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We analyze the spectra of kaonic atoms using optical potentials with
non-local (gradient) terms. The magnitude of the non-local terms follows
from a self consistent many-body calculation of the kaon self energy in nu-
clear matter, which is based on s-wave kaon nucleon interactions. The opti-
cal potentials exhibit strong non-linearities in the nucleon density and size-
able non-local terms. We find that the non-local terms are quantitatively
important in the analysis of the spectra and that a phenomenologically
successful description can be obtained for p-wave like optical potentials.
It is suggested that the microscopic form of the non-local interaction terms
is obtained systematically by means of a semi-classical expansion of the
nucleus structure. The resulting optical potential leads to less pronounced
non-local effects.

PACS numbers: 13.75.Jz, 36.10.-k

1. Introduction

Kaonic atom data provide a valuable consistency check on any micro-
scopic theory of the K~ nucleon interaction in nuclear matter. We therefore
apply the microscopic approach, developed by one of the authors in [1], to
kaonic atoms. The description of the nuclear level shifts in K~ atoms has
a long history. For a recent review see [2]. We recall here the most strik-
ing puzzle. In the extreme low-density limit the nuclear part of the optical
potential, Uyps, is determined by the s-wave K~ NN scattering length:

20 Uops () = =4 (14 25 ) e plr). 1)

(2081)
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with agny = ia%}o) + % a%}l) ~ (—0.18 + 0.674) fm, the nucleus density

profile p(r) and the reduced kaon mass p of the K~ nucleus system. As
shown by Friedman, Gal and Batty [3]| kaonic atom data can be described
with a large attractive effective scattering length aeg ~ (0.63 + 0.894) fm,
which is in direct contradiction to the low-density optical potential (1). The
present data set on kaonic level shifts include typically the 3d — 2p transition
for light nuclei and the 4f — 3d transition for heavy nuclei. Deeply bound
kaonic states in an s-wave have not been observed so far. Since a K~ bound
in a p-wave at a nucleus probes dominantly the low-density tail of the nucleus
profile, one may conclude that the optical potential must exhibit a strong
non-linear density characteristic at rather low density.

A further complication was pointed out for example by Thies [4], who
demonstrated that in the kaonic 1gC system non-local effects may be im-
portant. The importance of non-local effects was also emphasized in [5, 6].
In fact a reasonable description of kaonic atom level shifts was achieved by
Mizoguchi, Hirenzaki and Toki [7] with a phenomenological non-local optical
potential of the form

2 1 Uop (F, 6) S—p <1 + ”m%—z) (aKN p(r) — b¥ p(r) - 6) G)

where the parameter b ~ (0.47 +i0.30) fm3.

Though it has been long anticipated that the A(1405) resonance plays
a key role [5-8], a microscopic description of kaonic atom data remains
a challenge. Obviously an important ingredient of any such attempt must
be a proper many-body treatment of the A(1405) resonance structure in
nuclear matter.

2. Kaon self energy in nuclear matter

In this section we prepare the ground for our study of kaonic atoms. Of
central importance is the kaon self energy, ITx(w,’; p), evaluated in nuclear
matter. Here we introduce the self energy relative to all vacuum polarization
effects, i.e. [Tk (w,q;0) = 0.

First we recall results for the kaon self energy as obtained in a self con-
sistent many-body calculation based on microscopic s-wave kaon—nucleon
interactions. For the details of this microscopic approach we refer to [1].
We identify the K~ nucleus optical potential Vit (') by

2Ek(7) Vopt(7) = Ok (w = Ex(7).q) (3)

where Ex(7) = (m% + §%)/? is the free-space kaon energy. In Fig. 1 we
present the result of [1] at nuclear saturation density. We point out that
the real part of our optical potential exhibits rather moderate attraction of
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Fig.1. The K~ nuclear optical potential, Vop (), plotted as a function of the kaon
three momentum. The nuclear density is p = 0.17 fm 3.

less than 40 MeV. On the other hand we find a rather strong absorptive
part of the optical potential. This is in disagreement with recent work by
Friedman, Gal, Mares and Cieply [9]. We recall that in [1] the quasi-particle
energy for a K~ at rest was found to be 380 MeV at nuclear saturation
density and that the large attraction in the quasi-particle energy is consistent
with the moderate attraction in the optical potential. It merely reflects the
strong energy dependence of the kaon self energy induced by the A(1405)
resonance. Such important energy variations are typically missed in a mean
field approach. Hence, a proper treatment of the pertinent many-body effects
is mandatory.

