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ELECTROSTATICS OF PAGELS�TOMBOULISEFFECTIVE MODELH. Arod¹, M. �lusar
zyk and A. Weresz
zy«skiThe Marian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived June 4, 2001)Long time ago Pagels and Tomboulis proposed a model for the non-perturbative gluodynami
s whi
h in the Abelian se
tor 
an be redu
ed toa strongly nonlinear ele
trodynami
s. In the present paper we investigateAbelian, stati
 solutions with external 
harges in that model. Nonzero to-tal 
harge implies that the 
orresponding �eld has in�nite energy due toslow fall o� at large distan
es. For a pair of opposite 
harges the energyis �nite � it grows like R�, 0 < � < 1 with the distan
e R between the
harges.PACS numbers: 11.15.K
, 11.10.Ef1. Introdu
tionNontrivial features of QCD su
h as the asymptoti
 freedom or the quark
on�nement are due to its gluoni
 part. Unfortunately, in spite of numerouse�orts dynami
s of non-Abelian gauge �elds in a nonperturbative regime isnot fully understood yet. Popular method of investigating it is the latti
eapproximation. It is the most su

essful, one up to now, yet it has well-known drawba
ks. There have been several attempts to apply the approa
hwhi
h has turned out to be very fruitful in 
ondensed matter physi
s, thatis to 
onstru
t Ginzburg�Landau type e�e
tive models whi
h would 
apturethe main features of the nonperturbative gluoni
 dynami
s already on the
lassi
al level. In the 
ondensed matter physi
s, pre
isely the Ginzburg�Landau models are the main tool for investigating su
h nonperturbativephenomena as, for example, vorti
es in super�uids and in super
ondu
tors,or hedgehogs in nemati
 liquid 
rystals.In the literature there are several proposals for e�e
tive models for thenonperturbative gluoni
 dynami
s. The most popular ones are the dual su-per
ondu
tor model [1,2℄, the 
olour diele
tri
 model [3,4℄, and the sto
hasti
(2155)
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uum model [5,6℄. Ea
h of them has its own problems. It seems that thesatisfa
tory e�e
tive model for the nonperturbative gluoni
 se
tor has notbeen found yet, but this does not mean that su
h model ne
essarily will bevery di�erent from the ones already 
onsidered in the literature.The e�e
tive Ginzburg�Landau model is expe
ted to give a good des
rip-tion of physi
s already on the 
lassi
al level (a mean �eld approximation).When 
onstru
ting su
h a model, the �rst step 
onsists in 
hoosing dynam-i
al variables, that is the �eld 
ontent of the model. In the 
ase of gluody-nami
s almost all models known to us 
ontain Yang�Mills �elds or at least aU(1) gauge �eld if one assumes a kind of Abelian proje
tion, and sometimesother �elds. Then, it is 
lear that the e�e
tive model for the nonperturbativegluoni
 dynami
s has to be drasti
ally di�erent from typi
al �eld theoreti
almodels. First, it should not allow for existen
e of massless, freely propagat-ing ve
tor parti
les (gluons). Se
ond, it should predi
t absen
e of 
olouredstates, and a 
on�ning for
e between (anti)quarks in 
olour neutral states.Third, it should predi
t existen
e of massive glueballs whi
h 
ould propa-gate freely. Finally, the model should expli
itly 
ontain a mass s
ale � forthe massive glueballs as well as in order to reprodu
e the tra
e anomaly ofenergy-momentum tensor. It is a well-known fa
t that 
lassi
al Yang�Millstheory with the standard Lagrangian obeys none of these requirements.In the present paper we investigate a model whi
h was proposed longtime ago by Pagels and Tomboulis [7℄. In a sense it 
an be regarded asa version of the 
