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ELECTROSTATICS OF PAGELS�TOMBOULISEFFECTIVE MODELH. Arod¹, M. �lusarzyk and A. Wereszzy«skiThe Marian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived June 4, 2001)Long time ago Pagels and Tomboulis proposed a model for the non-perturbative gluodynamis whih in the Abelian setor an be redued toa strongly nonlinear eletrodynamis. In the present paper we investigateAbelian, stati solutions with external harges in that model. Nonzero to-tal harge implies that the orresponding �eld has in�nite energy due toslow fall o� at large distanes. For a pair of opposite harges the energyis �nite � it grows like R�, 0 < � < 1 with the distane R between theharges.PACS numbers: 11.15.K, 11.10.Ef1. IntrodutionNontrivial features of QCD suh as the asymptoti freedom or the quarkon�nement are due to its gluoni part. Unfortunately, in spite of numerouse�orts dynamis of non-Abelian gauge �elds in a nonperturbative regime isnot fully understood yet. Popular method of investigating it is the lattieapproximation. It is the most suessful, one up to now, yet it has well-known drawbaks. There have been several attempts to apply the approahwhih has turned out to be very fruitful in ondensed matter physis, thatis to onstrut Ginzburg�Landau type e�etive models whih would apturethe main features of the nonperturbative gluoni dynamis already on thelassial level. In the ondensed matter physis, preisely the Ginzburg�Landau models are the main tool for investigating suh nonperturbativephenomena as, for example, vorties in super�uids and in superondutors,or hedgehogs in nemati liquid rystals.In the literature there are several proposals for e�etive models for thenonperturbative gluoni dynamis. The most popular ones are the dual su-perondutor model [1,2℄, the olour dieletri model [3,4℄, and the stohasti(2155)



2156 H. Arod¹, M. �lusarzyk, A. Wereszzy«skivauum model [5,6℄. Eah of them has its own problems. It seems that thesatisfatory e�etive model for the nonperturbative gluoni setor has notbeen found yet, but this does not mean that suh model neessarily will bevery di�erent from the ones already onsidered in the literature.The e�etive Ginzburg�Landau model is expeted to give a good desrip-tion of physis already on the lassial level (a mean �eld approximation).When onstruting suh a model, the �rst step onsists in hoosing dynam-ial variables, that is the �eld ontent of the model. In the ase of gluody-namis almost all models known to us ontain Yang�Mills �elds or at least aU(1) gauge �eld if one assumes a kind of Abelian projetion, and sometimesother �elds. Then, it is lear that the e�etive model for the nonperturbativegluoni dynamis has to be drastially di�erent from typial �eld theoretialmodels. First, it should not allow for existene of massless, freely propagat-ing vetor partiles (gluons). Seond, it should predit absene of olouredstates, and a on�ning fore between (anti)quarks in olour neutral states.Third, it should predit existene of massive glueballs whih ould propa-gate freely. Finally, the model should expliitly ontain a mass sale � forthe massive glueballs as well as in order to reprodue the trae anomaly ofenergy-momentum tensor. It is a well-known fat that lassial Yang�Millstheory with the standard Lagrangian obeys none of these requirements.In the present paper we investigate a model whih was proposed longtime ago by Pagels and Tomboulis [7℄. In a sense it an be regarded asa version of the olour dieletri model without a dilaton type salar �eld� the pertinent Lagrangian is a funtion of Yang�Mills �eld strength only.The model is too simple in order to provide a very good approximationto the real-life nonperturbative gluodynamis in QCD, but it looks ratherpromising as far as the four requirements spei�ed above are onerned. Ourgeneral goal is to study suh highly nonstandard �eld theoretial models inorder to larify their physial ontents.Pagels and Tomboulis alulated eletri �eld of a single point soure intheir model. They found that in omparison with the standard Coulomb�eld it is less singular lose to the harge and muh stronger far away fromit. The orresponding energy is in�nite due to the large distane behaviourrather than the singularity at the origin. This result implies a on�nementof harges. However, one should also hek that a pair of harges Q, �Qhas �nite energy, otherwise also the quark�antiquark pairs would disappearfrom the physial spetrum and the model would be wrong. Beause ofnonlinearity of Gauss law in the model, one an not ompute the eletri�eld of the pair by a simple superposition. In the present paper, using aombination of analyti and numerial methods, we hek that the energyof the pair Q, �Q is �nite if a parameter Æ > 1=4. We also alulate distri-bution of eletri �eld around the harges. It turns out to be very similar



