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A form of mixing matrix for three active and three sterile, conventional
Majorana neutrinos is proposed. Its Majorana lefthanded part arises from
the popular bimaximal mixing matrix for three active neutrinos that works
satisfactorily in solar and atmospheric experiments if the LSND effect is ig-
nored. One of three sterile neutrinos, effective in the Majorana righthanded
and Dirac parts of the proposed mixing matrix, is responsible perturba-
tively for the possible LSND effect by inducing one of three extra neutrino
mass states to exist actively. The corresponding form of neutrino mass ma-
trix is derived. If all three extra neutrino mass states get vanishing masses,
the neutrino mass matrix is dominated by its specific Majorana lefthanded
part. Then, the observed qualitative difference between mixings of neu-
trinos and down quarks may be connected with this Majorana lefthanded
dominance realized for neutrinos. If m? ~ m3 for two of three basic neu-
trino mass states, the sum rule sin? 26501 + sin® 20choos/2 + sin? 26r,snp = 1
holds in the two-flavor approximation (for each of three cases). Thus, the
solar neutrino oscillation amplitude, not fully maximal, leaves some room
for the LSND effect, depending on the magnitude of Chooz effect (not
observed so far).

PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh

1. Introduction

Although the recent experimental results for atmospheric v,’s as well as
solar v,’s are in favor of excluding the hypothetical sterile neutrinos from
neutrino oscillations [1], the problem of the third neutrino mass difference
manifested in the possible LSND effect for accelerator v,’s still exists [2], im-
plying a further discussion on mixing of sterile neutrinos with three active
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flavors v, v, v-. In the present note we contribute to this discussion by
constructing a particular 6 x 6 texture involving three active and three ster-
ile, conventional Majorana neutrinos. The construction extends (or rather
adapts) the familiar bimaximal 3 x 3 texture [3] working in a satisfactory
way for three active neutrinos in solar and atmospheric experiments if the
LSND effect is ignored. Then, one of three sterile neutrinos is responsible
perturbatively [4] for the possible LSND effect by inducing one of three extra
neutrino mass states to exist actively.
As is well known, three sterile Majorana neutrinos

v = var + (var)® (@ =¢, 1, 7) (1)
can be always constructed in addition to three active Majorana neutrinos
v = var + (var)® (@ =e, p, 7) (2)

if there are righthanded neutrino states v,gr beside their familiar lefthanded
partners v,1, participating in Standard Model gauge interactions |of course,
l/(gi) = v,1, and u((j]z = (Vor)]- Whether such sterile neutrino states are
physically realized depends on the actual shape of the neutrino mass term

whose generic form is

_ (L) (D) (a)
1 OB ( M M v
—Lmass = = E (Va » Vo ) (%B)* %ﬁ) /(35)
25 Mg, Mg Vg

1 N -
=3 > (MS;) + MSZ) ) (VaL. VgR + UBR VaL)
o

+% > M) |7t (v1)° + (var)* v

afB
1
+3 > MS;) [m (vgr)" + (Var)" VﬂR] : (3)
afB
WhereMé{;’R)>k = M(%’R), but M/gg)* #* MS:B)) in general. The 6 x 6 neutrino
mass matrix
ML) prD)
M = < MO ® ) (4)

appearing in Eq. (3) is hermitian, M = M. Here, M(D:-L:R) — (MS;’L’R)>
are 3 X 3 neutrino mass matrices: Dirac, Majorana lefthanded and Majorana
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righthanded, respectively. Further on, for six neutrino flavor states we will
. a S .

use the notation v, = I/&) and v,, = I/&) with @« = e, u, 7 and then

pass to Vo = Ve, Vy, Vs, Ve, Vy, » Vr,, Where a = e, i, 7, €5, lis, Ts. SiX

neutrino mass states will be denoted as v; = vy, 19, v3, V4, U5, Vg, Where

i=1,2,3,4,5,6.