olour diele
tri
 model without a dilaton type s
alar �eld� the pertinent Lagrangian is a fun
tion of Yang�Mills �eld strength only.The model is too simple in order to provide a very good approximationto the real-life nonperturbative gluodynami
s in QCD, but it looks ratherpromising as far as the four requirements spe
i�ed above are 
on
erned. Ourgeneral goal is to study su
h highly nonstandard �eld theoreti
al models inorder to 
larify their physi
al 
ontents.Pagels and Tomboulis 
al
ulated ele
tri
 �eld of a single point sour
e intheir model. They found that in 
omparison with the standard Coulomb�eld it is less singular 
lose to the 
harge and mu
h stronger far away fromit. The 
orresponding energy is in�nite due to the large distan
e behaviourrather than the singularity at the origin. This result implies a 
on�nementof 
harges. However, one should also 
he
k that a pair of 
harges Q, �Qhas �nite energy, otherwise also the quark�antiquark pairs would disappearfrom the physi
al spe
trum and the model would be wrong. Be
ause ofnonlinearity of Gauss law in the model, one 
an not 
ompute the ele
tri
�eld of the pair by a simple superposition. In the present paper, using a
ombination of analyti
 and numeri
al methods, we 
he
k that the energyof the pair Q, �Q is �nite if a parameter Æ > 1=4. We also 
al
ulate distri-bution of ele
tri
 �eld around the 
harges. It turns out to be very similar
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tive Model 2157to a �ux-tube, that is it is lo
alised around the straight line 
onne
ting the
harges, but an e�e
tive string tension depends on the distan
e R betweenthe 
harges. The total energy behaves like R�, where � = (4Æ � 1)=(4Æ + 1)and Æ is a parameter. Thus, the 
harges are 
on�ned if Æ > 1=4 be
ausethen 0 < � < 1. The e�e
tive string tension behaves like R��1. For Æ = 1=4we obtain the logarithmi
 behaviour of the energy.Interestingly enough, for Æ = 3=4 we obtain the pR behaviour of theenergy, whi
h is in agreement with a phenomenologi
al potential found in�ts to spe
tra of heavy quarkonia [8, 9℄.Our paper is organised as follows. In Se
tion 2 we re
all the model andwe derive �eld equations. We also point out that in that model 
lassi
alva
uum is strongly degenerate. In Se
tion 3 we 
al
ulate the energy of thesystem of two stati
, opposite 
harges. Several remarks about the model are
olle
ted in Se
tion 4.2. The Pagels�Tomboulis modelLet us denote by F2 the standard Yang�Mills invariant1F2 = 12F a��F a�� = BaiBai �EaiEai ; (1)where the �eld strength F a�� has the usual formF a�� = ��Aa� � ��Aa� � gfab
Ab�A
� (2)and Eai = F a0i, and Bai = �12"iklF akl are the non-Abelian ele
tri
 �eldand magneti
 indu
tion �eld, 
orrespondingly. We will 
onsider only SU(2)gauge group, hen
e a; b; 
 = 1; 2; 3. The model we would like to investigatehas Lagrangian L of the form L = `(F2), where ` is a nontrivial fun
tionwhi
h we shall 
hoose shortly. In a 
onne
tion with QCD models of thiskind have been proposed long time ago [7,10,11℄. The Abelian Born�Infeldele
trodynami
s is even older [12℄, but its aim is to modify only physi
s ofstrong �elds, while in the QCD 
ase the main problem is with weak �elds.The same remark applies to the quite popular re
ently non-Abelian Born�Infeld a
tions [13℄.Pagels and Tomboulis [7℄ 
onsidered Lagrangians of the formLe�(A�) = 12 F2�g2(t) (3)in Eu
lidean spa
e-time. In formula (3) F2 = F a��F a��=2 is non-negative dueto the Eu
lidean metri
, t = ln(F2=�4), and �g(t) is the e�e
tive 
oupling1 We 
hoose the metri
 in Minkowski spa
e-time with the signature (+1;�1;�1;�1).
