have derived the generalized factorization formula for the decay B —
M M, (with My being a light meson), represented by the diagrams in Fig. 2:

Q
Z
O0=0,
Np—— v,

Fig.2. Representation of the two contributions to the generalized factorization
formula in Eq. (3).
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1
(Mi,M2|0;|B) = Y F7"(m /dUTI )P, (u) + (M1 > My)

0
1

+ [ e dudo T (€. 0,0) 85(O) a1 (0) Brsa ().
0

(3)

The ingredients in Eq. (3) are as follows: m?) denotes one of the
B — M, form-factors and is a non-perturbative input into the calculation;
@ x (u) is the light-cone distribution amplitude for the quark-antiquark Fock-
state of meson X and is also a non-perturbative input; in contrast T’ZI](U) and

FjB—)Ml (

TZ-H (&, u,v) are perturbatively calculable hard-scattering functions. All the
non-perturbative QCD effects are factorized into the light-cone distribution
amplitudes and form-factors, quantities which are simpler than the original
matrix elements and which can either be determined from experiment (in
particular the form-factors) or computed using standard techniques. Eq. (3)
is valid up to O(Aqcn/myp) corrections.

There is a considerable simplification for decays in which the spectator
quark (i.e. the light-quark or antiquark in the B-meson) goes into a heavy
meson (e.g. Bg — D% 71~ decays) since in these cases the last term in the
factorization formula is absent. For such decays the hard interactions with
the spectator quark are power-suppressed in the heavy quark limit.

It is not appropriate for me in this talk to give a detailed derivation of
Eq. (3). Instead I will illustrate the basic ideas, by briefly discussing the
factorization of mass singularities at one-loop order for the simpler case in
which M; is a heavy meson, i.e. for B — Dx decays. Such a factorization
of mass-singularities is necessary for the validity of Eq. (3).

3. B —» Dr decays

In this section I outline how the mass-singularities in B — heavy-light
decays, which are much simpler than B — light-light decays, factorize. For
these decays, diagrams in which the spectator interacts with the emitted
m-meson, such as
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B D

are suppressed by factors of Agcp/mp. Thus for B — D decays the T
term in the factorization formula is absent. If there were remaining mass-
singularities which were not absorbed into the decay constant or form factors,
this would be a signal that the decay amplitude depends on other long-
distance physics and is not calculable in perturbation theory. Fortunately
this is not the case.

The standard classification of quark-level topologies for B — D7 decays
is presented in Fig 3. In the heavy quark limit only class-I decays contribute
at leading order in the Aqcn/ms expansion. Class-IT and annihilation con-
tributions ar suppressed by at least one power of Aqcn/my. We now study
the perturbative corrections in class-I decays.

d u c U
h —e— ¢ b —e— /‘< q
q ——4q q ———q d i
Class I Class 11 Annihilation

Fig. 3. Quark level topologies for B — D7 decays.

3.1. Factorization at one-loop level

3.1.1. Cancellation of infra-red divergences

To start the discussion, consider diagram (a) in Fig. 4. For small mo-
menta k the loop integral is divergent:

1 1
d*k ~ / d*k
/ (up + k)2 k2 [(pp + k)2 — m7] (2up - k) k2 [2py - K]
small & small &
1
~ / d*k ) DIVERGENT!

small k
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up  up up  up

Py Pe Py Pe
(a) (b)
Fig.4. Two one-loop diagrams contributing to class-1 B — D decays, where p is
the momentum of the pion. Only the b — ¢7 component is shown. The quark and

antiquark pointing upwards are the constituents of the pion, with momenta up and
up respectively (u +a =1).

and therefore we have to consider infra-red divergences. The divergence
cancels against the one present in the diagram of Fig. 4(b). To see this note
that only the light-quark propagator is different in the two diagrams. In
diagram (a) this propagator is given by

) I 2upt I pt

(up+k)?2 ~ 2up-k p-k

where we have used the fact that &k is small and that the constituents of the

pion are on-shell (i.e. have momenta of O(Aqcp) << my). The propagator
in diagram (b) on the other hand is given by:

D) vt
(up+k)? — p-k
Thus the infrared divergences in diagrams (a) and (b) cancel. There is

a similar cancellation of infra-red divergences in diagrams (c) and (d) in
Fig. 5.

up  up up  up

k k
Do Pe Db Pe
(c) (d)
Fig.5. Two more one-loop diagrams contributing to class-I B — D7 decays. The
notation is the same as that in Fig. 4.

This cancellation of infrared divergences is a technical manifestation of
Bjorken’s colour transparency argument: soft-gluon interactions with the
emitted ud pair are suppressed, because soft-gluons only interact with the
colour dipole moment of the compact ud pair.
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3.1.2. Cancellation of collinear divergences

Infrared divergences are not the only source of long-distance effects in
diagrams (a)—(d). Consider the region of phase space in which k is parallel
to p (we write k ~ ap). Specifically let:

Et=0(1) and kT =0(k),

where the pion’s momentum p = E;(1,0,0,1) is taken to be in the + direc-
tion (in the rest-frame of the B-meson). Consider diagram (a) in which the
gluon and light-quark propagators combine to give a factor:

ot
(up+ k)2 k% k|

The phase space is also of O(k?) and so we have a divergence and hence we
have to study the collinear divergences.

