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The Wilson discretization of the dimensionally reduced supersymmetric
Yang—Mills theory is constructed. This gives a lattice version of the matrix
model of M-theory. An SU(2) model is studied numerically in the quenched
approximation for D = 4. The system shows canonical scaling in the
continuum limit. A clear signal for a prototype of the “black hole to strings”
phase transition is found. The pseudocritical temperature is determined
and the temperature dependence of the total size of the system is measured
in both phases. Further applications are outlined.

PACS numbers: 11.15.Ha, 11.25.Sq

1. Introduction and lattice formulation

According to the celebrated Banks, Fishler, Shenker and Susskund
(BFSS) hypothesis [1], the matrix quantum mechanics [2] describes qual-
itatively many properties of the final unifying theory (the M-theory). In
particular, confronting its thermodynamics with the predictions of the su-
pergravity models is considered as an important quantitative test of the
BF'SS hypothesis and more generally the SYM /supergravity duality [3,4].

The complete solution of the matrix quantum mechanics is not known
even though it is much simpler than a conventional field theory. In this
paper we construct the Wilson discretization of the model, and study its
yet simpler version with the lattice methods. In particular, we find the
onset of a prototype black hole to strings phase transition and determine
quantitatively some of its properties. Of course, the true black hole phase
of the full DO brane system is much more complex. It is, therefore, quite
appealing that the simplified model considered in this exploratory study
reveals an important part of the phase structure.

(2143)
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Many other problems can be attacked within the present approach open-
ing a new area of exciting applications. To our knowledge, this is the first
study of the M-theory related quantum mechanics and its thermodynamics
on a lattice. At the same time we emphasize that the idea of the nonper-
turbative, numerical or partly analytic, study of the string related matrix
models is not new. Several groups have formulated and studied, following the
Eguchi and Kawai [5], the zero dimensional (e.g. dimensionally reduced to a
point) supersymmetric IIB string model [6]. Interestingly, supersymmetry is
not broken in this formulation providing one of the attractive features of the
whole scheme as opposed to the lattice discretization. The main, impres-
sive goal of the above approach is an attempt to understand the dynamical
mechanism of the compactification of higher dimensions (see Refs. [7,8] for
a review, complete references and recent developments). Independently, the
Monte Carlo and analytical study of the non-compact SU(NV) integrals, rele-
vant for the supersymmetric matrix models, have been reported in Refs. [9].

We begin with the BFSS proposition to use the dimensionally reduced
SUSY YM theory in D=10 dimensions as a model for the relevant degrees
of freedom of M-theory. For general D the action reads [10]

S = /dt <%TrFW(t)2 + #4(t)D wa(t)) : (1)

In the process of dimensional reduction all fields are assumed to be indepen-
dent of the space variables z;, 7 = 1... D—1 . Consequently all space deriva-
tives in the field tensor F},, and in the Dirac operator D vanish (0; — 0), and
the action (1) describes supersymmetric quantum mechanics of D — 1 bosons
and their fermionic partners. The temporal components of the gauge fields
are nondynamical and serve to impose Gauss law constraints. The orig-
inal D dimensional theory is supersymmetric at the classical level only in
D = 2,4, 6 and 10 dimensions, where appropriate (Majorana, Weyl or both)
conditions are imposed [11]. Fermionic fields ¥*(¢) belong to the adjoint rep-
resentation of the gauge group SU(N), a = 1... N? — 1. Finally, the BFSS
proposal requires N — oo since this variable corresponds to the eleventh
component of the momentum in the infinite momentum frame where the
original theory is considered.

We propose to study the above system with methods of the Lattice Field
Theory. To this end consider D dimensional hypercubic lattice Ny x--- X Np
reduced in all space directions to N; = 1,7 = 1...D — 1. Gauge and
fermionic variables are assigned to links and sites of the new elongated lattice
in the standard manner. The gauge part of the action reads
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Ny 1
Sa = =B, ) ~Re(TrUuw(m), (2)
m=1 u>v
with
2N
and

U (m) = UN(m)U}}(m +v)U, (m + p)Uy(m),
Uu(m) = exp (iagA,(am)),

where @ denotes the lattice constant and ¢ is the gauge coupling in one
dimension. The integer time coordinate along the lattice is m. Periodic
boundary conditions U,(m + v) = U,(m), v = 1... D — 1, guarantee that
Wilson plaquettes U, tend, in the classical continuum limit, to the appro-
priate components F),,, with space derivatives absent. In this formulation
the projection on gauge invariant states is naturally implemented.