We analyze the self energy as probed in kaonic atoms in more detail.
Before we proceed it is important to straighten out the relevant scales. Since
the typical binding energy of a K~ bound at a nucleus in a p-wave is of the
order of 0.5 MeV the typical kaon momentum is estimated to be roughly
20 MeV. We then expect the relevant nuclear Fermi momentum k. to be
larger than the kaon momentum |7| < k. For the study of kaonic level shifts
it is therefore useful to introduce the effective scattering length aeg (k) and
the effective slope parameters beg(ky) and ceg(ky)

" 8 m "
(o) = = g (1 725 (aunlln) B + bl 2 77)
8 mr 9

+ _7'{' 1+m—N) Ceﬂ(kp)kp (w—mK)
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Fig.2. The effective scattering length aex(k,) and effective slope parameters
besr (k) and ceg (k) as defined in (4). The solid and dashed lines represent the
real and imaginary parts, respectively.

where we expanded the kaon self energy for small momenta ¢ and energies
close to mx . The rationale behind the expansion (4) will be discussed in
more detail in the subsequent section when constructing the optical poten-
tial. It is instructive to derive the model independent low-density limit of
the slope parameters:

1 2 7 — 3k?% log k| (1=0)\ 2 (I=1)\ 2
bett (k. = 0) —g<1_ﬁ+ — 1_ﬁ) (@) +3 () )

_ 3mg log |k

cun(he = 0) = S OB (G0N g (of30)) 5)

which is given in terms of the kaon-—nucleon scattering lengths and the ratio
k = mg/mpy. As demonstrated in the Appendix these limits are deter-
mined by the Pauli blocking effect which characterizes the leading medium

! We emphasize that expressions (4,5) do not contradict the low-density theorem. Tak-
ing for instance the derivative of IT(w, §) with respect to ¢ assumes implicitly g < kg
if the self energy shows a contribution depending on the ratio q2/k§. Pauli blocking
does lead to such a contribution as shown in the Appendix. Consequently, our optical
potential is necessarily incorrect for k, < q¢ ~ 20 MeV where we recall the typical
3-momentum of the kaon probed in K atoms. We anticipate that the systematic error
we encounter with our expansion in (4) is insignificant since the optical potential is
already tiny by itself in the region 0 < k; < 20 MeV. The main contribution to the
kaonic level shifts is expected for k, > q.
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modification of the kaon—nucleon scattering process. Using the values for
the scattering lengths we obtain beg(0) ~ (—2.45 +40.95) fm GeV ! and
et (0) ~ (—1.35 +40.53) fm.

In Fig. 2 the effective scattering length and the slope parameters are pre-
sented as extracted numerically from the self consistent calculation of [1].
The real part of the effective scattering length aem(k,) changes sign as the
density is increased. At large densities we find an attractive effective scat-
tering length in qualitative agreement with the previous work [10]. Note
that the quantitative differences of the works [10] and [1] are most clearly
seen in the imaginary part of the effective scattering length in particular at
small density. A more recent calculation by Ramos and Oset [17] confirms
the results of [1] at the qualitative level. The quantitative differences will
be discussed in the next section. Most dramatic are the non-linear density
effects in the effective slope parameters beg (k) and ceg(ky ), not considered
in [10,11,17].

The non-trivial changes in the effective scattering length and effective
slope parameters are the key elements of our microscopic approach to the
kaonic atom level shifts.

3. Non-local optical potential: phenomenology

In this section, in order to make an estimate of non-local effects in kaonic
atoms, we calculate the spectra with an optical potential Uyps (7, 6) deduced
from the kaon self energy (4) but use a phenomenological Ansatz for its non-
local structure. Our starting point is the Klein—-Gordon equation

. 2
2000+ | (1= B = Van(1) ) =12 | 80) = 20 U (9 6(0), (O

where F and I" are the binding energy and width of the kaonic atom, whereas
u is the reduced kaon mass in the K~ nucleus system. The electromagnetic
potential Ve, is the sum of the Coulomb potential and the Uehling and
Kéllen—Sabry vacuum polarization potentials [12]| folded with the nucleus
density profile. The nuclear densities are taken from [3], where they are
obtained by unfolding a Gaussian proton charge distribution from the tabu-
lated nuclear charge distributions [13]. We solve the Klein-Gordon equation
(6) using the computational procedure of Krell and Ericson [14].

