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Long time ago Pagels and Tomboulis proposed a model for the non-
perturbative gluodynamics which in the Abelian sector can be reduced to
a strongly nonlinear electrodynamics. In the present paper we investigate
Abelian, static solutions with external charges in that model. Nonzero to-
tal charge implies that the corresponding field has infinite energy due to
slow fall off at large distances. For a pair of opposite charges the energy
is finite — it grows like R*, 0 < o < 1 with the distance R between the
charges.

PACS numbers: 11.15.Kc, 11.10.Ef
1. Introduction

Nontrivial features of QCD such as the asymptotic freedom or the quark
confinement are due to its gluonic part. Unfortunately, in spite of numerous
efforts dynamics of non-Abelian gauge fields in a nonperturbative regime is
not fully understood yet. Popular method of investigating it is the lattice
approximation. It is the most successful, one up to now, yet it has well-
known drawbacks. There have been several attempts to apply the approach
which has turned out to be very fruitful in condensed matter physics, that
is to construct Ginzburg-Landau type effective models which would capture
the main features of the nonperturbative gluonic dynamics already on the
classical level. In the condensed matter physics, precisely the Ginzburg-
Landau models are the main tool for investigating such nonperturbative
phenomena as, for example, vortices in superfluids and in superconductors,
or hedgehogs in nematic liquid crystals.

In the literature there are several proposals for effective models for the
nonperturbative gluonic dynamics. The most popular ones are the dual su-
perconductor model [1,2], the colour dielectric model [3,4], and the stochastic
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vacuum model [5,6]. Each of them has its own problems. It seems that the
satisfactory effective model for the nonperturbative gluonic sector has not
been found yet, but this does not mean that such model necessarily will be
very different from the ones already considered in the literature.

The effective Ginzburg-Landau model is expected to give a good descrip-
tion of physics already on the classical level (a mean field approximation).
When constructing such a model, the first step consists in choosing dynam-
ical variables, that is the field content of the model. In the case of gluody-
namics almost all models known to us contain Yang—Mills fields or at least a
U(1) gauge field if one assumes a kind of Abelian projection, and sometimes
other fields. Then, it is clear that the effective model for the nonperturbative
gluonic dynamics has to be drastically different from typical field theoretical
models. First, it should not allow for existence of massless, freely propagat-
ing vector particles (gluons). Second, it should predict absence of coloured
states, and a confining force between (anti)quarks in colour neutral states.
Third, it should predict existence of massive glueballs which could propa-
gate freely. Finally, the model should explicitly contain a mass scale — for
the massive glueballs as well as in order to reproduce the trace anomaly of
energy-momentum tensor. It is a well-known fact that classical Yang—Mills
theory with the standard Lagrangian obeys none of these requirements.

In the present paper we investigate a model which was proposed long
time ago by Pagels and Tomboulis [7]. In a sense it can be regarded as
a version of the colour dielectric model without a dilaton type scalar field
— the pertinent Lagrangian is a function of Yang-Mills field strength only.
The model is too simple in order to provide a very good approximation
to the real-life nonperturbative gluodynamics in QCD, but it looks rather
promising as far as the four requirements specified above are concerned. Our
general goal is to study such highly nonstandard field theoretical models in
order to clarify their physical contents.

Pagels and Tomboulis calculated electric field of a single point source in
their model. They found that in comparison with the standard Coulomb
field it is less singular close to the charge and much stronger far away from
it. The corresponding energy is infinite due to the large distance behaviour
rather than the singularity at the origin. This result implies a confinement
of charges. However, one should also check that a pair of charges @, —Q
has finite energy, otherwise also the quark—antiquark pairs would disappear
from the physical spectrum and the model would be wrong. Because of
nonlinearity of Gauss law in the model, one can not compute the electric
field of the pair by a simple superposition. In the present paper, using a
combination of analytic and numerical methods, we check that the energy
of the pair @, —@ is finite if a parameter 6 > 1/4. We also calculate distri-
bution of electric field around the charges. It turns out to be very similar
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to a flux-tube, that is it is localised around the straight line connecting the
charges, but an effective string tension depends on the distance R between
the charges. The total energy behaves like R*, where o = (46 — 1)/(40 + 1)
and ¢ is a parameter. Thus, the charges are confined if 6 > 1/4 because
then 0 < a < 1. The effective string tension behaves like R*~!. For § = 1/4
we obtain the logarithmic behaviour of the energy.

