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The status of theoretical calculations of BR[B — X,v] is discussed.

It is pointed out that replacing m{?“le/mg(’le in the matrix element

X,7|(3¢)y_4(b)y_4|b) by the more appropriate mMS(u)/mP°® with
< Y c © b

i € [m., my] causes an 11% enhancement of the SM prediction for the
branching ratio, and has a sizeable effect on the uncertainty. However, the
uncertainty can be maintained at the level of around 10% thanks to an ob-
servation that my(u) in the top-quark contribution to the decay amplitude
is the main source of perturbative QCD effects in the considered process.

PACS numbers: 13.20.He

The purpose of the present paper is discussing the status of theoretical
calculations of the inclusive branching ratio BR, = BR[B — Xv] in the
SM. Many elements our considerations are directly applicable also to other
weak radiative B decays to charmless particles, in particular to the exclusive
modes B — K*y and B — py, as well as to the inclusive decay B — Xg7.

The leading electroweak transitions that mediate B — X, are shown in
Fig. 1. The dominant contribution originates from charm-quark loops. The
top-quark contribution is more than twice smaller (after resumming QCD
logarithms) and comes with an opposite sign. The u-quark diagrams are
CKM-suppressed, and play a minor role.

Since the charm contribution is dominant, the existing determinations of
|Vis| from BR, heavily rely on the unitarity of 3 x 3 CKM matrix. On the
other hand, the very unitarity implies that |V| is very close in size to |Ve|.

* Presented at the Cracow Epiphany Conference on b Physics and C'P Violation,
Cracow, Poland, January 5-7, 2001.
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The latter quantity is well determined from the semileptonic B decays. Thus,
BR, can hardly improve our knowledge of the Wolfenstein parameters or
provide us with accurate tests of CKM unitarity.
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Fig. 1. Examples of leading-order electroweak diagrams for B — X,.

However, BR, is well known as a good testing ground for extensions of
the SM. The reasons for this are as follows:

e The decay B — X, v arises mainly at one loop in the SM. Moreover,
its SM branching ratio turns out to be quite small when compared
to naive expectations. Therefore, its sensitivity to electroweak-scale
exotica is particularly large.

e All the parameters that are relevant for the SM prediction are well
measured in other processes.

e There is no overall non-perturbative factor in the theoretical expression
for the decay amplitude, contrary e.g. to the BB and K K mixing or to
By — ptp~ that require lattice inputs at present. In B — X, (within
certain range of photon energy cut-offs), non-perturbative effects en-
ter only as corrections, in analogy to the inclusive semileptonic decay
B — X, ev,.

e The B — Xy amplitude in the SM is suppressed by m,/My < 1.
This suppression can be relaxed in certain popular extensions of the
SM (e.g. in the MSSM with large tan 8 [1-3] or in the left-right sym-
metric models [4-6]). Then, the sensitivity of BR,, to exotic particles
goes much above the electroweak scale (up to A ~ M3, /my, ~ 1.3 TeV),
even if the CKM matrix remains the only source of flavour violation.

Of course, the power of BR, for testing new physics crucially depends
on how accurate its measurements are and how accurate the theoretical
prediction is. The current experimental results are as follows:



Theory of Radiative B Decays 1881

BR[B — X7] = (2.85 £ 0.35g¢a¢. £ 0.2255¢ ) x 1074 (CLEO [7]),
BR[B— X,7] = [3.37 + 0.53gtat. £ 0.425yse. (10 21) 40 )¥10™* (Belle [8]),
BR[b— 57] = (3.11 £ 0.80g¢at. £ 0.724y5¢.)x107* (ALEPH [9]).

The weighted average for BR, is therefore!
Xp —4
BRY® = (2.96 £ 0.35) x 1077, (1)

with an error of around 12%. New results from CLEO, Belle and BaBar
are expected soon. However, our limited knowledge of the photon energy
spectrum may restrict the accuracy of comparing theory with experiment.
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Fig.2. An “artist view” of # BR[B — Xv].