For the optical potential Ugpt (r,ﬁ), appearing on the right-hand side
of (6), we make the following Ansatz:
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U =V + Vi 20 =t (14 Y ol o).
Vi = dr (14 ) b)) 9
my
Ve = dr (14 22 ip(r ) Fotr) - 5.
my
Vs = (1+ @) blp(r)][9p(r)] )
my

In contrast to the approach of [7] we do not fit the spectrum. The ef-
fective scattering length afp] and the effective slope parameter b[p] in (7)
are determined by the expansion of the K~ self energy at small momenta
(see (4)): we identify a = aer and b = beg/k,. The optical potentials (7)
follow from (4) with ¢ replaced by the momentum operator —iV. Of course,
this heuristic procedure is not unique and may lead to different ways of or-
dering the gradients. For this reason we study the three different cases in (7)
separately. Although our procedure of constructing the optical potential is
not strict, it allows us to make an estimate of the magnitude of the non-local
effects, usually neglected in other approaches. A more systematic derivation
of the non-local part of the optical potential is presented in the subsequent
section.

Here we wish to emphasize an important aspect related to the expansion
suggested in (4). In the previous section we argued that the typical kaon
momentum ¢ above which (4) should represent the kaon self energy is rather
small with ¢ ~ 20 MeV. This observation is evidently true if the gradient
in (7) is acting on the kaon wave function. However, if the proper gradient
ordering asks for a sizeable contribution in which the gradient is acting on
the nucleus density profile this cannot be true anymore. Such terms probe
the surface thickness of the nucleus which in turn would require that the
expansion in (4) represents the kaon self energy up to much larger momenta
g~ 200 MeV. This leads to a severe conflict, because the expansion in (4) can
only be performed for the typical momentum ¢ smaller than the typical Fermi
momentum: if the non-local Pauli blocking contribution is to be expanded
one must either assume g < k, or ¢ > k, (see Appendix). We conclude that
given the effective functions aeg and beg only, we can at the most expect to
derive terms in the optical potential linear in Vp. A term as given in the last
line of (7) is outside the scope of this work, because its systematic derivation
requires a more general input. Note that an analogous consideration applies
to the expansion of the self energy in powers of w — mx.
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The nuclear energy shift AE and the width I" of the 3d — 2p transition
(19B,'2C) and the 4f — 3d transition (2]A1,32S) are presented in Table I.
In the second column (LDT) we recall the results obtained with the op-
tical potential determined by the low-density theorem (1).  In the next
column we present the results obtained with the effective scattering length
a = aefr, as shown in Fig. 2. The use of the density dependent scatter-
ing length improves the agreement with the empirical data as compared to
the density independent scattering length. In particular the level widths
increase towards the empirical values. In the next three columns we show
the results obtained with the non-local potentials of (7) with b = beg /.
For all considered nuclei we observe the same type of the change in the

spectrum. In contrast to U(Sp%, the effects of U(p,)c

are large. Whereas the
level energies are affected only moderately by U( % the widths of the kaonic
atom levels are increased significantly by hundreds of eV. This is an effect
leading towards the proper spectrum. However, in our case the strength of
b is too small to obtain a completely successful agreement with data though
a semi-quantitative description is achieved. An improved phenomenological
description of the selected cases follows if the effective scattering length aeg
of Ramos and Oset [17] is combined with the effective slope parameter beg
of Fig. 2. The results, shown in the one before last row of Table I, agree

TABLE 1

Collection of our results for different nuclei. The energy level shifts AE and widths
are all given in eV. LDT denotes the results obtained with the use of the low-density
theorem with agny = (—0.18+40.67) fm. The last column gives the empirical value
of [15] (for B, 12C and $2S) and [16] (for 27Al). The results obtained with the opti-

cal potentials (7) are listed in the columns denoted by épl, Uérl,%, U, (pt and U, Opl,
respectively. RO-+L is the result obtained with a[p] given by Ramos and Oset [17],

and b[p] given in [1].

Nucleus |LDT U, Ul Ul UL RO+L Experiment

YB —AE| 174 222 238 236 -—128 237 208 £ 35
r 322 441 405 569 11 713 810 %+ 100

20 _AE| 475 603 638 638 —218 674 590 =+ 80
I | 761 1022 926 1342 —38 1694 1730 + 150

WAl —AE 92 115 130 141 -—128 135 130 + 50
r 220 293 282 395 —52 478 490 + 160

325 _AE | 497 625 683 729 —378 748 550 % 60
I | 1023 1324 1264 1748 —41 2105 2330 =+ 200
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remarkably well with the data. Of course, it is not consistent to combine
the two different calculations [1,17]. The last column is included only to
demonstrate that there may be many different ways to describe the K atom
data in a phenomenological approach.