2. Proposal of a 6 X 6 neutrino mixing matrix

Starting from the phenomenologically useful bimaximal mixing matrix
for three active neutrinos [3,5]

B (]

3) Vi
v = -3 3 - |, 5
R )

2 2 2

we propose the following form of the 6 x 6 neutrino mixing matrix:

([ U® o c S\ _[(u®c vuds
=(% ) (% 8)-("%7 %) o

where
et 0 0 s1 0 1 0 0
C=10 ¢ 0 |,S=[ 0 s 0 |,1®=0 1 0
0 0 c3 0 0 s3 0 0 1

(7)

with ¢; = cos€; > 0 and s; = sin6f; > 0 (i = 1,2,3). One may also denote
= 1/v2

S1 = S14, 82 = 825, 83 = 836, while s19 = 1/V/2, 503 = 1/v/2, 513 = 0.
Explicitly,
o o 0 s sz
V2 V2 V2 V2
& & ey 51 52 sy
2 2 V2 2 2 s
e _ce & s1 _s» 3
v=wa=| * T v T % 5| @
—381 0 0 cl 0 0
0 —S89 0 0 Co 0
0 0 —S3 0 0 c3

where a =e, u, 7,e5, s, s and 1 =1, 2, 3,4, 5, 6. The relation
I/a:ZUaiI/i 9)
i

describes the mixing of six neutrinos.
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In the representation where the mass matrix of three charged leptons
e ,u , 7 1is diagonal, the 6 x 6 neutrino mixing matrix U is at the same
time the diagonalizing matrix for the 6 x6 neutrino mass matrix M = (M,g):

UtMU = diag(mq, mo, ms, mq, ms, mg), (10)

where we put m? < m2 < m2 and either m3 < m? or m3 < m?. Then,

evidently, Mog =), Um-miUi*ﬁ. From this formula, we obtain with the use
of proposal (8) the following particular form of 6 x 6 neutrino mass matrix

(4):
(L) (D)
M- < M M

Mee Meu _Meu Z\{/c}es J]\\geus 0
Mey  Mee + My, M,,; - 7; Mz,
—M,, M, Mee + M, 1‘{@ Moy
= Meeg Meeg ’
Mees _W —2 Meses O O
M Meps Yy, 0 M, 0
€els \/5 \/i Hs s
0 M/J‘TS M[LTS O O M'rs'rs
(11)
where
Mee = % (C%ml + chmo + simy + s%m5) )

M;L[L = MTT:M86+M[LT

=z (c%ml + cgmg + 20§m3 + s%m4 + s%mg) + 23§m6) ,

My, = —Mer = ﬁi (—C%ml + C%mg - s%m4 + ngs)) )
M, = % (—c%ml —cgm2 + 2c§m3—s%m4—3%m5 + 23§m6) (12)
and
%Mees = _Mues = ]\47-6S = Cle (—m1 + m4) , Meses = s%ml + c%m4,
%Meus = My, = Mz, = Czﬁ (=ma +ms), My, = 3%m2 + cgmg,,
MMTS = MTTS = % (_m3 + mG) ’ MTSTS = ng?y + C§m6 ) (13)
while

Me;, =0, Mg, = Mey7y =My, =0 (14)
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(of course, Myg = Mg, for all & and ). Hence,

m1 + my
(cf = s7)(m1 —ma)
mo + ms

(c3 — s3)(ma —ms)
ms3 + Mg

(c3 — 53)(m3 — mg)

s€s

)
Mee - Z\Ieu\/5 + Me == {
Mee + Jueu\/5 + My, = {

My, + My + M, = { ; (15)

where M, = M. + M,,. After a simple calculation we get from Egs. (15)

+ 2M§es

Moo = Mov/2+ Mee, | | (Moo= Moy = Moy, \
’ 2

(16)
and analogical formulae for mo5 and ms3g (note that m; > my, but not
always my4 > 0, and similarly for mg 5 and msg).