Eletrostatis of Pagels�Tomboulis E�etive Model 2157to a �ux-tube, that is it is loalised around the straight line onneting theharges, but an e�etive string tension depends on the distane R betweenthe harges. The total energy behaves like R�, where � = (4Æ � 1)=(4Æ + 1)and Æ is a parameter. Thus, the harges are on�ned if Æ > 1=4 beausethen 0 < � < 1. The e�etive string tension behaves like R��1. For Æ = 1=4we obtain the logarithmi behaviour of the energy.Interestingly enough, for Æ = 3=4 we obtain the pR behaviour of theenergy, whih is in agreement with a phenomenologial potential found in�ts to spetra of heavy quarkonia [8, 9℄.Our paper is organised as follows. In Setion 2 we reall the model andwe derive �eld equations. We also point out that in that model lassialvauum is strongly degenerate. In Setion 3 we alulate the energy of thesystem of two stati, opposite harges. Several remarks about the model areolleted in Setion 4.2. The Pagels�Tomboulis modelLet us denote by F2 the standard Yang�Mills invariant1F2 = 12F a��F a�� = BaiBai �EaiEai ; (1)where the �eld strength F a�� has the usual formF a�� = ��Aa� � ��Aa� � gfabAb�A� (2)and Eai = F a0i, and Bai = �12"iklF akl are the non-Abelian eletri �eldand magneti indution �eld, orrespondingly. We will onsider only SU(2)gauge group, hene a; b;  = 1; 2; 3. The model we would like to investigatehas Lagrangian L of the form L = `(F2), where ` is a nontrivial funtionwhih we shall hoose shortly. In a onnetion with QCD models of thiskind have been proposed long time ago [7,10,11℄. The Abelian Born�Infeldeletrodynamis is even older [12℄, but its aim is to modify only physis ofstrong �elds, while in the QCD ase the main problem is with weak �elds.The same remark applies to the quite popular reently non-Abelian Born�Infeld ations [13℄.Pagels and Tomboulis [7℄ onsidered Lagrangians of the formLe�(A�) = 12 F2�g2(t) (3)in Eulidean spae-time. In formula (3) F2 = F a��F a��=2 is non-negative dueto the Eulidean metri, t = ln(F2=�4), and �g(t) is the e�etive oupling1 We hoose the metri in Minkowski spae-time with the signature (+1;�1;�1;�1).



2158 H. Arod¹, M. �lusarzyk, A. Wereszzy«skionstant determined from the equationt = �g(t)Zg0 dg�(g) ; (4)where �(g) is the Gell-Mann, Low funtion. The Lagrangian (3) has beenproposed in [7℄ as an Ansatz onsistent with renormalization group invari-ane of the e�etive ation R d4xLe� , and also with the trae anomaly. Theperturbative 1-loop result for the �(g) funtion:�(g) �= �b0g3; b0 > 0; (5)where b0 is a positive onstant, gives1�g2(t) = 1g20 + 2b0t; (6)and in onsequene Le� = 12 F2g20 + b0F2 ln F2�4 : (7)Here 1=g2 is the integration onstant, equal to the value of the ouplingonstant at the subtration point �. Another ase, also onsidered in [7℄,orresponds to �(g) = �Æg; (8)where Æ > 0 is a onstant. Now Eq. (4) gives1�g2(t) = 1g20 �F2�4�2Æ (9)and Le� = 12g20 F2 �F2�4�2Æ: (10)Notie that�F2�4�2Æ = exp �2Æ ln�F2�4�� = 1 + 2Æ ln F2�4 + : : : ; (11)hene Lagrangian (10) with Æ = b0g2 redues to (7) when 2Æ ln(F2=�4)� 1that is when F2 is lose to the subtration point �. One may regard La-grangian (10) as a resumation of powers of ln(F2=�4) in the e�etive ation