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onstant determined from the equationt = �g(t)Zg0 dg�(g) ; (4)where �(g) is the Gell-Mann, Low fun
tion. The Lagrangian (3) has beenproposed in [7℄ as an Ansatz 
onsistent with renormalization group invari-an
e of the e�e
tive a
tion R d4xLe� , and also with the tra
e anomaly. Theperturbative 1-loop result for the �(g) fun
tion:�(g) �= �b0g3; b0 > 0; (5)where b0 is a positive 
onstant, gives1�g2(t) = 1g20 + 2b0t; (6)and in 
onsequen
e Le� = 12 F2g20 + b0F2 ln F2�4 : (7)Here 1=g2 is the integration 
onstant, equal to the value of the 
oupling
onstant at the subtra
tion point �. Another 
ase, also 
onsidered in [7℄,
orresponds to �(g) = �Æg; (8)where Æ > 0 is a 
onstant. Now Eq. (4) gives1�g2(t) = 1g20 �F2�4�2Æ (9)and Le� = 12g20 F2 �F2�4�2Æ: (10)Noti
e that�F2�4�2Æ = exp �2Æ ln�F2�4�� = 1 + 2Æ ln F2�4 + : : : ; (11)hen
e Lagrangian (10) with Æ = b0g2 redu
es to (7) when 2Æ ln(F2=�4)� 1that is when F2 is 
lose to the subtra
tion point �. One may regard La-grangian (10) as a resumation of powers of ln(F2=�4) in the e�e
tive a
tion
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tional � (A�) for the Yang�Mills �eld. From this viewpoint, Æ 
an beasso
iated with the anomalous dimension of the F2 operator.The 
orresponding e�e
tive models in Minkowski spa
e-time are obtainedby repla
ing the Eu
lidean F2 by F2. In order to avoid problems with thesign of F2 and 
omplex-valued Lagrangians we write ln(F2=�4) in (7) as12 ln �F2=�4�2, and �F2=�4�2Æ as �F 22 =�8�Æ in (10).The model 
orresponding to Le� (7) was 
onsidered by Adler and Piran[11℄ in the 
ase where only non-Abelian ele
tri
 �elds F a0i were present � itgave a 
on�ning for
e between two point-like opposite 
harges, at least inAbelian se
tor obtained by assuming that Aa�(x) = Æa3A�(x). However, itturns out that if one allows for the presen
e of magneti
 �elds, the 
orre-sponding energy density is not bounded from below. Moreover, Lagrangian(7) 
ontains the standard kineti
 term (��Aa� � ��Aa�)2 hen
e the gluons
ould propagate freely. For these reasons, we 
on
lude that the logarithmi
model obtained from (7) is not satisfa
tory.Let us turn to the model with Le� given by formula (10). When passingto Minkowski spa
e-time we 
hange notation a little bit. In Minkowskispa
e-time we take Lagrangian of the formL = �12F2�F22�8�Æ ; (12)where Æ > 0; instead of Lagrangian (10). The initial 
oupling 
onstant g0has been in
luded into � whi
h is regarded as an empiri
ally �xed energys
ale in the model.Components of energy-momentum tensor 
orresponding to Lagrangian(12) have the formT00 = 12 h ~B2 + (1 + 4Æ) ~E2i�F22�8�Æ ; (13)T0i = �(1 + 2Æ)"iksEakBas�F22�8�Æ (14)andTik = �12 h ~E2 + (1 + 4Æ) ~B2i Æik � (1 + 2Æ) hEaiEak +BaiBaki��F22�8�Æ :(15)We see that in this model T00 � 0.Lagrangian (12) does not 
ontain the standard kineti
 term for the gauge�elds. Therefore, it is by no means 
lear what are physi
al, propagating ex-
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itations in the model. Let us introdu
e the non-Abelian diele
tri
 indu
tionDai = �L�Eai = (1 + 2Æ)Eai �F22�8�Æ (16)and the non-Abelian magneti
 �eld:Hai = � �L�Bai = (1 + 2Æ)Bai �F22�8�Æ : (17)The modi�ed Yang�Mills equations following from Lagrangian (12) 
an bewritten in the formraibDbi = 0 ; ra0bDbk � "kirraibHbr = 0 ; (18)where ra�b = Æab �� + fb
aA
�is the 
ovariant derivative. Of 
ourse, in addition to these equations we havethe standard non-Abelian Bian