Interestingly enough, for § = 3/4 we obtain the v/R behaviour of the
energy, which is in agreement with a phenomenological potential found in
fits to spectra of heavy quarkonia [8,9].

Our paper is organised as follows. In Section 2 we recall the model and
we derive field equations. We also point out that in that model classical
vacuum is strongly degenerate. In Section 3 we calculate the energy of the
system of two static, opposite charges. Several remarks about the model are
collected in Section 4.

2. The Pagels—Tomboulis model
Let us denote by F5 the standard Yang-Mills invariant!

Foy = %FSVFGMV — BaiBai _ EaiEai ’ (1)

where the field strength Fj, has the usual form
Fjly = 0, A5 = 9, A7, — gfanc AL A (2)

and F% = Fg;, and B = _%51'le1?[ are the non-Abelian electric field
and magnetic induction field, correspondingly. We will consider only SU(2)
gauge group, hence a,b,c¢ = 1,2,3. The model we would like to investigate
has Lagrangian £ of the form £ = ¢(F;), where ¢ is a nontrivial function
which we shall choose shortly. In a connection with QCD models of this
kind have been proposed long time ago [7,10,11]. The Abelian Born-Infeld
electrodynamics is even older [12], but its aim is to modify only physics of
strong fields, while in the QCD case the main problem is with weak fields.
The same remark applies to the quite popular recently non-Abelian Born—
Infeld actions [13].
Pagels and Tomboulis [7] considered Lagrangians of the form

1 F
Leg(A,) = =
w4 =5 2
in Euclidean space-time. In formula (3) F» = Fj, Fj,
to the Euclidean metric, ¢ = In(Fy/u*), and g(t) is the effective coupling

(3)

/2 is non-negative due

! We choose the metric in Minkowski space-time with the signature (+1, -1, -1, —1).
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constant determined from the equation

9(t)

_ [ 49
t_go Blg)’ @)

where 3(g) is the Gell-Mann, Low function. The Lagrangian (3) has been
proposed in [7] as an Ansatz consistent with renormalization group invari-
ance of the effective action f d*zLeg, and also with the trace anomaly. The
perturbative 1-loop result for the 8(g) function:

/B(g) = _bog3a bO > 07 (5)

where by is a positive constant, gives

1 1
- = — + 2bot, (6)
7°(t) g3
and in consequence
1F Fy
Lff:——+b0F21n—. (7)
T 245 pt

Here 1/g? is the integration constant, equal to the value of the coupling
constant at the subtraction point u. Another case, also considered in [7],
corresponds to

where § > 0 is a constant. Now Eq. (4) gives
Lo ()" 9
g2 () g5 \pt
and
1 R\ %
o = 577 () o

Notice that

20
<%) :exp[%ln(%)]:1+251n%+..., (11)

hence Lagrangian (10) with § = bgg? reduces to (7) when 26 In(Fy/u*) < 1
that is when Fj is close to the subtraction point p. One may regard La-
grangian (10) as a resumation of powers of In(F,/u*) in the effective action
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functional I'(A,) for the Yang-Mills field. From this viewpoint, § can be
associated with the anomalous dimension of the Fy operator.

The corresponding effective models in Minkowski space-time are obtained
by replacing the Euclidean Fy by F>. In order to avoid problems with the
sign of F» and complex-valued Lagrangians we write In(Fh/u*) in (7) as
+In (Fg/u4)2, and (Fg//fl)% as (F22//18)5 in (10).

The model corresponding to Leg (7) was considered by Adler and Piran
[11] in the case where only non-Abelian electric fields F{; were present — it
gave a confining force between two point-like opposite charges, at least in
Abelian sector obtained by assuming that Af(z) = 0§A,(z). However, it
turns out that if one allows for the presence of magnetic fields, the corre-
sponding energy density is not bounded from below. Moreover, Lagrangian
(7) contains the standard kinetic term (9,A% — 8,,AZ)2 hence the gluons
could propagate freely. For these reasons, we conclude that the logarithmic
model obtained from (7) is not satisfactory.

Let us turn to the model with Leg given by formula (10). When passing
to Minkowski space-time we change notation a little bit. In Minkowski
space-time we take Lagrangian of the form

1 (73
L=-i7 (A—) , (12)

where § > 0, instead of Lagrangian (10). The initial coupling constant g
has been included into A which is regarded as an empirically fixed energy
scale in the model.