Eletrostatis of Pagels�Tomboulis E�etive Model 2159funtional � (A�) for the Yang�Mills �eld. From this viewpoint, Æ an beassoiated with the anomalous dimension of the F2 operator.The orresponding e�etive models in Minkowski spae-time are obtainedby replaing the Eulidean F2 by F2. In order to avoid problems with thesign of F2 and omplex-valued Lagrangians we write ln(F2=�4) in (7) as12 ln �F2=�4�2, and �F2=�4�2Æ as �F 22 =�8�Æ in (10).The model orresponding to Le� (7) was onsidered by Adler and Piran[11℄ in the ase where only non-Abelian eletri �elds F a0i were present � itgave a on�ning fore between two point-like opposite harges, at least inAbelian setor obtained by assuming that Aa�(x) = Æa3A�(x). However, itturns out that if one allows for the presene of magneti �elds, the orre-sponding energy density is not bounded from below. Moreover, Lagrangian(7) ontains the standard kineti term (��Aa� � ��Aa�)2 hene the gluonsould propagate freely. For these reasons, we onlude that the logarithmimodel obtained from (7) is not satisfatory.Let us turn to the model with Le� given by formula (10). When passingto Minkowski spae-time we hange notation a little bit. In Minkowskispae-time we take Lagrangian of the formL = �12F2�F22�8�Æ ; (12)where Æ > 0; instead of Lagrangian (10). The initial oupling onstant g0has been inluded into � whih is regarded as an empirially �xed energysale in the model.Components of energy-momentum tensor orresponding to Lagrangian(12) have the formT00 = 12 h ~B2 + (1 + 4Æ) ~E2i�F22�8�Æ ; (13)T0i = �(1 + 2Æ)"iksEakBas�F22�8�Æ (14)andTik = �12 h ~E2 + (1 + 4Æ) ~B2i Æik � (1 + 2Æ) hEaiEak +BaiBaki��F22�8�Æ :(15)We see that in this model T00 � 0.Lagrangian (12) does not ontain the standard kineti term for the gauge�elds. Therefore, it is by no means lear what are physial, propagating ex-



2160 H. Arod¹, M. �lusarzyk, A. Wereszzy«skiitations in the model. Let us introdue the non-Abelian dieletri indutionDai = �L�Eai = (1 + 2Æ)Eai �F22�8�Æ (16)and the non-Abelian magneti �eld:Hai = � �L�Bai = (1 + 2Æ)Bai �F22�8�Æ : (17)The modi�ed Yang�Mills equations following from Lagrangian (12) an bewritten in the formraibDbi = 0 ; ra0bDbk � "kirraibHbr = 0 ; (18)where ra�b = Æab �� + fbaA�is the ovariant derivative. Of ourse, in addition to these equations we havethe standard non-Abelian Bianhi identities for Eai and Bai:raibBbi = 0 ; ra0bBbi + "ijkrajbEbk = 0 : (19)These identities are equivalent to formula (2).It is lear that any �elds suh thatBaiBai = EaiEai (20)obey the �eld equations beause then F2 = 0. However, they have vanishingenergy-momentum tensor T�� and therefore they should be regarded as va-uum �elds! The model has enormously degenerate lassial vauum state,whih inludes, in partiular, plane waves. In the standard Yang�Mills the-ory, small amplitude lassial plane waves orrespond to the perturbativegluons. It is enouraging that they do not belong to the spetrum of physi-al exitations of Pagels�Tomboulis model. We plan to address the issue ofphysial exitations in Pagels�Tomboulis model in a forthoming paper [14℄.In the present paper we show that the model an desribe the on�nementof quarks.Formula (16) implies that the dieletri indution is smaller than theeletri �eld if F22 =�8 < (1+2Æ)�1=Æ ; that is the model implies antisreeningfor weak �elds. For strong �elds we have the usual sreening.



Eletrostatis of Pagels�Tomboulis E�etive Model 21613. Stati solutions with external point harges3.1. The ase of non-vanishing total hargeEquations (18), (19) are even more ompliated than the standard Yang�Mills equations, whih are obtained for Æ = 0. The fat that the lassialYang�Mills theory is not on�ning an be seen already from an analysis ofits Abelian setor. For this reason, we hek the Abelian setor of Pagels�Tomboulis model (Æ > 0). Let us remind that that setor is onstitutedby gauge potentials Aa� with only one olour omponent, idential for all� = 0; 1; 2; 3: For example, we may takeAa� = Æa3A�(x) : (21)In the Abelian setor, the ovariant derivatives in Eqs. (18), (19) redue tothe ordinary ones and we may omit the supersript a. Nevertheless, theequations remain nonlinear if Æ > 0 � the ases Æ = 0 and Æ > 0 aredrastially di�erent. In partiular, if Æ � 1=4 the Abelian setor of Pagels�Tomboulis model is ompatible with the on�nement of harges.Let us onsider �rst a smooth, spherially symmetri distribution j0(r)of an external, stati harge in a �nite region around the origin. The Gausslaw has the form r ~D = j0(r) ; (22)and the eletri �eld obeys the onditionr� ~E = 0 ; (23)with ~D and ~E related by formula (16) (we omit the supersript a = 3).Beause of the nonlinearity, solutions of Eqs. (22), (23) annot be obtainedby superposition of solutions for point harges. Nevertheless, spheriallysymmetri solutions follow easily from Gauss law (22). Far away from theharge ~D = Q4� ~rr3 ;~E�2 = sign(Q)(1 + 2Æ)�1=(1+4Æ) � jQj4��2r2�1=(1+4Æ) ~rr ; (24)where Q = Z d3rj0(r) :Thus, both �elds vanish when r !1, namely j ~Dj � r�2; j ~Ej � r�2=(1+4Æ).Simple alulation shows that the total energy of the gauge �eld, R d3rT00,