In the 6 x 6 matrix (11) there are generally nine independent nonzero
matrix elements. If s = 0 and s3 = 0 (what implies complete decoupling of
two sterile neutrinos v, and v7,), this number is reduced to seven. In this
case, Egs. (13) and (15) give

Mep, = Myp, = Mrpy, =0, Myr, = Mrry =0, My, =ms, M. =me
(17)

and
Mee+Me;¢\/§:m2a M;m +M;LT =m3, (18)

but the formulae (16) for m; and m4 are not much simplified (unless M., =0
i.e., c1s1 = 0). Then, from Eq. (11)

2(mi—mg) 0 0
M® = ( —m4) 0 0 |,
—T(ml mg) 0 O
$2mi+ctmy 0 0
M®) = 0 ms 0 (19)
0 0 me

and Mélf) = M, = %(C%ml + s%m4 + mg), ete. If ¢ > $1v2 and s%ml >
c|my| (i.e., m1 > |my|) and, in addition, ms and mg are vanishing, the
texture is in a way of a type opposite to the see-saw (now, symbolically
(L) > (D) > (R) or even (L) > (D) > (R) if ¢? > s? and my = 0).
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At any rate, the active existence of extra massive neutrino v4 (in addition
to the massive vq , 19, v3) is induced by the sterile neutrino v,, mixing with
the active v, , v, , v7. Of course, two completely decoupled sterile neutrinos
vy, and vy, (with so = 0 and s3 = 0) induce trivially the passive existence
of two massive neutrinos v5 = v, and vg = v, with masses ms nad mg
which, most naturally, ought to be put zero. However, another point of view
is not excluded that there is still a tiny mixing of v, and v, with the rest
of six neutrino flavors, caused by spontaneously breaking a GUT symmetry
at a high mass scale and so, accompanied by large masses |ms| and |mg|. If
instead of |m4| < m, there is m; < |my4|, such an inequality may be not
so impressive as in the familiar see-saw referring to the GUT mass scale: it
may happen, for instance, that |m4| ~ 1 eV and m; ~ 10~* eV; ¢f. Eq. (33)
as an alternative to the more natural Eq. (35).

3. Effective four-neutrino oscillations

Due to mixing of six neutrino fields described by Eq. (9), neutrino states
mix according to the relation

Va) = Z *vi). (20)

This implies the following familiar formulae for probabilities of neutrino
oscillations v, — vg on the energy shell:

P(vo = vg) = [(BleT |a)? = 6pa — 4 UpiUpilUasUsisin® i, (21)
j>1

being valid if the quartic product UEjUﬁiUOéjU;i is real, what is certainly
true when the tiny C'P violation is ignored. Here,

A 2 L 2 2 2

with Am?i, L and E measured in eV2, km and GeV, respectively (L and E
denote the experimental baseline and neutrino energy, while

pi=1/E?—m?~F - —*

o
S|

are eigenvalues of the neutrino momentum P).
With the use of proposal (8) for the 6 x 6 neutrino mixing matrix and
under the assumption that s = 0 and s3 = 0 the oscillation formulae (21)
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give
Plve > v,) = 1— c% sin® 191 — (0131)2 sin® x4 — s% sin? 49 ,
2 2 2
c c c18
Py, —v,) =1- Zl sin® 291 — 51 sin? 231 — (c151) sin? 241
1 2 2
—5 sin’ T39 — Z—l sin? T49 — %1 sin’ T43
= P(v, > v,),
2 2 2
c c1s s
Py, = ve) = 51 sin? 29y — (c151) sin? 241 + Elsin2 249 = P(v: = 1e),
2 2 2
Py, —v,) = —% sin® z91 + %sinQ T3] — (c151) sin® z41
1 2 2
+§ sin? T39 — Z—l sin? T49 + %1 sin? T43 ,
Py, = ve,) = (0131)2 sin® 24 = P(v: = ve,),
P(ve = ve,) = 2(0131)2 sin’ z47 ,
P(ve, = ve,) = 1 —4(c151)?sin® 47 . (23)

Hence, the probability summation rules

Pve = ve) + P(ve = vy) + P(ve = vr) + P(ve = ve,) =1,

Py, —=ve) + Plvy = vy) +Plvy —=vr)+ Py, = ve,) =1,

P(vr = ve) + Plvr > vy)+ Plvr = vr) + Py = ve,) =1,

P(ve, = ve) + P(Ve, = vy) + P(Ve, = 7)) + P(Ue, = 1e,) =1 (24)
hold, as it should be, for two sterile neutrinos v,, and v, are completely
decoupled due to so =0 and s3 = 0.