Discretization of the Dirac operator is analogous to the now standard
construction of the supersymmetric Yang—Mills theories on a lattice [12].
We do not address here important, and specific for D=10, questions of Eu-
clidean formulation for the fermionic degrees of freedom already discussed
in [9] and Weyl projection on the lattice [13]. Due to the N; = 1 periodicity
all hopping terms along the space directions collapse into the diagonal blocks
of the fermionic matrix which effectively becomes three-diagonal. This sig-
nificantly simplifies evaluation of its determinant or pfaffian for Majorana
constraint. For example, we have developed an algorithm which reduces
the computational effort of the exact evaluation of the pfaffian of the anti-
symmetric fermionic matrix from O(V3) to O(V), V being the volume of
the system. Even with this improvement, however, lattice simulations with
dynamical fermions are much more time consuming than the pure gauge
computations.

Therefore, as a first step, we simulate the action (2) in the quenched ap-
proximation, with the SU(2) gauge group, and for D = 4. The reader may
well wonder if such a severely reduced system can retain some resemblance
to the original one. We follow here the standard pragmatic approach widely
accepted for exploratory studies of new constructions [14], also in the super-
symmetric models [15]. Instead of dwelling now into arguments [17,18,22,23],
we shall discuss these problems together with our results since we belive that
they are encouraging even with the assumed simplifications. Needless to say,
one should gradually remove the above approximations in the forthcoming
computations. This is especially important for studying the low temperature
phase where the supersymmetry restoration may be essential.
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One of the most exciting features of the new theory is the explanation of
the Bekenstein-Hawking entropy puzzle in terms of the microscopic degrees
of freedom of the elementary strings/branes [20]. In particular the theory
predicts existence of a phase transition at which a black hole “dissolves” into
its elementary constituents [3,21]. Therefore, as a first application of our
construction, we study the phase structure of the system (2). Moreover,
lattice results on QCD at finite temperature show that the very fact of the
existence of the phase transition is not sensitive to quenching. Obviously,
the sharp transition could occur only at infinite N for this one dimensional
system with local interactions. However, similarly to the finite volume effects
in statistical physics, we expect a broad crossover for finite and even small
N '. Subsequent simulations for larger N should provide more information
for the quantitative (e.g. finite size scaling) analysis.

2. Results

As an order parameter we choose the distribution of the Polyakov line

1 il
P =T <ml_—11 UD(m)> : (4)

Similarly to lattice QCD, symmetric concentration of the eigenvalues around
0 indicates a low temperature phase (which would have the interpretation
of a black hole phase in the full model) where (P) ~ 0, while clustering
around =1 (for SU(2)) is characteristic of the high temperature (elementary
excitations) phase.

A sample of results for different N;(= Np) and S is shown in Fig. 1.
Indeed, for each Ny, we see a definite change of the shape with 3. This is
the first result: the system (2) shows unambiguously the onset of the phase
change, even in the quenched approximation and for N = 2.

Second, the dependence of the pseudocritical temperature . on the time
extent N; is consistent with the continuum limit expectations Ty, ~ (g2N)'/3
[19]. Indeed, the temperature of a system is given by T' = 1/(aN;) . Together
with Eq. (3) these relations imply 8. ~ N}. The estimates for 8 intervals
where the change of phases occur are presented in Table I for several lattice
sizes Ny. Results of the power law fit are also quoted. A good quality of the
fit and the agreement with the canonical exponent, v = 3, is encouraging.
Simultaneously, we obtain the proportionality coefficient o which translates

! In the exactly soluble, for finite V = L2, Ising2 model, a broad enhancement in the
specific heat exists already for L = 2,3..., and turns smoothly into a singular peak
for L — oc.
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Fig. 1. Distribution of the Polyakov line (4), —1 < P < 1, for different § and N;.
Note different 3 range for different V.

into s

T, = (%) P RN = (0.28 +0.03) (62 N) /5. (5)
To summarize this point: the observed dependence of 3. on N; agrees with
the canonical scaling expectations for the one dimensional system, and indi-
cates the finite value of the transition temperature in the continuum. More-
over, the coefficient in the continuum relation (5) has been determined for
the first time. Only proportionality of the two scales has been considered
until now [3,19,21]. Since both, the pseudocritical temperature and «, de-
pend in general on NV, it is important to repeat similar analysis for higher
gauge groups.