hi identities for Eai and Bai:raibBbi = 0 ; ra0bBbi + "ijkrajbEbk = 0 : (19)These identities are equivalent to formula (2).It is 
lear that any �elds su
h thatBaiBai = EaiEai (20)obey the �eld equations be
ause then F2 = 0. However, they have vanishingenergy-momentum tensor T�� and therefore they should be regarded as va
-uum �elds! The model has enormously degenerate 
lassi
al va
uum state,whi
h in
ludes, in parti
ular, plane waves. In the standard Yang�Mills the-ory, small amplitude 
lassi
al plane waves 
orrespond to the perturbativegluons. It is en
ouraging that they do not belong to the spe
trum of physi-
al ex
itations of Pagels�Tomboulis model. We plan to address the issue ofphysi
al ex
itations in Pagels�Tomboulis model in a forth
oming paper [14℄.In the present paper we show that the model 
an des
ribe the 
on�nementof quarks.Formula (16) implies that the diele
tri
 indu
tion is smaller than theele
tri
 �eld if F22 =�8 < (1+2Æ)�1=Æ ; that is the model implies antis
reeningfor weak �elds. For strong �elds we have the usual s
reening.
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 solutions with external point 
harges3.1. The 
ase of non-vanishing total 
hargeEquations (18), (19) are even more 
ompli
ated than the standard Yang�Mills equations, whi
h are obtained for Æ = 0. The fa
t that the 
lassi
alYang�Mills theory is not 
on�ning 
an be seen already from an analysis ofits Abelian se
tor. For this reason, we 
he
k the Abelian se
tor of Pagels�Tomboulis model (Æ > 0). Let us remind that that se
tor is 
onstitutedby gauge potentials Aa� with only one 
olour 
omponent, identi
al for all� = 0; 1; 2; 3: For example, we may takeAa� = Æa3A�(x) : (21)In the Abelian se
tor, the 
ovariant derivatives in Eqs. (18), (19) redu
e tothe ordinary ones and we may omit the supers
ript a. Nevertheless, theequations remain nonlinear if Æ > 0 � the 
ases Æ = 0 and Æ > 0 aredrasti
ally di�erent. In parti
ular, if Æ � 1=4 the Abelian se
tor of Pagels�Tomboulis model is 
ompatible with the 
on�nement of 
harges.Let us 
onsider �rst a smooth, spheri
ally symmetri
 distribution j0(r)of an external, stati
 
harge in a �nite region around the origin. The Gausslaw has the form r ~D = j0(r) ; (22)and the ele
tri
 �eld obeys the 
onditionr� ~E = 0 ; (23)with ~D and ~E related by formula (16) (we omit the supers
ript a = 3).Be
ause of the nonlinearity, solutions of Eqs. (22), (23) 
annot be obtainedby superposition of solutions for point 
harges. Nevertheless, spheri
allysymmetri
 solutions follow easily from Gauss law (22). Far away from the
harge ~D = Q4� ~rr3 ;~E�2 = sign(Q)(1 + 2Æ)�1=(1+4Æ) � jQj4��2r2�1=(1+4Æ) ~rr ; (24)where Q = Z d3rj0(r) :Thus, both �elds vanish when r !1, namely j ~Dj � r�2; j ~Ej � r�2=(1+4Æ).Simple 
al
ulation shows that the total energy of the gauge �eld, R d3rT00,
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t is not
hanged by in
lusion of the intera
tion energy of the external 
harge withthe gauge �eld, R d3rj0A0, be
ause this integral is �nite. For 
omparison,in the Yang�Mills 
ase the energy of the gauge �eld (24) (now with Æ = 0)is �nite.This result suggests that in Pagels�Tomboulis model states with non-vanishing total 
harge Q are not physi
ally feasible. In order to turn thissuggestion into a theorem one would have to �nd solutions of the non-Abeliangauss law raibDbi = Æa3j0(r);together with the remaining equations (18), (19), without the simplifyingassumption (21). Even in the Yang�Mills 
ase this is a highly nontrivial task,see e.g. [15℄ for a review. In parti