2162 H. Arod¹, M. �lusarzyk, A. Wereszzy«skiis in�nite if Æ � 1=4, due to the behaviour of ~E at large r. This fat is nothanged by inlusion of the interation energy of the external harge withthe gauge �eld, R d3rj0A0, beause this integral is �nite. For omparison,in the Yang�Mills ase the energy of the gauge �eld (24) (now with Æ = 0)is �nite.This result suggests that in Pagels�Tomboulis model states with non-vanishing total harge Q are not physially feasible. In order to turn thissuggestion into a theorem one would have to �nd solutions of the non-Abeliangauss law raibDbi = Æa3j0(r);together with the remaining equations (18), (19), without the simplifyingassumption (21). Even in the Yang�Mills ase this is a highly nontrivial task,see e.g. [15℄ for a review. In partiular, Kiskis [16℄ showed that in the Yang�Mills ase exist solutions with arbitrarily small (but positive) energy. Suhsolutions in general are not stati and have nonvanishing magneti �elds.However, his reasoning is based on linearity of Yang�Mills equations in theAbelian setor, and therefore it an not be repeated in Pagels�Tomboulismodel. This is enouraging, nevertheless the question whether �nite energysolutions with Q 6= 0 are ompletely exluded remains open.3.2. Dipol-like external harge densityE�etive model for QCD should allow for �nite energy olour singletquark�antiquark states 2. Therefore, we shall now onsider a dipole-likeexternal harge.The results of Subsetion 3.1 are valid also when the external harge ispoint-like, j0(r) = QÆ(~r). Then, the resulting energy density has a singu-larity at r = 0 whih is integrable if Æ > 1=4. Therefore, it is not importantfor our purpose whether the two harges forming the dipole are point-likeor spatially extended. For simpliity, we assume that they are point-like.Thus, we now takej0 = qÆ(x)Æ(y) �Æ�z + R2 �� Æ�z � R2 �� ; (25)where q > 0, and again we look for solutions of Eqs. (22), (23) in the Abeliansetor.We would like to hek that the orresponding total energy E of the gauge�eld, given by the integral E = R d3rT00, is �nite. First, simple dimensional2 In the ase of SU(3) gauge group olour singlets built of three quarks are related tothe quark�antiquark states beause a diquark an be regarded as an antiquark as faras olour harge is onerned.



Eletrostatis of Pagels�Tomboulis E�etive Model 2163analysis shows thatE = 0jqj(2+4Æ)=(1+4Æ)�8Æ=(1+4Æ)R(4Æ�1)=(4Æ+1); (26)where 0 is a numerial onstant. This formula follows from the fat thatE � jqj(2+4Æ)=(1+4Æ)�8Æ=(1+4Æ);as implied by Eq. (22) and formulas (13), (16). The exponent of R is ditatedby the requirement that E has the dimension m�1. Thus, it remains to showthat the onstant 0 is �nite. Beause singularities at the point-like hargesare of integrable type, �niteness of 0 depends solely on behaviour of the�elds at the spatial in�nity.Following Adler and Piran, [11,17,18℄, we express the dieletri indution~D by the dual potential ~C: ~D = r� ~C : (27)Then, at all points where ~C is su�iently smooth, automatially r ~D = 0.However, the presene of soure (25) on the r.h.s. of Eq. (22) implies that~C an not be regular everywhere � it has to have a singularity akin to theDira string for magneti monopoles. In our ase it is natural to assume thatthe string onnets the two point harges. To exploit the axial symmetryof the problem it is natural to introdue the ylindrial oordinates (�; �; z)instead of the Cartesian ones. The oordinates of the point soures are then� = 0; z = �R=2. As in [11,17,18℄ we assume that the dual potential ~C anbe expressed by a salar �ux funtion �(�; z), whih is de�ned as follows~C = �̂2��� ; (28)where �̂ is the unit vetor tangent to the � oordinate line.Equation (23) may be rewritten asr� ~D" ! = 0; (29)where " = (1 + 2Æ) ~E2�4!2Æ (30)is the dieletri funtion. The Ansatz (28) redues Eq. (29) tor (�r�) = 0; (31)