The B — X,v photon spectrum in the B-meson rest frame is shown
in Fig. 2. The solid and dashed lines describe the spectrum without the
intermediate 4 contribution (i.e. the contribution from B — X1 followed
by ¢ — X'y). The dotted line shows how the spectrum changes when
the intermediate 1 contribution is included?. This contribution has been
effectively treated as background in all the existing analyses of B — X7,

both on the experimental and theoretical sides. This convention will be
followed below.

! Statistical errors in the ALEPH measurement of b — sy are much larger than ex-
pected differences among weak radiative branching ratios of the included b-hadrons.

2 1t is a very rough estimate, based on the measured spectra of B — X4 [10] and
(boosted) ¥ — X' [11].
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The thickness of the solid and dashed lines in Fig. 2 reflects the de-
gree of confidence with which the shape of the spectrum is theoretically
known. The prediction is quite solid where the line is solid. For higher
energies, it is only an “artist view” how the spectrum could look like. We
know that there is a peak, and we can determine the size of this peak,
because the total inclusive decay rate is calculable [12] within the Heavy
Quark Effective Theory (HQET)?. However, the shape of the peak can
be determined only experimentally. In this respect, the recent results of
CLEO [7] are very interesting. Unfortunately, their present energy cut-off
E, > 2 GeV is still quite high*. Consequently, the present comparison of
theory and experiment must rely on a model-dependent extrapolation of the
photon energy spectrum [13,14]. Hopefully, this issue might become less
problematic once the photon energy spectrum above the cut-off is more pre-

cisely measured.
2

My . ~ 4+ 60% in amplitude
my

~ 4160% in BR
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NLO QCD corrections: ~ +20% in BR

Fig.3. Examples of Feynman diagrams contributing to b — sy at various orders in
the renormalization-group improved perturbation theory.

3 A few moments of the photon spectrum are calculable, too. B
4 Moreover, it is imposed in the LAB frame rather than in the B-meson rest frame.
The photon energies in the two frames can differ by as much as £135 MeV.



Theory of Radiative B Decays 1883

Below, in the discussion of theoretical results for BR,, we shall assume
that the photon energy cut-off is already low enough, e.g. E, > 1.6 GeV in
the B-meson rest frame. In such a case, the dominant contribution to BR,
is given by the partonic decay b — Xy of the b-quark.

Examples of diagrams that contribute to the perturbative b — sy am-
plitude are shown in Fig. 3. The leading one-loop diagrams were calculated
twenty years ago [15]. Seven years later, it was realized [16,17] that loga-
rithmic two-loop QCD effects are very large. An enhancement of BR, by
a factor of 2.6 (for my = 175 GeV) was found after resummation of
(as In MI%V / mg)n to all orders in n with the help of renormalization-group
techniques [18-24].

Since the perturbative uncertainties at the Leading Order (LO) were
large [25], a calculation of the Next-to-Leading-Order (NLO) QCD correc-
tions to b— sy was undertaken (see the second row in Fig. 3). It required
calculating logarithmic parts of two- and three-loop diagrams [26, 27| as
well as non-logarithmic parts of two-loop diagrams, including their low-
momentum [28] and high-momentum [29-33] regions. The corresponding
bremsstrahlung corrections were evaluated earlier [34,35]. Large QCD log-
arithms were resummed in all those analyses.

The calculated NLO QCD corrections enhance BR,, by another 20%.
The electroweak [13,36-38] and non-perturbative [39-44| corrections have
smaller effects. The overall uncertainty in the prediction for BR, is still
dominated by perturbative QCD. It was estimated in Refs. [13,27,45, 46].
However, only the latter paper properly accounts for errors due to m./my.
In consequence, the predicted value of BR,, is significantly higher than in the
previous analyses. The uncertainty can be maintained at the level of around
10% thanks to an observation that my(p) in the top-quark contribution to
the decay amplitude is the main source of QCD effects. In the remainder of
this paper, we shall discuss those very recent developments.

c c c c
c c
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Fig.4. Leading contributions to the matrix element (s7|(5¢)y_4(¢b)v_4|b).