With the conjecture that m? ~ m32, implying Am?2, ~ Am?2, and
Am3, ~ Am3,, the first three Eqs. (23) can be rewritten approximately
as

Pe = 1v,) ~ 1 —csin?xg — (1 +c2)stsin® 240,

1+¢c ., ad
— sin $32—ZSID 21

Py, —v,) ~1

(1+c})st . sty
g sinza — o sin® gz,

4
2 4

Py, — ve) ~ 62—1 sin? o) + %1 sin® 49 . (25)

If |Am3,| < |Am3,| and [1,6]
|Am3,| = Am2; ~ (1075 or 1077 or 1071%) eV? (26)
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(for LMA or LOW or VAC solar solution, respectively), then under the
conditions of solar experiments the first Eq. (25) gives

(1+c)st

P(Ve = Ve)sol = 1 — ¢ sin® (%21 )sol — 5 ¢ =sin? 20,0 ~ 1. (27)

If [Am3, | < [Am3,| < |Ami,|, [Amis| and [1]
|Am2,| = Am2, ~ 3 x 1072 eV?, (28)
then for atmospheric experiments the second Eq. (25) leads to

14+¢?

) 3+ ¢?)s?
L sin?(232)atm — Bej)si

Py, = vy)am ~ 1

8 9
1 2
“;Cl = 8in? 20,0 ~ 1. (29)
Eventually, if |[Am2,| < |Am2,| and [2]
|Am3y| = Amigyp > 0.1eV?, eg. ~1eV2, (30)

then in the LSND experiment the third Eq. (25) implies

4
57 .
P(v, = ve)Lsnp %SIDQ(IMQ)LSNDa

4
%1 = sin? 20 qxp > 8 x 1074, eg.~5x 1073, (31)

Thus,

1+¢c?

s2~01, &~09, ~0.95,

1 2\ o2 3 2\ o2
% ~ 0.095, Brei)st 0.049 , (32)

if the LNSD effect really exists and gets the amplitude s7/2 ~ 5 x 1073,

If the value c% = sin? 204,1 ~ 0.66 or 0.97 or 0.80 (corresponding to the
recent estimation [6] for LMA or LOW or VAC solar solution, respectively)
is accepted, then the amplitudes sin? 20, = (1 + ¢2)/2 ~ 0.83 or 0.99 or
0.90 and sin?20;gxp = s1/2 ~ (5.8 or 0.045 or 2.0)x1072 are predicted
for atmospheric and LSND experiments. The value sin?20;sxp = s1/2 ~
5x103 | written in Eq. (31) as an example, corresponds to older estimations
for LOW solar solution: ¢? = sin? 20, ~ 0.9 [1].

Concluding, we can say that Eqgs. (27), (29) and (31) are not inconsistent
with solar, atmospheric and LSND experiments, respectively. Note that in
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Egs. (27) and (29) there are constant terms that modify moderately the usual
two-flavor formulae (of course, the larger ¢?, the smaller these terms are; in
particular, for the LOW solution the constant terms (1+¢%)s?/2 ~ 0.030 and
(3 + ¢2)s?/8 ~ 0.015 are minimal of those for three solar neutrino solutions
considered here [6]). The above equations, valid for ss = 0 and s3 = 0,
follow from the first three oscillation formulae (23), if either

mi o~ mj < mj < mj (33)
with
mi < 1eV?, mj~1eV?2,
Amd; ~ (1077 = 1071%) eV? < Am2, ~ 1072 eV? (34)
or
mj <€ mi ~mj ~mj (35)
with

mi~1eV:, m3<1eV?,
Am3, ~ (1075 = 1071%) eV? <« Am2, ~ 1073 eV?2. (36)