2164 H. Arod¹, M. �lusarzyk, A. Wereszzy«skiwhere � = �1��(2+4Æ)=(1+4Æ)� 1jr�j2�2Æ=(1+4Æ) : (32)It remains to �x boundary onditions for �. Formulas (27), (28) implythat � = 0 for � = 0 ; jzj > R2 ;� = q for � = 0 ; jzj < R2 : (33)To obtain, for example, the seond line in (33), onsider a sphere surroundingone of the harges with a small hole around the point at whih the sphereis punhed by the segment of the z-axis onneting the harges. The �uxof the ~D �eld through suh surfae is equal to line integral of ~C over theboundary of the hole. Shrinking the hole to the point of the intersetionwe �nd that the value of � at that point is equal to the total �ux Q of ~Dthrough the sphere.We also assume that� ! 0 for �2 + z2 !1: (34)This ondition is justi�ed by the expetation that angular dependene of �at the spatial in�nity would inrease the total energy. Beause it has beenassumed that � vanishes on the z-axis if jzj > R=2, it has to vanish in allother diretions.To summarize, the problem of solving the set of �eld equations for theeletri �eld ~E with given harge density (25) in three spatial dimensions isredued to one soureless equation (31) in the region � > 0; z 2 (1;�1);whih an be regarded as a ylindrial shell with the outer radius goingto 1 and the inner one to 0. The boundary onditions are given by (33),(34).Equation (31) an be rederived from the ondition that the �ux funtionminimizes the total �eld energy E = R d3rT00 under the boundary onditions(33), (34). Formulas (13), (27) and (28) giveT00 = 12(1+4Æ) [2�(1 + 4Æ)�℄(�2�4Æ)=(1+4Æ) �8Æ=(1+4Æ)jr�j(2+4Æ)=(1+4Æ); (35)where jr�j = p(r�)2. One an easily onstrut examples of the �uxfuntion whih obey the boundary onditions and have �nite total energy.For example, we may take� = q2 0� z + R2q�2 + �z + R2 �2 � z � R2q�2 + �z � R2 �21A : (36)



Eletrostatis of Pagels�Tomboulis E�etive Model 2165This funtion has been obtained from the sum of the dual potentials fortwo Dira monopoles of opposite harges, and it implies that the Dirastring just onnets the harges q;�q along the z-axis. The funtion (36)obeys the boundary onditions, but it does not obey Eq. (31) unless Æ = 0:Nevertheless, the �nite value of E orresponding to it may be taken as anupper bound for the total �eld energy of the harges q;�q.Solutions of Eq. (31) an be found with the help of numerial omputa-tions. We use the standard iterative proedure [17℄. Due to the symmetryof the problem it is su�ient to restrit our approah to the region z � 0,� � 0. The ontinuous variables �; z are replaed by the omputational lat-tie with (n�+1)� (nz +1) sites; the �ux funtion � redues to the disreteset of values on the lattie �i;j where i = 0 : : : n� and j = 0 : : : nz. The pointharge q is put on the site of the omputational lattie with i = 0; j = nqwhere 0 < nq < nz. The boundary onditions (33), (34) are replaed by:�0;j = q ; 0 � j < nq ; (37)�0;nq = q2 ;�0;j = 0 ; nq < j � nz ;�n�;j = 0 ; 0 � j � nz ;�i;nz = 0 ; 0 � i � n� :In the �rst step, sites of the omputational lattie are populated by arbitraryvalues. Next, new �i;j are omputed using a disretized version of the �eldequation (31). The iterative proedure stops when the di�erene betweenatual value of �i;j and the one omputed in the previous step is less thena hosen auray. By assumption, suh approximate solution obeys thehomogeneous boundary ondition (34) already at �nite � and z.In our omputations we used 900 � 900 mesh. Some sample resultswere also obtained for bigger meshes but the results hanged insigni�antly.We have repeated our proedure for some values of the harge separationdistane R and �xed size of the lattie. The �nal results were obtained forÆ = 0:75, and q = 1:1. The results are presented in Figs. 1�5. Fig. 1 presentsthe �ux funtion �, Fig. 2 the pro�le of � for z = 0. From the de�nition of� the dieletri indution ~D as well as the energy density " may be derived.The resaled (dimensionless) energy density � = T00=�4 is depited in Fig. 3.Fig. 4 presents the energy density for one of the Coulomb peaks from Fig. 3.In Fig. 5 the energy density pro�les (�(�) for � = z = 0) for various valuesof R are ompared. In all �gures we use the resaled spatial oordinates:z� ! z; �� ! � and R ! �R. It is lear that the �ux-tube onnetingthe two point harges beomes thiker when the harge separation distaneinreases. We have obtained the same pitures starting from several di�erent
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