The (m./mp) dependence of the b — sy amplitude arises from two-
loop diagrams with charm quarks calculated by Greub, Hurth and Wyler
[28]. Such 1PI diagrams are shown in Fig. 4. The W-boson propaga-
tor has been contracted to a point, so those diagrams represent a ma-
trix element of the four-quark operator (5¢)y_.(¢b)y_4. Since the depen-
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dence of such a matrix element on m./m; is quite strong, we should ask what
renormalization scheme should be used for quark masses. Should we use
mP /mP® = 0.29+£0.02 or, perhaps, mYS(u)/mb*® ~ 0.22+0.04 (with
u € [me,mp])? In principle, such a question is a NNLO issue, i.e. it is as
relevant as three-loop corrections to the diagrams in Fig. 4. However, it is
numerically very important, because changing m./my from 0.29 to 0.22 in
the considered matrix element implies an increase of BR,, by 11%, i.e. by as
much as the present experimental and theoretical uncertainties.

Since calculating three-loop corrections to the diagrams in Fig. 4 would
be a very difficult task at present, we have to guess what the optimal choice
of m. and m, is, on the basis of our experience from other calculations. All
the factors of m, in the considered diagrams originate from explicit mass
factors in the charm-quark propagators. In the real part of the considered
amplitude, those charm quarks are dominantly off-shell, with momentum
scale p set by my. Actually, we are not able to decide whether this scale is my,

1 1 . 1
3myp or 3my. Therefore, it seems reasonable to vary pu between m. ~ 3my

and my, and use mg/TS(u) in the ratio m./my.

As far as the factors of my in the considered diagrams are concerned, they
originate either from the overall momentum release in b — sy or from the
explicit appearance of my in the b-quark propagators. In the first case, the
appropriate choice of my is a low-virtuality mass. In the second case, there is
no intuitive argument that could tell us whether mi’(ﬂe or my(my) is preferred.

However, so long as the three-loop diagrams remain unknown, setting all the

0.6}

0.1 0.2 0.3 0.4 0. 5 me/my

Fig.5. Charm-loop contribution to the NLO amplitude of b — s+ as a function of
Me/my .
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factors of my equal to mi’Ole seems to be a good choice. Even a better choice

is the so-called 1S-mass of the b-quark [47,48] that is defined as half of the
perturbative contribution to the 7" mass. It is leading-renormalon free and
differs from ml[’Ole only by 1% at one loop.

The LO contribution to BR,, is independent of m,. Only the NLO cor-
rections are m. dependent. Thus, it seems surprising at the first glance that
a change of m./m; from 0.29 to 0.22 causes an increase of BR, by as much
as 11%. Fig. 5 presents the charm-loop contribution A, to the NLO ampli-
tude of b — s (in arbitrary units) as a function of m./m;. One can see
that the dependence of A, on the quark mass ratio is not extremely strong
at all. When m,/my changes from 0 to %, A, decreases by around 16%,
i.e. the NLO correction to A. changes from plus a few percent to minus a
few percent. Such a change is not particularly big for a O(as(my)) correc-
tion. However, the negative interference with the top-loop contribution (see
Fig. 1) implies that the full b — sy amplitude changes by 25%, and BR,
changes by 53%. Thus, a large effect in BR, can be caused by a relatively
mild effect in A..

Once m! ( )/mpOIe with p € [mc,myp] is used in Fig. 4, the uncer-
tainty in BR significantly increases. This is due in part to a strong scale-
dependence of me(p). Moreover, in all the previous analyses, the m. depen-
dence of I'[b — s7] canceled partially against that of the semileptonic decay
rate that is conventionally used for normalization. Once the different nature
of the charm mass in the two cases is appreciated, the cancellation no longer
takes place.

Fortunately, it is possible to make several improvements in the calcu-
lation, which allows us to maintain the theoretical uncertainty at the level
of around ~ 10%. In particular, good control over the behaviour of QCD
perturbation series in B — X, is achieved by splitting the charm- and
top-quark-loop contributions to the decay amplitude. The overall factor of
my, is frozen at the electroweak scale in the top contribution to the effective
vertex my(51,0"br)F),. All the remaining factors of m; are expressed
in terms of the bottom 1S-mass. As argued in Ref. [47], expressing the
kinematical factors of my in inclusive B-meson decay rates in terms of the
1S-mass improves the behaviour of QCD perturbation series with respect to
what would be obtained using mMS(mb) or mEOIe When such an approach
is used, no sizeable accidental cancellations of scale-dependence in the NLO
expressions for BR, are observed.