Here, we must have m3 < m% < m3 ~ 1 eV? or m3 < m3 ~ m3 ~ 1 eV?,
since Am3, ~ 107 eV? < |AmZ,| ~ 1 V2. The second case mj < m?} ~
m% ~ m3% ~ 1 eV?, where the neutrino mass state v4 induced by the sterile
neutrino v, gets a vanishing mass, seems to be more natural than the first
case m? ~ m3 < m3 < m? ~ 1 eV?, where such a state gains a considerable
amount of Majorana righthanded mass “for nothing”. (This is so, unless one
believes in the liberal maxim “whatever is not forbidden is allowed” the Ma-
jorana righthanded mass is not forbidden by the electroweak SU(2)xU(1)
symmetry, in contrast to Majorana lefthanded and Dirac masses requiring
this symmetry to be broken, say, by a combined Higgs mechanism that be-
comes then the origin of these masses.) In the second case if, in addition, the
masses my and mg connected with two decoupled sterile neutrinos are van-
ishing, the specific Majorana lefthanded mass matrix M® dominates over
the whole neutrino mass matriz M. Such a Majorana lefthanded dominance
may be the reason, why neutrino mixing appears to be qualitatively different
from the more familiar down-quark mixing implied by the interplay of up-
and down-quark Dirac mass matrices. Note also that, when looking for too
close analogies between textures of neutrinos and charged leptons, one fails
to describe adequately the observed neutrino oscillation effects (including
the possible LSND effect) [7].
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If s9 = s3 = 0 and my = m5 = mg = 0, then writing m; = m, mo =
m—+ dmoy , m3z = m—+ dmoy + dm3e we can present the neutrino mass matrix
(11) in the form M = M©) 4+ §M, where

e g e yrem 00
2\/— 3% Z( %) 431 gcis1 00
M(O) —m 2\[ 8% 1% % %(31-}- Cl) —%0181 00 (37)
ﬁ €181 5C181 —5C181 s% 00
0 0 0 0 00
0 0 0 0 00
is slightly modified by
l 6m21 ﬁ 6m21 2\/5 6m21 000
M dmar T(30ma1 +28ms3s) $(Imar +28maz) 000
SM — 2\/5 omai %(6m21+25m32) %(36m21+26m32) 000
0 0 0 000
0 0 0 000
0 0 0 000
(38)

In fact, 6ma; ~ mdmar/eV =~ Am2,/2eV ~ 0.5 x (107° or 10=7 or 10719)
eV and dmgy ~ m dmza/eV =~ Am2,/2eV ~ 1.5 x 1072 eV, while m ~ 1 eV.
In the formal limit of s; — 0, we obtain M(®) diagonal and degenerated in
active and sterile neutrinos separately,

MO = diag (m,m,m, 0,0, 0), (39)
and so, from Eqgs. (10) and (8) we infer that
UtsMu — diag (0, dma1 , 0mo1 + dmszo, 0, 0, 0) (40)

as UTMOU — diag(m, m,m,0,0,0). Note from Eq. (8) that (with
$9 = 83 = 0) in this limit we get bimazimal mizing matriz U in spite of the
fact that in a good approzimation the mass matriz M ~ M© is diagonal
(here, of course, the degeneracy of limg, o M () in active neutrinos works).

In the approximation used before to derive Eqs. (27), (29) and (31) there
are true also the relations

P(Ve_H/e)sol = 1_P(Ve_H/;t)sol_P(Ve_H/T)sol_(clsl)2 (0131)2N0-097

(1+c])sT  (14c7)s?
4 ’ 4

P(vy—=vy)atm ~ 1—=P(vy—v7)atm— ~0.048, (41)
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as well as

2 2
P(Vﬂ — Ve)LSND ~ % <8—1) P(I/# — Ves)LSNDa l <8—1) ~ 0.056 . (42)
Cc1 2 \ca
Here, 51/2 ~ 5x 1073 as given in Eq. (31). The second relation (41) demon-
strates a leading role of the appearance mode v, — v; in the disappearance
process of atmospheric v,’s, while the relation (42) indicates a direct in-
terplay of the appearance modes v, — v, and v, — v.,. In the case of
the first relation (41), both appearance modes v, — v, and v, — v, con-
tribute equally to the disappearance process of solar r,’s, and the role of
the appearance mode v, — v, (responsible for the constant term) is also
considerable.
Finally, for the Chooz experiment [8], where (2;i)chooz = (Zji)atm for
any Am?i, the first Eq. (25) predicts