The collinear divergences cancel in diagrams (a) and (c), specifically
diagram (a) has a factor

(u+a)2p-py  (u+a)
20p-py,  «

3

whereas the corresponding factor in diagram (c) is:

—2ap - pe a

(u+a)2p-pc__(u—|-a) .

Therefore the collinear divergences in diags. (a) and (c) cancel. There is a
similar cancellation of the collinear divergences in diags. (b) and (d).

3.1.3. Summary

We have seen above that there are no mass singularities in the sum of the
non-factorizing diagrams (a)—(d). These diagrams can therefore be evaluated
in perturbation theory. The analysis above does not mean however, that
there are no mass-singularities at one-loop order. Recall the factorization
formula !

1
(tD|O|B) = FP7P(m2) /dqu (u). (4)
0

The remaining mass-singularities come from diagrams such as

! Recall that the term proportional to T in Eq. (3) are suppressed for B — D=
decays.
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and are absorbed into the form-factor F®7P(m2) and the light-cone distri-
bution amplitude @, (u). The key feature is that all the mass singularities
are factorized into these quantities and that the hard scattering amplitude
T is calculable is perturbation theory.

In Ref. [5] these arguments were extended to two-loop order.

4. Implications of factorization

In this section I briefly summarise the implications of the factorization
formula.

1.

The significance and usefulness of the factorization formula (3) stems
from the fact that the non-perturbative quantities which appear on the
RHS are much simpler than the original matrix elements which appear
on the LHS. They either reflect universal properties of a single meson
state (the light-cone distribution amplitudes) or refer to a B — meson
transition matrix element of a local current (form-factor). They can
be determined using non-perturbative methods such as lattice QCD
or QCD sum-rules, or even be partially determined from experimental
measurements (particularly in the case of the form-factors).

Conventional (naive) factorization is recovered as a rigorous predic-
tion in the infinite quark-mass limit (i.e. neglecting O(as(my)) and
O(Aqen/myp) corrections).

Perturbative corrections to naive factorization can be computed sys-
tematically. The results are, in general, non-universal (i.e. process
dependent).

All strong interaction phases are generated perturbatively in the heavy
quark limit (as form factors have no imaginary parts).

Many observables of interest for C'P-violation become accessible. The
precision of the calculations is limited by our knowledge of the wave-
functions and of the power corrections.

The problem of scheme dependence in naive factorization is solved in
the same way as in any other NLO computation of the weak effective
Hamiltonian.
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5. Applying the factorization formula to B — wK decays

As an example of the application of the factorization formula let us
consider B — wK decays. These decays are discussed and analysed in great
detail in Ref. [6]. The factorization formula leads to the following expression
for the decay amplitudes.

Gr

(m K [He | B) = 7

S (K| T, B), (5)

p=u,c

where Aj is the product of CKM matrix elements, A, = Vj,V, and the
transition operator is given by
Tp = ay(wK) Sy (W) v ® (3u)y-a

+az (K )6y (3b)v-a @ (@)v—a + az(7K) Y (5b)v-a @ (§q)v-a

+af(nK) Y (@b)v-a @ (5q)v—a + a5(nK) Y (8b)v-a @ (4q)v 14

+ag(rK) Y (=2)(@b)s-p @ (5q)s4p + a7 (7K) Y (sb)v—a ® geq(@q)wfx
(K 3 (D(@)s-p © Seals)sir +as(K) Y (h)v-a ® Seq(aa)v-a
Faly () Y (@)v-a @ Seq(a)v—a ©

q

In Eq. (6) the ® product implies that the corresponding operator should
be interpreted in the naive-factorization sense, e.g.

(7 K| (b)y-a ® (w)v-a | B) = {7 |(ab)v_a| B) x (K| (su)y_a]0)
~ imFP T (m) fic - (7)

The coefficients a; in Eq. (6) are calculated in perturbation theory.

5.1. Chirally enhanced power corrections

The factorization formula is valid up to O(Aqcp)/my corrections, which,
depending on the process, can be significant. One important source of power
corrections are the chirally enhanced ones. To illustrate what these are
consider the penguin contribution proportional to ag. This is proportional
to

(=2)(7 | (ab)s|B) x (K |(su)p|0) = ry (1) Arkc (8)
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where )
rK () = 2 (9)
X mp (1) (s (1) + M (1))
and o
Anic = i—z miy B (mi) fic (10)

V2

Thus although this is formally a power correction, suppressed by 1/m; com-
pared to the leading one, it has a large coefficient

U = —E— ~3GeV > Aqen - (11)

Thus the chiral enhanced power corrections cannot be neglected in inter-
preting nonleptonic B-decays.

As an example our final result for the amplitude for the decay B, takes
the form:

—A(Bg = 7T K7) = {Ayar + Ap(ah + af) + Aprf (af + af) } Ak . (12)

It should be remembered however, that the terms proportional to r
formally power corrections, albeit chirally enhanced ones.