Splitting the charm and top contributions to the amplitude allows us
to better understand the origin of the well-known factor of ~3 enhance-
ment of BR, by QCD logarithms. When the splitting is performed at LO,
the charm contribution is found to be extremely stable under QCD renor-
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malization group evolution. The logarithmic enhancement of the branching
ratio appears to be almost entirely due to the top-quark sector. It can be
attributed to the large anomalous dimension of the b-quark mass.

In order to explain those issues in more detail, it is necessary to introduce
the effective Lagrangian that is always used in B — X v analyses. It reads

L = Lqcpxqep (4, d, s,¢,b) + G —= ViV Z Ci(p (2)
\/_ i=1
The first term above is just the QCDxQED Lagrangian for the light
quarks, and the second term contains flavour-changing local interactions P,
of either 4 quarks or 2 quarks and gauge bosons.

(5T5c)(eI7}b), 1=1,2, |Ci(up)| ~ 1,
b (5I3b) 3 (al}q), i=3,4,5,6, |Ci(p)| < 0.07,
' % 51,0 by Fluy, i=T, 1C7 ()| ~ 0.3,
gy 5 o TObRGY,, 0= 8, |Cs(up)| ~ 0.15

The symbols I; and I7 in P,..., Ps stand for various products of the Dirac
and colour matrices.

The resummation of large QCD logarithms in B decays usually begins
with decoupling the heavy electroweak bosons and the top-quark. In the
resulting effective theory (2), flavour-changing interactions are present only
in operators P; (3). Their Wilson coefficients C;(u) evolve according to the
Renormalization Group Equations (RGEs) from the matching scale po ~
(Mw or m;) down to the scale py ~ my where the matrix elements of P,
are evaluated.

In the leading logarithmic approximation, the b — sy amplitude is pro-
portional to the (effective) Wilson coefficient of the operator P;. The well-
known [25] expression for this coefficient reads

8
0)eff 16 (0 8 1 16 0 .
O () = 3 O o) + = (03 =03 ) O o) + D han™, (&)
where n = a (o) /s (up) and
hi = (520326 5628 3 L _0.6494 —0.0380 —0.0185 —0.0057),(5)
11 8 1204086 —0.4230 —0.8994 0.1456). (6)

ai= (3 3 23 —2

The coefficients C( )( 0) and Céo) (o) are found from the one-loop elec-

troweak diagrams presented in Fig. 6. It is sufficient to calculate the 1PI
diagrams only.
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Fig.6. One-loop 1PI diagrams for b — s+ in the SM.

Contributions from different internal quark flavours in those diagrams
can be separately matched onto gauge-invariant operators, even when the
calculation is performed off-shell®. For the operator P; and its gluonic ana-
logue Pg, each quark flavour yields a UV-finite contribution that depends
neither on the renormalization scheme nor on the gauge-fixing parameter.

When such a separation of flavours is made, and the CKM-suppressed
u-quark contribution is neglected, Eq. (4) can be written as

O (1) = X + X, (1)

where the charm-quark contribution is given by

and the top-quark one reads

m? 16 4 m2 ” 16
X = ——At <M; )’17 — §F0 <M; ) (7723 o/ 3)’ (9)
where 3 2
Ag(f) = _23%%_1 nr+ =222 +3165éx 1—)15916-1-46’ "
10
Fi(z) = 5iring 4 2000300

The first two terms in X, (8) are obtained from Eq. (4) by the following
replacements: C§0) (ko) — —22 and Céo) (ko) — —%, which is equivalent to
including only charm contributions to the matching conditions for the corre-
sponding operators. Analogously, only top loops contribute to X;. The last
term in Eq. (4) now appears in X, because it is entirely due to effects of

% In an off-shell calculation, use of the background-field gauge is necessary to ensure
the absence of gauge-non-invariant operators. There is no W*GT~ coupling in the
background-field gauge.
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charm loops in the RGE evolution. The splitting of charm and top is per-
formed at the level of SM Feynman diagrams, and the effective theory is
nothing but a technical tool for resumming large QCD logarithms in gluonic
corrections to those diagrams.