2 2
(43)
if there is the LSND effect with the amplitude s{/2 ~ 5 x 1073 as written
in Eq. (31). Here, sin*(£42)choor = 1/2 since |(#42)choor] = [(€42)atm| >
(z32)atm ~ 1 with [Am2,| > Amgg. In terms of the usual two—flavor
formula, the negative result of Chooz experiment excludes the disappear-

P(De — De)Chooz = P(De — De)atm ~1-

_ . . >
ance process of reactor 7,’s for moving (1 + ¢2)s? = sin?20choo, ~ 0.1,

when the range of moving |Am3,| = AmZ,.., R 0.1 eV? is considered
(AmZyo0, > Am2i, ~ 3x 1072 eV?, implying sin®(742)chooz = 1/2). Thus,

the nonobservation of Chooz effect for reactor v,’s in the above parameter
ranges leads to (14c?)s? X 0.1 and hence, to the upper bound sin® 26rgxp =
s3/2 2 1.3x1073, when AmZonp = |Ami,| = Amiy .., 2 0.1 eV2. It means
that sin? 201 gnp, constrained by Chooz (in our four-neutrino texture), lies

outside the parameter region suggested at 90% CL by the existing LSND
data [2], if the KARMEN?2 results [2] excluding a large part of this region are

taken into account (in fact, in the corrected region sin? 20p.sxp 22 x 1073).
But, at 99% CL, this may be not true, allowing for Am%SND 21 eV?

(as, then, in the existing LSND parameter region sin® 26rsxp 2 8 x 10~4).
At any rate, among three solar neutrino solutions considered here [6], only
the LOW solution is consistent with the Chooz bound [cf. the paragraph
following Eq. (32)]. Also the value sin?26rsxp ~ 5 x 1073, written in
Eq. (31) as an example, is eliminated by this bound. Unfortunately, the
Chooz-allowed, LOW-induced value sin? 20r,gxp ~ 4.5 x 1074 (in contrast
to sin® 201.98D ~ 5 X 10*3) is situated outside the parameter range implied
by the existing LSND data [2] (even at 99% CL).
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Of course, the existence of Chooz bound for the LSND effect and of the
relation of this bound to solar neutrino solutions is caused by the corre-
lations between different neutrino oscillation modes connected through the
parameter s? appearing in our four-neutrino texture [c¢f. Eqgs. (25)]. In fact,
the identities

st _(-ay
2 2 ’
can be translated into the correlations
(1 - sin? 20301)2
2

(R

(1+c)st=1-¢f and &+ 5 5

, Sin2 20Choor = 1 — Sin4 20501 (44)

sin2 20LSND =

and the sum rule

sinQ 29(jhooz

5 + sin2 20rsnp = 1 (45)

sin? 204,; +
for three neutrino oscillation amplitudes (each in the reasonable two-flavor
approximation). The sum rule (45) follows also from the first probability
summation relation (24) considered with the assumption of m? ~ m32 for
solar v.’s (when |(z42)s01] > (%21)s01 = 7/2).

We can see that, when accepting the present Chooz results, we stand with
our four-neutrino texture before the alternative: either there is no LSND
effect at all (then sin® 20pgxp = s‘l1 /2 = 0 and we are left with the three-
neutrino bimaximal texture [3,5]), or this effect exists all right, but at a point
in parameter space, where the oscillation amplitude sin® 20y gxp is shifted
(versus the existing LSND data) towards a smaller value sin?20psxp =

s1/2 < 1.3 x 1073 (though >0). Note that, if sin? 20 gsxp = s1/2 was
at the Chooz bound value 1.3 x 1073, then sin® 20, = ¢? would be at 0.95
and s% at 0.051. If, rather, sin®20rsxp = 3‘11/2 was at the value 8 x 1074
equal to its ezisting LSND lower limit at 99% CL, then sin? 205, = ¢? would
be at 0.96 and s? at 0.04. Of course, we should keep in mind the fact that
the present estimations for sin?26,, (and even more for sin?26syp) are
preliminary and, in fact, very fragile.
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