TABLE 1

Estimated location of the transition region . € (Biow, Sup) for different lattice sizes
N; and results of the power fit.

Nt Blow Bup
2 1.25 1.5
3 3.5 5.0
4 8.0 16.0
) 15.0 40.0
fit: B. = aN}
x> /NDF a v

0.55/2 0.17+£0.05 3.02+0.33

Concerning the relevance of the small N results, lattice simulations for
QCD strongly suggest that indeed 't Hooft choice of the coupling constant,
A\ = ¢g°N, takes into account main large N effects. In fact it was found that
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even results for SU(2) are not far from those with higher N [17]. This is
considered as a hint that even small N calculations may contain useful in-
formation [18]. Similar picture follows from the exact solution of the Gross—
Witten model for finite N 2. Of course, other large N features may show up
later. Hence the systematic study of the N dependence, augmented by the
finite size scaling analysis, should follow present exploratory estimates.
Next we study the temperature dependence of the total size of the system

R%?=¢?%" (A%)? [19]. We define for SU(2)

4 —((TrUs)?)

a2

(R?) = : (6)

where Us is any space link. Due to the periodicity (Ns = 1) in space (6) is
gauge invariant.

One dimensional Yang-Mills coupling g provides a single scale for all
continuum observables similarly to Aqcp in four dimensions. In the fol-
lowing all dimensional quantities quoted in units of g%/3 are denoted by a
tilde.

Even though the quantum mechanical system (2) is much simpler than
the full D-dimensional field theory, extracting the continuum limit of the
lattice formulation (2) may be a nontrivial task. For example, the above
limit contains the complete information about both the perturbative weak
coupling and nonperturbative strong coupling regimes in the continuum.
Technically, relation (3) implies that a reasonably small lattice constant,
a requires simulation with a very large coupling 5. In addition, the one
dimensional systems are harder to thermalize. All this poses an interesting
challenge in constructing new algorithms suitable for this problem. Some
of such algorithms are under development and will be discussed elsewhere.
Here we use mostly the standard local Metropolis update. To overcome
the critical slowing down we simply increase the number of thermalization
and decorrelation sweeps with 3, until results become independent of the
starting configuration. This turned out to be in accord with the dynamical
exponent z = 2. For example when running at a = 1.0 we used 5000
thermalization and 50 decorrelation sweeps, while for @ = 0.1 about 108
thermalization and 5000 decorrelation sweeps were required. One of the
new algorithms mentioned above is the SU(2) heat bath designed for an
update of the space-space plaquettes in the action (2) which contain twice
the same link. Current version is effective only for 8 < 64. Results obtained
with the new heat bath and the standard Metropolis agree within statistical
errors. To check independently the performance of the Metropolis algorithm

2 For example, the critical coupling A. can be reproduced within 25 % from the first
five N'’s.
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for higher 8 we have also monitored the correlation length in the torelon
channel at zero (i.e. low) temperature. It reveals the expected canonical
scaling with a.

Fig. 2 shows the dependence of R? on a, for several values of the temper-
ature T'. MC results depend smoothly on a, at fixed T, which confirms the
existence of the continuum limit (6). The a dependence is clearly different
in low and high temperature regions. For 0.1 < T' < 0.3, (R2) is practically
independent of & and points for different (but small) T collapse on the same
line. For higher T quadratic minimum at a = 0 develops and shrinks with
the further increase of the temperature. For T' > 1.5 simulations for smaller
a are required in order to see this structure and determine the continuum
limit. We have also extracted (R?) from another lattice observable |Tr(Us)|
with practically the same results.

5,
4,
(R?)

3, i

2M —
e ——

1, ]
0 0.2 0.4 - 0.6 0.8 1

Fig.2. Dependence of the total size of the system on a, for T = 0.1, 0.3, 0.6, 0.9,
1.2 and 1.5 (upwards) in units of ¢>/3. Quartic fits are represented by the solid
lines.

Fig. 3 shows the size of the system extrapolated to a = 0 as a function
of the temperature. Both quadratic and quartic fits of a dependence were
used to perform the extrapolation. We have also checked the stability of
quadratic fits with respect to removing one or two data points with smallest
a (highest ). Results of the extrapolation were stable with respect to all
these variations. Small systematic shifts are included in the errors displayed
in Fig. 3. It is known that a typical quantum mechanical system of finite
number of degrees of freedom does not generate any nontrivial anomalous
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dimensions or running coupling [23|. This is confirmed, within the available
precision, by the quality of our fits which were chosen only on a basis of a
simple dimensional considerations.