Components of energy-momentum tensor corresponding to Lagrangian
(12) have the form

- _ 1 (F2\°

Too = 3 B2+(1+45)E2} <A—§) , (13)
72\’

Toi = —(1 + 20)e;, E* B (A—§> (14)

and

1r= . . . 2\ 9
Ty = {5 [E2 +(1+48)B2| 6, — (1 +20) [E‘“Eak + B‘“B‘lk} } <i—§> .
(15)
We see that in this model Tyy > 0.
Lagrangian (12) does not contain the standard kinetic term for the gauge
fields. Therefore, it is by no means clear what are physical, propagating ex-
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citations in the model. Let us introduce the non-Abelian dielectric induction

- - 2 6
szégii:(1+2®EM<§%> (16)
and the non-Abelian magnetic field:
oL (72’
HY = ~ 355 = (14 26)B™ <A—§) . (17)

The modified Yang—-Mills equations following from Lagrangian (12) can be
written in the form

v?bDbi = 07 SbDbk - 5kirv?beT = 07 (18)

where

Vo, = 680, + freadl

is the covariant derivative. Of course, in addition to these equations we have
the standard non-Abelian Bianchi identities for £* and B%:

ViBY =0,  V§B" 4+ VRE" =0. (19)

These identities are equivalent to formula (2).
It is clear that any fields such that

BaiBai — EaiEai (20)

obey the field equations because then F5 = 0. However, they have vanishing
energy-momentum tensor 7}, and therefore they should be regarded as vac-
uum fields! The model has enormously degenerate classical vacuum state,
which includes, in particular, plane waves. In the standard Yang—Mills the-
ory, small amplitude classical plane waves correspond to the perturbative
gluons. It is encouraging that they do not belong to the spectrum of physi-
cal excitations of Pagels—Tomboulis model. We plan to address the issue of
physical excitations in Pagels—Tomboulis model in a forthcoming paper [14].
In the present paper we show that the model can describe the confinement
of quarks.

Formula (16) implies that the dielectric induction is smaller than the
electric field if F3/A% < (1428) /%, that is the model implies antiscreening
for weak fields. For strong fields we have the usual screening.
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3. Static solutions with external point charges

3.1. The case of non-vanishing total charge

Equations (18), (19) are even more complicated than the standard Yang-
Mills equations, which are obtained for § = 0. The fact that the classical
Yang—Mills theory is not confining can be seen already from an analysis of
its Abelian sector. For this reason, we check the Abelian sector of Pagels—
Tomboulis model (§ > 0). Let us remind that that sector is constituted
by gauge potentials Aj, with only one colour component, identical for all
w=0,1,2,3. For example, we may take

AL = 55 A, (x). (21)

In the Abelian sector, the covariant derivatives in Egs. (18), (19) reduce to
the ordinary ones and we may omit the superscript a. Nevertheless, the
equations remain nonlinear if § > 0 — the cases § = 0 and § > 0 are
drastically different. In particular, if § > 1/4 the Abelian sector of Pagels—
Tomboulis model is compatible with the confinement of charges.

Let us consider first a smooth, spherically symmetric distribution jo(r)
of an external, static charge in a finite region around the origin. The Gauss
law has the form B

VD = jo(r), (22)

and the electric field obeys the condition
VxE=0, (23)

with D and E related by formula (16) (we omit the superscript ¢ = 3).
Because of the nonlinearity, solutions of Eqgs. (22), (23) cannot be obtained
by superposition of solutions for point charges. Nevertheless, spherically
symmetric solutions follow easily from Gauss law (22). Far away from the
charge

5_ QT
b= 4 3’
E Cyaaas (1@ U
Vi sign(Q)(1 + 20) T 22 . (24)

where

Q= /d3rj0(r).

Thus, both fields vanish when r — oo, namely |D| ~ 72, |E| ~ r—2/(1+49)
Simple calculation shows that the total energy of the gauge field, [ d®rTpo,
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is infinite if 6 > 1/4, due to the behaviour of E at large r. This fact is not
changed by inclusion of the interaction energy of the external charge with
the gauge field, [ d>rjoAg, because this integral is finite. For comparison,
in the Yang-Mills case the energy of the gauge field (24) (now with § = 0)
is finite.