(3)

From our previous discussion it should not be a surprise that Ug; leads
to unphysical results as clearly proven in Table I. The huge eﬁ'ects found
for that form of the optical potential are an indication that one should also
investigate non-local effects involving terms like V2p or (Vp)? systematically.
Such effects are outside the scope of the present study because they are
clearly not determined by the effective slope parameter bog. They will be
carefully investigated in a separate work.

We stress that we do not advocate that either of the three phenomeno-
logical gradient orderings is realistic. Table I is included in this work to
demonstrate that non-local effects are important and in particular that it is
crucial to derive the proper gradient ordering systematically. Furthermore
we point out that the expansion of the kaon self energy in small momenta
g in (4) requires that the contribution of the region 0 < k, < g ~ 20 MeV
to the kaonic level shifts is insignificant. In order to verify this assumption
we artificially modified the slope function such that it is zero at &, = 0 but
agrees to good accuracy with beg (ky) for k, > 50 MeV. This is achieved with

2
beit (k) = \/(20 Melz/p)? + k2 beit (k) - ®)

We considered the implication of the modified slope function (8) for the level

shift of the '2C K~ system. The optical potentials U( ,)E and U( % are found
rather insensitive to the modification of beg (k) accordlng to (8) the level
shift and width change by less than 2%.

It is instructive to compare our results with the analysis of Ramos and
Oset [17]. In their approach the real part a[p] becomes positive at somewhat
smaller densities, as compared to the calculation [1]. A more rapid change of
Re alp] leads to a stronger attraction of the optical potential U( ,)E and bet-
ter agreement with empirical level shifts [18]?. We point out that the recent
calculations [18,19] are not conclusive since, first, they ignore the important
non-local structure of the optical potential and, second, the optical potential
is still subject to sizeable uncertainties from the microscopic kaon—nucleon

% Note that in [19] an unrealistic density profile is used for light nuclei. If the effective
scattering length of [17] and the density profile (24) is used for the '¥C K~ system
the nuclear level shift is AE = —623 €V and I" = 1290 €V.
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interaction. Strong non-local effects are an immediate consequence of the
A(1405) resonance structure and an important part of any microscopic de-
scription of kaonic atom data. The uncertainties in the optical potential
reflect the poorly determined subthreshold kaon—nucleon scattering ampli-
tudes. The isospin zero amplitude of [17] and [1] differ by almost a factor
of two in the vicinity of the A(1405) resonance. Naively one might expect
that the amplitudes of [1] are more reliable since they are constructed to
reproduce the amplitudes of [10] which are based on a chiral SU(3) analy-
sis of the kaon-nucleon scattering data to chiral order Q? as compared to
the analysis of Ramos and Oset, which considers only the leading order Q.
On the other hand the amplitudes of [17]| include further channels implied
by SU(3)-symmetry but not included in the amplitudes of [10]. Also the
work by Ramos and Oset includes the effect of an in-medium modified pion
propagation not included in [1]. Note, however, that such effects are not too
large at small density. Clearly a reanalysis of the scattering data and the
self consistent many-body approach in an improved chiral SU(3) scheme is
highly desirable [20].

4. Semi-classical expansion

In this section we suggest to systematically construct the non-local part
of the optical potential by a semi-classical expansion of the nucleus structure.
In the previous section we have demonstrated that the ordering of the gradi-
ent terms has dramatic influence on the kaonic level shifts. Naively one may
conjecture that the gradient ordering should be s-wave like since the vacuum
kaon—nucleon interaction is s-wave dominated. A perturbative s-wave inter-
action would give rise to the gradient ordering suggested in [1] in contrast
to the phenomenological successful Kisslinger potential [21] employed in [7].
However, since the kaon self energy is obtained in a non-perturbative many-
body approach it is not obvious as to which gradient ordering to choose. In
particular it is unclear to what extent the gradients are supposed to act on
the function beg (k) in (4). Since beg (k) is a rapidly varying function in
the nuclear density such effects have to be considered.

The starting point of our semi-classical approach is the Klein—-Gordon
equation

(92— 12+ (= Venl)) [0 =205 [ €' Ul 77) 67 9

with the non-local K~ nuclear optical potential Uypt(7,7') and w = p —
E —iI'/2. Since the binding energy F of a kaonic atom is of the order of
hundreds of keV it will be justified to expand the nuclear optical potential
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in the kaon energy w around the reduced kaon mass pu. Here we exploit the
obvious fact that the nuclear part of the potential varies extremely smoothly
at that scale.