ular, Kiskis [16℄ showed that in the Yang�Mills 
ase exist solutions with arbitrarily small (but positive) energy. Su
hsolutions in general are not stati
 and have nonvanishing magneti
 �elds.However, his reasoning is based on linearity of Yang�Mills equations in theAbelian se
tor, and therefore it 
an not be repeated in Pagels�Tomboulismodel. This is en
ouraging, nevertheless the question whether �nite energysolutions with Q 6= 0 are 
ompletely ex
luded remains open.3.2. Dipol-like external 
harge densityE�e
tive model for QCD should allow for �nite energy 
olour singletquark�antiquark states 2. Therefore, we shall now 
onsider a dipole-likeexternal 
harge.The results of Subse
tion 3.1 are valid also when the external 
harge ispoint-like, j0(r) = QÆ(~r). Then, the resulting energy density has a singu-larity at r = 0 whi
h is integrable if Æ > 1=4. Therefore, it is not importantfor our purpose whether the two 
harges forming the dipole are point-likeor spatially extended. For simpli
ity, we assume that they are point-like.Thus, we now takej0 = qÆ(x)Æ(y) �Æ�z + R2 �� Æ�z � R2 �� ; (25)where q > 0, and again we look for solutions of Eqs. (22), (23) in the Abelianse
tor.We would like to 
he
k that the 
orresponding total energy E of the gauge�eld, given by the integral E = R d3rT00, is �nite. First, simple dimensional2 In the 
ase of SU(3) gauge group 
olour singlets built of three quarks are related tothe quark�antiquark states be
ause a diquark 
an be regarded as an antiquark as faras 
olour 
harge is 
on
erned.
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tive Model 2163analysis shows thatE = 
0jqj(2+4Æ)=(1+4Æ)�8Æ=(1+4Æ)R(4Æ�1)=(4Æ+1); (26)where 
0 is a numeri
al 
onstant. This formula follows from the fa
t thatE � jqj(2+4Æ)=(1+4Æ)�8Æ=(1+4Æ);as implied by Eq. (22) and formulas (13), (16). The exponent of R is di
tatedby the requirement that E has the dimension 
m�1. Thus, it remains to showthat the 
onstant 
0 is �nite. Be
ause singularities at the point-like 
hargesare of integrable type, �niteness of 
0 depends solely on behaviour of the�elds at the spatial in�nity.Following Adler and Piran, [11,17,18℄, we express the diele
tri
 indu
tion~D by the dual potential ~C: ~D = r� ~C : (27)Then, at all points where ~C is su�
iently smooth, automati
ally r ~D = 0.However, the presen
e of sour
e (25) on the r.h.s. of Eq. (22) implies that~C 
an not be regular everywhere � it has to have a singularity akin to theDira
 string for magneti
 monopoles. In our 
ase it is natural to assume thatthe string 
onne
ts the two point 
harges. To exploit the axial symmetryof the problem it is natural to introdu
e the 
ylindri
al 
oordinates (�; �; z)instead of the Cartesian ones. The 
oordinates of the point sour
es are then� = 0; z = �R=2. As in [11,17,18℄ we assume that the dual potential ~C 
anbe expressed by a s
alar �ux fun
tion �(�; z), whi
h is de�ned as follows~C = �̂2��� ; (28)where �̂ is the unit ve
tor tangent to the � 
oordinate line.Equation (23) may be rewritten asr� ~D" ! = 0; (29)where " = (1 + 2Æ) ~E2�4!2Æ (30)is the diele
tri
 fun
tion. The Ansatz (28) redu
es Eq. (29) tor (�r�) = 0; (31)
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zy«skiwhere � = �1��(2+4Æ)=(1+4Æ)� 1jr�j2�2Æ=(1+4Æ) : (32)It remains to �x boundary 
onditions for �. Formulas (27), (28) implythat � = 0 for � = 0 ; jzj > R2 ;� = q for � = 0 ; jzj < R2 : (33)To obtain, for example, the se
ond line in (33), 
onsider a sphere surroundingone of the 