0.2 0.4 0.6 0.8 1,

-0. 1}

-0. 2}

-0. 3} ~“;~,:::'

-0. 4}

-0. 5}

~0.6}
—

Fig.7. X, as a function of 5 (solid line), and its three components in Eq. (8)
(dashed lines).

X, is a function of ) that varies very slowly in the physically interesting
region 0.4 < n < 1. This is illustrated in Fig. 7, where the three components
of X, in Eq. (8) are plotted as well. The second component is numerically
small, while there is a strong cancellation of the n dependence between
the first and the third component. However, these components are not
separately physical in any conceivable limit, so the cancellation cannot be
considered accidental.

Since X, is practically scale-independent, X; must be the source of the
factor of ~3 enhancement of BR, by QCD logarithms. This is indeed the
case, because all the powers of 7 in Eq. (9) are positive and quite large.
When 7 changes from unity to 0.566 (which corresponds to py = My and
up = 5 GeV), then X; decreases from 0.450 to 0.325. At the same time,
X, changes by only 0.008 (from —% ~ —0.639 to —0.631). Consequently,

|C’§())eﬂ(u)|2 increases from 0.036 to 0.094, i.e. the branching ratio gets en-
hanced by a factor of 2.6.

It is easy to identify the reason for the strong n dependence of X;. It is
the large anomalous dimension of m;(u) that stands in front of the operator
P; (3). The anomalous dimension 7y, is responsible for 32 out of 2 in the
power of i that multiplies the (numerically dominant) function Af(z) in the
expression for X;.
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Thus, the logarithmic QCD effects in b — s can be approximately taken
into account by simply keeping my, renormalized at g ~ (m; or My ) in the
top contribution to the decay amplitude. Motivated by this observation, we
shall now rewrite the known NLO expressions for B — X, in such a man-
ner. As we shall see, this simple operation not only allows us to reproduce
the logarithmic QCD enhancement, but also the NLO corrections become
significantly smaller than in the traditional approach. Moreover, the residual
renormalization-scale-dependence diminishes, without any accidental cancel-
lations involved. In other words, the behaviour of QCD perturbation series
improves.

Our input here are the standard NLO QCD formulae for B — Xy
collected in Ref. [27], and the separate charm-sector and top-sector matching
conditions for the relevant operators presented in section 2 of Ref. [6]. Apart
from the perturbative QCD effects, we shall include the electroweak and the
available non-perturbative corrections. Assuming that the dominant NNLO
QCD effects have the same origin as the dominant LO and NLO ones, we
shall use all the currently known perturbative information to determine the
ratio of my(pg) to the bottom 1S-mass that normalizes the semileptonic
decay rate.

The B — X, branching ratio with an energy cut-off Ey in the B-meson
rest frame can be expressed as follows:

BR[B N Xs,y]subtracted P, P’

E7>E0
w1 |2
_ BR[B = X.elloy |L220| 8%m 1 ppy L N(BG), (1)
Vep nC
where aem = a9 5! [36] and P(E)) is given by the perturbative ratio
I'lb — X, “Vip |2
| 2 11,5 — = VisVip |* Bcrerm P(Ey). (12)
|Vcb/Vub| F[b — Xuey] Veb ™

N(Ey) denotes the non-perturbative correction®. Contrary to the standard
approach, we have chosen the charmless semileptonic rate (corrected for the
appropriate CKM angles) to be the normalization factor in Eq. (12). This
modification is offset by the factor C in Eq. (11):

> T'[B — X.ev]
I'[B — Xyer]

Vub

Ve

(13)

6 This means that P(Ey) gets replaced by P(Eo) + N(FEo) when b is replaced by B in
Eq. (12).
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This observable can either be measured or calculated. Our normalization to
the charmless semileptonic rate in the Lh.s. of Eq. (12) is motivated by the
need for separating the problem of m. determination from the problem of
convergence of perturbation series in b — X,y. The factor C can be called
“the non-perturbative semileptonic phase-space factor”.