In order to derive the form of the non-locality in the nuclear optical po-
tential it is useful to consider the in-medium kaon—nucleon scattering pro-
cess. The s-wave K~ nucleon interaction of [1] implies that the scattering
amplitude, Tk n(w,q), depends exclusively on the sum of initial kaon and
nucleon momenta ¢, and energies w. Close to the kaon—nucleon threshold
the former can therefore be represented by the density dependent coefficients

axn(p),brn(p) and cxn(p)

. m .
Tn(w,q;p) = 47 <1+m—§) (aKN(P)+bKN(P)q2

—CKN(P)<w—mN—mK)+"'), (10)

where we suppress higher order terms for simplicity. We note that at vanish-
ing baryon density one expects from covariance 2 (my + mg) bgn = ¢ nN-
In the nuclear medium, however, the functions bxn(p) and cxn(p) are in-
dependent quantities. The model independent low-density characteristic is
derived in the Appendix:

1 3k—1 1 =0 2 I=1 2
brn(p) = Tor 1+ )k, ((agav)> +3<a(KN)> >+O(k3),

1 1 —0)\2 _1\ 2
cxn(p) = _;ﬁf(m_ ((G%NO)) +3(agN1)> >+o(kg). (11)
F

It should not come as a surprise that we find bgn ~ 1/k, and cxny ~ 1/k;
at small density. The leading term follows upon expansion of the scattering
amplitude in powers of small momenta followed by the low density expansion.
For details we refer to the Appendix. In fact the expansion in (10) stops to
converge at k, < ¢. Since the scattering amplitude leads to the kaon self
energy via

kF
B, d’p '
HK(waq) = _4/(27{')3 Tkn <w+mN+
0

L+h) . )
my

we conclude that at small density (with k£, < 50 MeV ) an accurate rep-
resentation of the kaon self energy requires an infinite number of terms
n (10). A manifestation of this fact is that ceg # ky cx v and beg # k, b n
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at small density. We observe that at somewhat larger density with
50MeV < k, <300 MeV, one obtains a faithful representation of the self en-
ergy keeping only a few terms in (10). In any case our final optical potential
(23) will be expressed directly in terms of aeg(ky ), besr (k) and ceg (k) de-
fined in (4) and extracted numerically form the kaon self energy of [1] (see
discussion below (20)).

In order to proceed and derive the non-local kaon optical potential we
generalize (12), which holds for infinite homogeneous nuclear matter, to the
non-local system of a nucleus (see e.g. [4]):

2 14 Unp (0, 7, 7) Z XV T (@ = Ve (77) + B 77 ) xl7). - (13)
Here we introduced the non-local amplitude T (w, 7, 7’) and the nucleon wave
function x,(7) for a given nucleus in a shell model description. E,, is the
energy of the single particle wave function and the index n sums all occupied
shell model states of the nucleus.

To make contact with the formalism for homogeneous nuclear matter it
is useful to transform the amplitude T'(w, §; R) to momentum space

- / d*q g = B
T(w,77") = | —=e'l T(w,q;R) (14)
(2m)?

with B = (7+7')/2. In the limit of infinite and homogeneous nuclear matter

the amplitude T'(w, §; ﬁ) does not depend on R and equals the previously
analyzed amplitude of (10). For the non-local system we identify:

Tin(w, G p(R)) = T(w, G R), (15)

where p(ﬁ) is the density profile of the nucleus. We emphasize that the iden-
tification (15) neglects an explicit dependence of the in-medium scattering
amplitude on V?p. This is of no further concern here, because such effects
are not addressed in this work.

We now aim at a shell model independent representation of the non-
local optical potential by rewriting it in terms of the nuclear density profile
of the nucleus. Consider first the term proportional to bxy ¢2 in (10). We
rewrite its contribution to the optical potential by means of the semi-classical
expansion

bren(R an PV - Vi 03(F = ')

= (£ 20101 brewtr) = Fbrcw(0) K20 o)~ br(r) A )

(Vp(r))?

o) Sy

+6F6KN(’I") ,0(’1") 6,:') 53(F—Fl)+0 (ﬁ4) s (16)
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where we did not include a spin—orbit force for simplicity (see e.g. [22]).
We emphasize that we have to drop all terms in (16) which involve more
than one gradient acting on the density profile. For such terms the expan-
sion in (4) does not make any sense. On the other hand, the last term in
(16) is well established and leads to a microscopic interpretation of the gra-
dient ordering for V5 in (7). We turn to cxn in (10). This term appears
most susceptible to shell effects since it probes the shell model energies E,
explicitly. Again we perform the semi-classical expansion