harges with a small hole around the point at whi
h the sphereis pun
hed by the segment of the z-axis 
onne
ting the 
harges. The �uxof the ~D �eld through su
h surfa
e is equal to line integral of ~C over theboundary of the hole. Shrinking the hole to the point of the interse
tionwe �nd that the value of � at that point is equal to the total �ux Q of ~Dthrough the sphere.We also assume that� ! 0 for �2 + z2 !1: (34)This 
ondition is justi�ed by the expe
tation that angular dependen
e of �at the spatial in�nity would in
rease the total energy. Be
ause it has beenassumed that � vanishes on the z-axis if jzj > R=2, it has to vanish in allother dire
tions.To summarize, the problem of solving the set of �eld equations for theele
tri
 �eld ~E with given 
harge density (25) in three spatial dimensions isredu
ed to one sour
eless equation (31) in the region � > 0; z 2 (1;�1);whi
h 
an be regarded as a 
ylindri
al shell with the outer radius goingto 1 and the inner one to 0. The boundary 
onditions are given by (33),(34).Equation (31) 
an be rederived from the 
ondition that the �ux fun
tionminimizes the total �eld energy E = R d3rT00 under the boundary 
onditions(33), (34). Formulas (13), (27) and (28) giveT00 = 12(1+4Æ) [2�(1 + 4Æ)�℄(�2�4Æ)=(1+4Æ) �8Æ=(1+4Æ)jr�j(2+4Æ)=(1+4Æ); (35)where jr�j = p(r�)2. One 
an easily 
onstru
t examples of the �uxfun
tion whi
h obey the boundary 
onditions and have �nite total energy.For example, we may take� = q2 0� z + R2q�2 + �z + R2 �2 � z � R2q�2 + �z � R2 �21A : (36)
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trostati
s of Pagels�Tomboulis E�e
tive Model 2165This fun
tion has been obtained from the sum of the dual potentials fortwo Dira
 monopoles of opposite 
harges, and it implies that the Dira
string just 
onne
ts the 
harges q;�q along the z-axis. The fun
tion (36)obeys the boundary 
onditions, but it does not obey Eq. (31) unless Æ = 0:Nevertheless, the �nite value of E 
orresponding to it may be taken as anupper bound for the total �eld energy of the 
harges q;�q.Solutions of Eq. (31) 
an be found with the help of numeri
al 
omputa-tions. We use the standard iterative pro
edure [17℄. Due to the symmetryof the problem it is su�
ient to restri
t our approa
h to the region z � 0,� � 0. The 
ontinuous variables �; z are repla
ed by the 
omputational lat-ti
e with (n�+1)� (nz +1) sites; the �ux fun
tion � redu
es to the dis
reteset of values on the latti
e �i;j where i = 0 : : : n� and j = 0 : : : nz. The point
harge q is put on the site of the 
omputational latti
e with i = 0; j = nqwhere 0 < nq < nz. The boundary 
onditions (33), (34) are repla
ed by:�0;j = q ; 0 � j < nq ; (37)�0;nq = q2 ;�0;j = 0 ; nq < j � nz ;�n�;j = 0 ; 0 � j � nz ;�i;nz = 0 ; 0 � i � n� :In the �rst step, sites of the 
omputational latti
e are populated by arbitraryvalues. Next, new �i;j are 
omputed using a dis
retized version of the �eldequation (31). The iterative pro
edure stops when the di�eren
e betweena
tual value of �i;j and the one 
omputed in the previous step is less thena 
hosen a

ura
y. By assumption, su
h approximate solution obeys thehomogeneous boundary 
ondition (34) already at �nite � and z.In our 
omputations we used 900 � 900 mesh. Some sample resultswere also obtained for bigger meshes but the results 
hanged insigni�
antly.We have repeated our pro
edure for some values of the 
harge separationdistan
e R and �xed size of the latti
e. The �nal results were obtained forÆ = 0:75, and q = 1:1. The results are presented in Figs. 1�5. Fig. 1 presentsthe �ux fun