This result suggests that in Pagels-Tomboulis model states with non-
vanishing total charge () are not physically feasible. In order to turn this
suggestion into a theorem one would have to find solutions of the non-Abelian
gauss law

Vi, DY = %o (r),

together with the remaining equations (18), (19), without the simplifying
assumption (21). Even in the Yang-Mills case this is a highly nontrivial task,
see e.g. [15] for a review. In particular, Kiskis [16] showed that in the Yang-
Mills case exist solutions with arbitrarily small (but positive) energy. Such
solutions in general are not static and have nonvanishing magnetic fields.
However, his reasoning is based on linearity of Yang—Mills equations in the
Abelian sector, and therefore it can not be repeated in Pagels—Tomboulis
model. This is encouraging, nevertheless the question whether finite energy
solutions with @) # 0 are completely excluded remains open.

3.2. Dipol-like external charge density

Effective model for QCD should allow for finite energy colour singlet
quark-antiquark states 2. Therefore, we shall now consider a dipole-like
external charge.

The results of Subsection 3.1 are valid also when the external charge is
point-like, jo(r) = QJ(7). Then, the resulting energy density has a singu-
larity at 7 = 0 which is integrable if 6 > 1/4. Therefore, it is not important
for our purpose whether the two charges forming the dipole are point-like
or spatially extended. For simplicity, we assume that they are point-like.
Thus, we now take

Jo = qo(z)d(y) [6 <z + g) -4 <z - g)] , (25)

where ¢ > 0, and again we look for solutions of Egs. (22), (23) in the Abelian
sector.

We would like to check that the corresponding total energy £ of the gauge
field, given by the integral & = [ d®rTyo, is finite. First, simple dimensional

2 In the case of SU(3) gauge group colour singlets built of three quarks are related to
the quark—-antiquark states because a diquark can be regarded as an antiquark as far
as colour charge is concerned.
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analysis shows that

£ = co|q|ZH/(1448) 485/(1:+48) p(45-1)/(46+1) (26)

where ¢y is a numerical constant. This formula follows from the fact that

E ~ |q|(2+45)/(1+45)A86/(1+45)’

as implied by Eq. (22) and formulas (13), (16). The exponent of R is dictated
by the requirement that £ has the dimension cm~!. Thus, it remains to show
that the constant ¢ is finite. Because singularities at the point-like charges
are of integrable type, finiteness of ¢y depends solely on behaviour of the
fields at the spatial infinity.

Following Adler and Piran, [11,17,18], we express the dielectric induction

D by the dual potential C-
D=VxC. (27)

Then, at all points where C is sufficiently smooth, automatically VD = 0.
However, the presence of source (25) on the r.h.s. of Eq. (22) implies that
C' can not be regular everywhere — it has to have a singularity akin to the
Dirac string for magnetic monopoles. In our case it is natural to assume that
the string connects the two point charges. To exploit the axial symmetry
of the problem it is natural to introduce the cylindrical coordinates (p, ¢, z)
instead of the Cartesian ones. The coordinates of the point sources are then
p=0, z==+R/2. Asin [11,17,18] we assume that the dual potential C' can
be expressed by a scalar flux function @(p, z), which is defined as follows

i_ b
C=52. (28)

where qAS is the unit vector tangent to the ¢ coordinate line.
Equation (23) may be rewritten as

D
V x (?) =0, (29)

E_"2 20
e = (1+26) (ﬁ) (30)

is the dielectric function. The Ansatz (28) reduces Eq. (29) to

where

V (cV®) =0, (31)
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where

1\ (2+48)/(1+4) 1 26 /(1+46)
o= (5) (W) ' (32

It remains to fix boundary conditions for ¢. Formulas (27), (28) imply
that

¢=0 for p=0, |z| > g,
=g for p=0, |z|<§ (33)
To obtain, for example, the second line in (33), consider a sphere surrounding
one of the charges with a small hole around the point at which the sphere
is punched by the segment of the z-axis connecting the charges. The flux
of the D field through such surface is equal to line integral of C' over the
boundary of the hole. Shrinking the hole to the point of the intersection
we find that the value of @ at that point is equal to the total flux @ of D
through the sphere.
We also assume that

$ =0 for p?+ 22 = oco. (34)

This condition is justified by the expectation that angular dependence of @
at the spatial infinity would increase the total energy. Because it has been
assumed that @ vanishes on the z-axis if |z| > R/2, it has to vanish in all
other directions.