A k2 (r)
18mN 5mN

> Enxh(7) xn () = (mN+ﬂ— )p(r) +0 ('), (17)
n
with g ~ —8 MeV being the one-nucleon separation energy of the nucleus.
Again one needs to realize that, for instance, the term with g—k2/(5my) in
(17) is not determined reliably and therefore must be dropped. This follows,
because the expansion of the self energy in powers of w — mg is applicable
only for w — mg ~ 1 MeV of the order of the K atom binding energy.

We summarize the results of the semi-classical expansion. It leads to
a description of K~ atoms in terms of the empirical nuclear density profile.
Upon collecting the various contributions we present the optical potential
as implied by (10):
g mi _
20 Uope(0,7,9) = 7 (1 225 (arenlpl)] () + s 1o(r)])

+ 47 <1 + %) Vobrn[p(r)]p(r) -V

mn

an (1 T %) (0= Ver(r)=mc)erenlp (] or), (15)

where we present the non-local optical potential, Uyps (7, 7”), in terms of the
differential operator, Uqpt (7, V), with

Unpt (0,7, V) () = / & U (0, 7, 7") $(") - (19)

We further introduce the renormalized effective scattering length ax n[p] and
a term sx n[p] responsible for binding and surface effects

axnlp] = axn(p) + %kﬁ <bKN(P) - ﬁ CKN(P)) ;

12 3p
2
—ckn(p) (ﬂ e A ) p- (20)

C2my  18my

= (2
skN[p] = ibKN(,O) (AP-F@) —%AbKN(P)P
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Equation (20) is instructive since it suggests to identify axn(p) with the
effective scattering length aeg (k) introduced when analyzing the kaon self
energy. It also gives a clear separation of effects we have under control from
those which are beyond the scope of this work. According to our previous
discussions all terms collected in sign should be dropped. We arrive at our
final form of the optical potential by replacing

C_lKN(P) %aeﬁ(kp)a bKN(kF) %beﬂ(kF)/kF s
cxn(p) = cet(ky)/ks skn(p) =0, (21)

in (18) with the functions aeg(ky ), beg(ky) and ceg (k) as extracted from the
kaon self energy of the self consistent calculation in [1]. We point out that
this procedure recovers higher order terms in the expanded amplitude (10).
Note for instance that (20) is written in such a way that ax y includes the
trivial renormalization of the scattering length implied by (12). This justifies
the identification of ax n with aeq(k;), because it avoids the double inclusion
of such effects.

We present the final radial differential equation for the kaon wave func-
tion ¢(7) = x(r) Yim (0, ¢) /r as it follows from (18),(20) and (21):

2
20) (0 = "5 ) xt) = 20)

dr? r

u (u—E—%F—Vem(r))Q] x(r)

+ 2uV ) + 2080 (30} (2)

with
2uv(r) = —5- (14 25 [ﬁ (ky (1) K(P) + 0 b (k, () 2 (r)] ,
20) = 1= g (14 25 ) 20 b (s 1),
25(0) = 3 (1425 ) 20 b (5 1),
20) = 1- o (1 " %) ’;n(”i ot (e (1) (23)

The effective Klein-Gordon equation (22) shows a wave function renor-
malization Z(r), a mass renormalization Z(r) and a surface interaction
strength S(r). Note that in (22) we approximated the linear energy de-
pendence of (18) by a quadratic one.
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We discuss the effect of the semi-classical optical potential (22) at hand
of a K~ bound at the 2C-core and j3Ni-core. We use the unfolded density
profiles of [3,13]:

r 2 T 2
Prize)(r) = po <1 223 (1.516 fm) ) P <_ (1.516 fm) ) ’

r—4.134fm\\ !