tion �, Fig. 2 the pro�le of � for z = 0. From the de�nition of� the diele
tri
 indu
tion ~D as well as the energy density " may be derived.The res
aled (dimensionless) energy density � = T00=�4 is depi
ted in Fig. 3.Fig. 4 presents the energy density for one of the Coulomb peaks from Fig. 3.In Fig. 5 the energy density pro�les (�(�) for � = z = 0) for various valuesof R are 
ompared. In all �gures we use the res
aled spatial 
oordinates:z� ! z; �� ! � and R ! �R. It is 
lear that the �ux-tube 
onne
tingthe two point 
harges be
omes thi
ker when the 
harge separation distan
ein
reases. We have obtained the same pi
tures starting from several di�erent
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-10zFig. 1. The �ux fun
tion � for Æ = 0:75 and R = 20.

Fig. 2. The �ux fun
tion � for Æ = 0:75, R = 20 and z = 0.
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zFig. 3. The energy density � for Æ = 0:75 and R = 20.initial 
on�gurations for the iterative pro
edure. Our numeri
al pro
edurewas also tested for Æ = 0. In this 
ase the analyti
al solution for � is givenby formula (36). The numeri
al pro
edure re
overs it.The energy density distribution was used to derive the total energy of the
onsidered �eld 
on�guration. As the energy density de
reases slowly when�2+z2 !1 it is ne
essary to 
olle
t the energy density from relatively largeregion around the 
harges. For this reason we have used the latti
e with linklength varying from short near the 
harges to long for large �2 + z2. Theenergy of 
on�gurations for various R was used to 
he
k the relation (26)� if it holds " should depend linearly on pR for Æ = 0:75. Using numeri
alresults for this linear relation one 
an estimate that 
0 � 4:1:
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Fig. 5. The energy density �(�) for Æ = 0:75 , z = � = 0 and R = 10; 20; 30.
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tive Model 21694. Summary and remarksWe have investigated the Abelian se
tor of Pagels�Tomboulis model. Ifthe total 
harge Q is non-vanishing the resulting �eld has in�nite energy,while in the 
ase of point-like 
harges q;�q separated by the distan
e R theenergy is �nite, proportional to R(4Æ�1)=(4Æ+1) , provided that Æ > 1=4:There are several dire
tions in whi
h one 
ould 
ontinue the present work.First, we have not investigated stability of our Abelian solutions against�u
tuations of gauge �elds. Be
ause the derivation of s
reening phenomenongiven in the standard Yang�Mills 
ase by Kiskis, [16℄, does not work if Æ > 0,one may hope that a presen
e of the other 
omponents of the gauge �eld(A1�; A2�) will in
rease the energy. Also, one may ask about stability againsta 
ollapse of the �eld 
on�guration in the Abelian se
tor. To answer thisquestion one would have to investigate time-dependent solutions. It mightturn out that additional terms would have to be in
luded in the Lagrangianin order to prevent su
h a 
ollapse, in an analogy to the well-known Skyrmeterm in a mesoni
 e�e
tive Lagrangian.Finally, one 
ould use more re�ned forms of the �(g) fun
tion in Eq. (4).The model 
onsidered in the present paper should be regarded as the simplestone 
ompatible with the asymptoti
 freedom.All problems mentioned above are important, but in our opinion themost important and interesting one is to des
ribe physi
al ex
itations in themodels of the Pagels�Tomboulis type.REFERENCES[1℄ M. Baker, J.S. Ball, F. Za
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