0 0.5 1 1.5 2
T
Fig.3. Size of the system (6) extrapolated to the continuum, as a function of the
temperature.

This point is also relevant to the important question of the restoration
of the supersymmetry broken by lattice discretization. In fact the problem
reduces again to the ability to control the continuum limit where the su-
persymmetry should be restored [16]. Fortunately, as just explained, the
situation is simpler than in the full D dimensional quantum theory with
infinite number of degrees of freedom. Both our “experimental” results (i.e.,
on v, and successful quadratic extrapolations in Fig. 2) confirm that indeed
the continuum limit can be extracted with some confidence. With dynamical
fermions the system still remains finite and one does not expect fundamental
difference at least in this respect?.

The location of the transition region in Fig. 3 is in a rough agreement
with the estimate (5) of the pseudocritical temperature T, = 0.35 & 0.04 4.
Again, it is evident that the system is indeed different in the two regimes.
Moreover, our results agree qualitatively with the analytical prediction ob-
tained by solving a gap equation in the infinite N limit [19]. The latter gives

3 At the same time other interesting issues (e.g., of the chiral limit) emerge which make
unquenched simulations even more challenging, cf. the discussion in Conclusions.

4 The pseudocritical temperatures determined from different observables can be differ-
ent.
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a temperature independent constant at low temperatures and the classical
T'/2 growth for high temperatures. We have also found a reasonable agree-
ment with a simple mean field model for SU(2) with the gauge projection®.
As expected the model does not have a phase transition, but shows a smooth
crossover located as in Fig. 3. The constant value for <R2> is satisfactorily
reproduced in the low temperature, vacuum driven region. At higher tem-
peratures the model predicts intermediate linear, albeit weaker than MC,
behavior which asymptotically turns over into 7'%/2 as in the infinite N case.

3. Conclusions

We have constructed the matrix model of M-theory on a lattice in D =
2,4, 6 and 10 dimensions. The resulting system corresponds to the super-
symmetric formulation of Yang—Mills theory on the asymmetric D-dimen-
sional lattice with all D — 1 space extensions N; = 1. The new construction
was tested in the quenched approximation for D=4 and N = 2. In particu-
lar, we have found the onset of a black hole to strings transition even for the
SU(2) gauge group. The pseudocritical temperature was determined. The
size of the system was also measured at different temperatures and lattice
cut-offs. It shows the expected canonical scaling. After extrapolation to
the continuum limit it confirms the existence of the two phases and agrees
qualitatively with the mean field calculations.

A host of new applications can follow. On the technical side, new algo-
rithms are required to reduce the critical slowing down at very large values
of the lattice coupling. Such studies have already begun. Including dy-
namical fermions is facilitated by the linear nature of the system and may
lead to more efficient fermionic algorithms. Certainly the issue of dynami-
cal fermions is very important especially in the low temperature phase since
one expects that supersymmetry should be broken only in a minimal fashion
there. With dynamical fermions in D = 10 one may have to use the recently
proposed chiral formulation [13]. On the other hand for the reduced system
the task may be simpler than e.g. for QCD. It would also be very interesting
to apply analytical methods developed in [24,25]. Incidentally, a merit of the
present approach is the possibility to draw from the expertise, techniques
and algorithms developed in the lattice community.

A systematic study of the model for higher N would allow finite size
analysis and determine more detailed characteristics of the transition. In
particular, it would be interesting to check if the “soft” dependence on N
observed for D = 3 and D =4 SU(N) lattice YM [17], persists in the SYM
quantum mechanical model.

5 To be discussed in detail elsewhere.
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Finally, one of the ultimate physical goals would be to study the ther-
modynamics of the black-hole phase in the full D = 10 model and verify
existence of the rich phase structure predicted by the string/M theory [3].
This would also provide a possible nontrivial quantitative test of (a ver-
sion of) the AdS/CFT correspondence at strong coupling not protected by
any nonrenormalization theorems [4,26]. Last but not least, many other
problems inspired by the BFSS conjecture can be quantitatively studied.

This work is supported by the Polish State Committee for Scientific
Research (KBN) under grants No. PB 2P03B00814 and PB 2P03B01917.
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