with pg determined by 4 [ drr?p(r)=12 for carbon and 4x [ drr?p(r)=>58
for nickel. In Fig. 3 the effective potential V (r), the effective surface func-
tion S(r) and the renormalization functions Z(r), Z(r) defined in (23) are
shown for the 38Ni density profile of (24). We point out that for the wave
function and mass renormalization functions Z(r) and Z(r) we find quite
large deviations of about 50% from the asymptotic value 1. Also the function
S(r) shows sizeable strength close to the nucleus surface.
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Fig.3. The effective potential V(r), the effective surface function S(r) and
the effective renormalization functions Z(r), Z(r) as introduced in (23) for the
28Ni K~ system. The solid and dashed lines represent the real and imaginary
parts, respectively.
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We introduce the nuclear level shift, AF, in terms of the measured tran-
sition energy, AFemp = AFEem + AE, and the theoretical electromagnetic
transition energy, AFem. For the 12C K~ system we consider the 3d — 2p
transition with Eem(2p) = 0.113763 MeV and Eem(3d) = 0.050458 MeV.
For the 5§Ni K~ system we consider the 5g — 4f transition with e (4f)
= 0.641572 MeV and FEen(5g) = 0.409951 MeV. Here the Coulomb po-
tential and the vacuum polarization potentials [12] are folded with the
nucleus density profile (24). We use mg- = 493.677 MeV and 1/a =
137.035989. The empirical transition energy is AFemp = 62.73 £ 0.08 keV
with I" = 1.73 £ 0.15 keV [15] for carbon and AFEep,, = 231.408 £0.052 keV
with I' = 1.230 £ 0.140 keV for nickel. Note that the resulting empirical nu-
clear level shifts AE = —573 £ 80 keV for carbon and AE = —213 £ 52 keV
for nickel differ slightly from the values given in [15, 23| and shown in
Table II. The reason for which is an old value for the kaon mass, a slightly
different nucleus profile and the inclusion of further small correction terms.

In Table IT we compare the results from the low-density optical poten-
tial (1) with the result of the semi-classical optical potential. The full semi-
classical potential represents the empirical level shifts quantitatively but
underestimates the empirical widths systematically. As can be seen from
Table II the non-local effects increase the level widths by only a small amount
towards the empirical values. The results obtained with the semi-classical

TABLE 11

Results for the 12C K~ and 35Ni K~ systems. The first two rows show the
results from the optical potential (1) with (i) the empirical repulsive scattering
length agny = (—0.18 +70.67) fm and (7) the effective attractive scattering length
a&?i{? = (0.63 + ¢0.89) fm. The remaining rows show the result with the semi-
classical optical potential (23) with (44) beg = 0 = Cer, (1) With ceg = 0 and
(v) with aefr, ber and cer from Fig. 2.

12C (3d — 2p) 5oNi (59 — 4f)

—AE [eV] T'[eV] |—-AE[eV] T [eV]
aKn 475 761 199 476
alh) 593 1362 143 932
bt =0 & cor — 0| 603 1022 248 627
Cot = 0 589 1109 278 759
full theory 569 1098 233 701

experiment [15,23] | 590+ 80 1730+ 150| 246 +£52 1230+ 140
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potential differ significantly from the results obtained with phenomenologi-
cal potential V5 in (7) with an ad hoc gradient ordering. We emphasize that
the crucial assumption of our approach, namely that the results are insen-
sitive to the precise form of the slope functions beg (k) and ceg(k,) in the
extreme surface region k, < ¢ ~ 20 MeV, which justifies the expansion (4),
is fulfilled. The size of the level shifts and widths, using beg (k) and ceg (k)
functions modified according to (8), are affected by less than 3% for the
12¢ K~ and 58Ni K~ systems. Note that this uncertainty is certainly not
resolved by the accuracy of the available empirical level shifts and widths.

5. Summary

We summarize the findings of our work. The kaon self energy shows
a rapid density, energy and momentum dependence in nuclear matter. This
rich structure is a consequence of a proper many-body treatment of the
A(1405) resonance structure in nuclear matter invalidating any mean field
type approach to kaon propagation in nuclear matter at moderate densities.
Thus non-local terms in the optical potential are large and quantitatively
important. If included phenomenologically in the calculation of the kaonic
atom spectra they cause substantial additional shifts of the binding energies
and level widths. Since the kaon self energy must be obtained in a non-
perturbative many-body approach it is not immediate as to which gradient
ordering to choose. A phenomenological p-wave like ordering of gradient
terms with the strength taken from the many-body calculation of [1,17]
leads to a satisfactory description of the kaonic atom level shifts. How-
ever, a proper microscopic description of K~ atom data requires a careful
derivation of the non-local part of the optical potential. Given the kaon self
energy as evaluated for infinite nuclear matter, one can at the most establish
non-local terms where a gradient is acting on the kaon wave function. This
follows, in particular, because the low-momentum expansion of the self en-
ergy converges only for ¢ < k, once the important Pauli blocking effects are
considered. In this work we established that for such non-local effects the
typical kaon momentum is indeed smaller than the typical Fermi momentum
as probed in K atoms. This justifies an expansion of the kaon self energy in
small momenta. We reiterate that given only the kaon self energy of infinite
nuclear matter any contribution considered for the optical potential which
involves V2 p is not controlled and therefore must be dropped.