The perturbative quantity P(Ep) can be written in the following form:

2
+ B(Ey), (14)

2
P(E,) = ‘KC + <1 + 0‘5(:0) In %) 7(10) Kt + €ew
t

where K; contains the top contributions to the b — sy amplitude. K. con-
tains the remaining contributions, among which the charm loops are by far
dominant. The electroweak correction to the b — sy amplitude is denoted
by €ew. The ratio

(o) = mﬁ/[_s(lﬁo)

15
— (15)

appears in Eq. (14) because we keep m; renormalized at g in the top con-
tribution to the operator P; (3), while all the kinematical factors of my; are
expressed in terms of the bottom 1S5-mass.

The bremsstrahlung function B(FEj) contains the effects of b — syg and
b — svqq (¢ = u,d,s) transitions. It is the only E, dependent part in
P(Ey). Its influence on the b — X4y branching ratio is less than 4% when
1 GeV < Ey <2 GeV.

TABLE I
Numerical results.
“naive” LO NLO
Re K. (o = Mw) —-0.639 —0.631+0.003 —0.611+0.002
Re K; (po = my) 0.450 0.434 £+ 0.005 0.397 +0.003
BRE,>1.6Gev X 104 3.53 3.56 +0.14 3.60 +£0.05

In Table I, the numerical results are presented at various orders of the
renormalization-group-improved perturbation theory. In the “naive” ap-
proach, the difference of r(ug) (15) from unity is the only included QCD
effect. At LO, all the QCD logarithms (as In M%,/mg)n are taken into
account. At NLO, we add the non-logarithmic O(a;) corrections, together
with the electroweak and non-perturbative ones. The indicated errors cor-
respond to varying the low-energy scale p; between my/2 and 2my,.

One can see that the behaviour of the QCD perturbation series for all
the considered quantities is good, and that their residual u;, dependence is
quite weak. Such a weak u;, dependence is not caused by any accidental
cancellations. This is contrary to what was observed in many previous cal-
culations. In the present approach, there is no indication that the unknown
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NNLO corrections” could be much larger than (as(myp)/7)? ~ 0.5% times
a factor of order unity. Consequently, our estimate of the overall uncertainty
in the final prediction for BR, is not larger than in the previous analyses,
despite taking the problems with m./m; into account here.

When all the errors are included and added in quadrature, one finds

BR[B — X155 o6 Gev’ ¥ = (3.60£0.30) x 104, (16)

In view of the fact that many of the published results have been cal-
culated for Fy = mp/20 =~ 0.23 GeV (i.e. 6 = 1 — 2Ey/my, = 0.9), it is
interesting to check what Eq. (11) gives in such a case. We find

BR[B — XY]p, >my20 = (3.73£0.31) x 10, (17)

It is the above result that should be compared [13] with the experimental
weighted average (1) for the “total” branching ratio. The difference between
theory and experiment is at the level of 1.6 0. However, one should remember
that the theoretical errors have no statistical interpretation, which implies
that the value of 1.6 o has only an illustrative character.

If we used m./my = 0.29 instead of 0.22 in K, and B(Ey), we would find
3.35x 10™* for the branching ratio. The latter result is very close to the ones

obtained in many previous analyses (see e.g. [13,38]). Thus, the replacement
of mg(ﬂe/mbpOle by me(p)/mi® in (sy|(sc)y_4(eb)y _4lb) is the main reason
why our result is significantly higher than the previously published ones.
To conclude:
e An ~ 11% increase in the SM prediction for BR, is found when
mpe'e /mfOle is replaced by the (more appropriate) m.(u) /meIe in
the NLO correction to the b — sy amplitude.

e The well-known (factor of ~3) enhancement of BR,, by leading QCD
logarithms is mainly due to the evolution of my in the top-quark con-
tribution to the amplitude.

e Including an explicit factor of my(ug)/mi° in the NLO expressions
allows us to control the residual scale-dependence more efficiently.

e The present prediction for the “total” branching ratio is
BR[B — XYl >m, /20 = (3.73 £0.31) x 107, (18)
which differs by 1.6 ¢ from the experimental world average

BR[B — XsYexp = (2.96 & 0.35) x 107*. (19)

" Except for those related to the ratio m./my that has been discussed above.
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