K
X are

5.2. Power corrections and mass singularities

Power corrections (i.e. terms which are suppressed by the powers of
O(Agcp/msp) ) would not be a problem if they could all be identified and
the factorization formula applied to them. If this were the case higher-
order perturbative corrections would also not contain any non-factorizing
infrared logarithms for these higher-twist contributions. However this is
not the case in general (although it is the case for ag above). This non-
factorization of mass singularities represents a significant difficulty, particu-
larly since for many decays of phenomenological importance the terms which
are suppressed by powers of 1/m;, are enhanced by CKM-factors (and colour
factors) and are likely to play a significant role (e.g. for B — 7K decays
we would expect annihilation topologies, which are formally suppressed by
1/my to give significant contributions). It is therefore important to develop
our understanding of power corrections.

Since we are considering power corrections we have to consider the twist-
three mesonic distribution amplitudes, and one of these (conventionally
called @p(u)) does not vanish at the end-points (u — 0,1). This leads
to logarithmically divergent integrals of the form

I (13)
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where u represents the light-cone fraction of a parton in a meson. This is not
unexpected for power corrections (indeed such divergences already appear
in semileptonic decay form-factors), but nevertheless can lead to a loss of
precision in phenomenological predictions. We assume that the divergent
integral can be replaced by a universal constant, and the uncertainty in this
constant is the largest theoretical error in the analysis.

It has been argued that some of the higher-order perturbative corrections
can be resummed and give a Sudakov form-factor which suppresses the end-
point singularity [7,8] in the power corrections (see also the talk by Ward
at this conference [10]). From this the authors of Ref. [7,8| deduce that the
these terms are calculable in perturbation theory, including, for example, the
semileptonic B — w, p form-factors. We believe that this approach merits
further investigation (in order to gain an understanding of the precision
which can be achieved), but in our view it is likely that if my, is not sufficiently
large to suppress the chirally enhanced terms then it is also not large enough
to make Sudakov suppression effective and reliable.

6. Conclusions

The Factorization Formulae derived here, provide a powerful and system-
atic framework for the computation of non-leptonic decay amplitudes in the
large my limit. I must stress that the existence of such a framework in itself,
represents a major development. The technical difficulties in calculating the
decay amplitudes accurately are still considerable, but can be faced within
the coherent framework described above. Among the outstanding issues still
to be resolved are:

e A verification that the approach is valid in higher orders of pertur-
bation theory is still needed, in particular a full two-loop study for
B —light-light decays is still to be completed.

e Perhaps the major difficulty is to understand the best way of dealing
with power-corrections in general (i.e. corrections which are suppressed
by powers of Aqcp/my), and the chirally enhanced power corrections
in particular. This is particularly true for processes in which the power
corrections are enhanced by CKM factors, as happens for example in
B — 7K decays.

e We need a better understanding of the role of Sudakov form-factors,
particularly in the evaluation of the power corrections.

We have presented a number of phenomenological applications of the
generalised factorization formalism. Most recently this has included a de-
tailed phenomenological analysis of B — 7K and B — nw decays [6] in
which we:
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1. include the matrix elements of electroweak penguin operators, which
play an important role in b — sgq transitions;

2. present hard-scattering kernels for general, asymmetric meson light-
cone distribution amplitudes. This is important for addressing the
question of nonfactorizable SU(3)-breaking corrections, since the dis-
tribution amplitudes of strange mesons are, in general, not symmetric
with respect to the quark and antiquark momenta;

3. estimate the leading power corrections to the heavy-quark limit (in-
cluding those arising from annihilation topologies). This is essential
for controlling the theoretical uncertainties of our approach.

In this talk I have concentrated on the conceptual aspects of factorization
in nonleptonic B-decays and I cannot present the details of the phenomeno-
logical analysis. For illustration however, I present in table 6 the predicted
ratios of C'P-averaged branching ratios for four values of the angle 7 of the
Unitary Triangle. For comparison, the current experimental values for these
ratios (which we obtain by averaging recent CLEO [11]|, BaBar [12] and
Belle [13] data) are also presented.

TABLE

Predicted ratios of C'P-averaged branching fractions for selected values of . The
last column shows the experimental values obtained by averaging over data from
the CLEO, BaBar and Belle collaborations (obtained ignoring correlations between
the individual measurements).

Ratio 40° 70° 100° 130° Experiment

2Br (O K*)
B ERO) 0.944+0.07 1.16 +£0.07 1.44+0.16 1.704+0.25 | 1.41 +0.29

+
Br(x¥K~) 0.924+0.08 117+£0.08 1.50+0.19 1.83+0.34 | 0.83+0.22

2Br(79K0)

T+ Br('lr:FKi)
L= Be(nEK0) 0.74+£0.07 091+0.04 1.124+0.07 1.324+0.12 | 1.06+0.18

Tgo

Br(ztz7)
Br(xTRE) 0.96 £0.60 0.67+0.38 0.43+0.25 0.27+0.18 | 0.26 &+ 0.06

Tot Pr(rn )| 0964025 083+0.20 066015 050013 | 0.420.14
B
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