We derived the microscopic structure of the optical potential by means
of the semiclassical expansion in the second part of this work systematically.
At present this approach reproduces the empirical level shifts quantitatively
but underestimates the empirical widths systematically. The microscopic
optical potential leads to less pronounced non-local effects as compared to
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the phenomenological optical potential with p-wave like gradient ordering.
Further improvements are conceivable. For instance the non-local effects
involving V?p should be studied and also p-wave interaction terms should
be considered. Moreover, the kaonic atom data appear very sensitive to the
precise microscopic interaction of the kaon—nucleon system. An improved
microscopic input for the many-body calculation of the kaon self energy
is desirable. This is supported by the recent chiral SU(3) analysis of the
kaon—nucleon scattering data which includes for the first time also p-wave
effects systematically [20]. It is found that the subthreshold kaon—nucleon
scattering amplitudes differ strongly from those of [10,17] and that p-wave
effects in the isospin one channel are strong. An evaluation of the many-body
effects based on the improved chiral SU(3)-dynamics is in progress [24].

W.F. thanks the members of the Theory Group at GSI for very warm
hospitality. M.L. acknowledges partial support by the Polish State Commit-
tee for Scientific Research (KBN) grant 2P03B00814.

Appendix

In this appendix we derive the contribution from Pauli Blocking (PB)
to the in-medium kaon—nucleon scattering process and the kaon self energy.
Pauli blocking induces a model independent term in the scattering amplitude
T[((P]\]?)(w + mpy,q) and self energy Hg,PB)(
s-wave scattering lengths:

w,q) proportional to the squared

2 2
T (w+my. @) =7 (1+ ) ((agggv) +3 (al)) ) Iw,q)

kF
3 2
(PB) d’p . (PB) D Lo
17 =—4 T — 25
) w, g 0/(%)3 Ewmy+ Gl D, @)
with kK = mg /my and
I(w,q) = ipem.[w,q]
kF
_/ d3l 47(1 + k)
J (27T)3m%(+Am%(—w2+(1+w/mN)l_ﬁ—2f-d'+q'2—i5’
(w+mp)?—q?

= /M3 P 0, @) + (e + A + 92, 0,7, (26)
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Note that in the denominator of (26) we neglected relativistic correction
terms of the form (12)"*!1/m3? or w (1?)"*!1/mA'*! with n > 1 but kept
the correction term w/my. The latter term is important since it renders the
derivatives d,IT(mg, 0) and 9,2 IT1(m,0) finite and well defined at w = mx
and ¢> = 0. We emphasize that the inclusion of the kaon mass modification
Am3, ~ k3 as required in a self-consistent calculation [1] leads to a well
defined behavior of I(w,q) close to w ~ mg and ¢ ~ 0. Similarly, as
suggested in [25], one may include nuclear binding effects in I(w, q’) by re-
placing my — my + Ampy and w — w — Amy in the r.h.s of (26). This
leads to identical results for the low-density limits 0, T (mg + my,0) and
Op2 T (mpg + my,0) since only the combination Amg + Amy is active at
leading order and will cancel identically. It is straightforward to derive:

0 4 mg 1 0

—1I = — k

Ow (m, 0) Tk 1+H+O(F)’

0 2 1 3k—1

— 7 = - -7 - 0 2
P (mk,0) 37 b (1+/4)2+O(kF)’ (27)

leading to our result (11). Note that the two terms in I(w, ) lead to con-
tributions proportional to 1/v/Amg + Amy in (27) which, however, cancel
identically. Similarly one may expand

kF
/ d3p p? . ki 1 — k2 + K2 Ink?
0

(27)3 I(mg + rmN),p) = T (T—r)2(1+n) +(9(k§),

L 3
(2mN)’p)_ 273 1+/1+O(kF)’

/ d3p p? _k? mg In|x|
0
k

dsp pQ
I — —

k2 (7 In|s| 21—k2+2k%In|kl

=23 = O (k}), (28
47r3<3 Tin 3 Gama_ne ) TOW), (28

and arrive at the low-density limit of beg(0) and ceg(0) as given in (5). For

completeness we included in (28) the integral leading to the ké—term in the

self energy given in [1]. Its limit for small k¥ was derived in [26].
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