To summarize, the problem of solving the set of field equations for the
electric field E with given charge density (25) in three spatial dimensions is
reduced to one sourceless equation (31) in the region p > 0,z € (o0, —00),
which can be regarded as a cylindrical shell with the outer radius going
to oo and the inner one to 0. The boundary conditions are given by (33),
(34).

Equation (31) can be rederived from the condition that the flux function
minimizes the total field energy € = [ d*rTp under the boundary conditions
(33), (34). Formulas (13), (27) and (28) give

TOO _ %(1_}_45) [27'('(]. +45)p](72745)/(1+45) A85/(1+45)|v¢|(2+45)/(1+45)’ (35)

where |V@| = /(V®)2. One can easily construct examples of the flux
function which obey the boundary conditions and have finite total energy.
For example, we may take

R R

@:g Z+7 _ Z—g
2 R\2 R\?2
Vot @+ 5 e - §)

(36)
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This function has been obtained from the sum of the dual potentials for
two Dirac monopoles of opposite charges, and it implies that the Dirac
string just connects the charges ¢, —q along the z-axis. The function (36)
obeys the boundary conditions, but it does not obey Eq. (31) unless 6 = 0.
Nevertheless, the finite value of £ corresponding to it may be taken as an
upper bound for the total field energy of the charges ¢, —q.

Solutions of Eq. (31) can be found with the help of numerical computa-
tions. We use the standard iterative procedure [17]. Due to the symmetry
of the problem it is sufficient to restrict our approach to the region z > 0,
p > 0. The continuous variables p, z are replaced by the computational lat-
tice with (n,+1) X (n, + 1) sites; the flux function @ reduces to the discrete
set of values on the lattice @; ; wheres =0...n,and j =0...n,. The point
charge ¢ is put on the site of the computational lattice with i = 0,5 = n,
where 0 < ng, < n,. The boundary conditions (33), (34) are replaced by:

¢0,j = q, 0§j<nqa (37)
q

Do, = 3

¢0,j = Oa nq<j§nz,

dsnp,] =0, 0<j<n,,

Bin. =0, 0<i<n,.

In the first step, sites of the computational lattice are populated by arbitrary
values. Next, new &; ; are computed using a discretized version of the field
equation (31). The iterative procedure stops when the difference between
actual value of @; ; and the one computed in the previous step is less then
a chosen accuracy. By assumption, such approximate solution obeys the
homogeneous boundary condition (34) already at finite p and z.

In our computations we used 900 x 900 mesh. Some sample results
were also obtained for bigger meshes but the results changed insignificantly.
We have repeated our procedure for some values of the charge separation
distance R and fixed size of the lattice. The final results were obtained for
0 = 0.75, and ¢ = 1.1. The results are presented in Figs. 1-5. Fig. 1 presents
the flux function @, Fig. 2 the profile of @ for z = 0. From the definition of
@ the dielectric induction D as well as the energy density € may be derived.
The rescaled (dimensionless) energy density € = Tyo/A* is depicted in Fig. 3.
Fig. 4 presents the energy density for one of the Coulomb peaks from Fig. 3.
In Fig. 5 the energy density profiles (e(p) for ¢ = z = 0) for various values
of R are compared. In all figures we use the rescaled spatial coordinates:
zA — z, pA — p and R — AR. Tt is clear that the flux-tube connecting
the two point charges becomes thicker when the charge separation distance
increases. We have obtained the same pictures starting from several different
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Fig.1. The flux function @ for 6 = 0.75 and R = 20.
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Fig.3. The energy density € for 6 = 0.75 and R = 20.

initial configurations for the iterative procedure. Our numerical procedure
was also tested for 6 = 0. In this case the analytical solution for @ is given
by formula (36). The numerical procedure recovers it.

The energy density distribution was used to derive the total energy of the
considered field configuration. As the energy density decreases slowly when
p?+2%2 = oo it is necessary to collect the energy density from relatively large
region around the charges. For this reason we have used the lattice with link
length varying from short near the charges to long for large p? 4+ 2z2. The
energy of configurations for various R was used to check the relation (26)
— if it holds e should depend linearly on v/R for § = 0.75. Using numerical
results for this linear relation one can estimate that ¢y ~ 4.1.
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Fig. 4. The energy density of the point charge e for § = 0.75 and R = 20.
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Fig.5. The energy density e(p) for 6 = 0.75 , z = ¢ = 0 and R = 10, 20, 30.
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4. Summary and remarks

We have investigated the Abelian sector of Pagels—Tomboulis model. If
the total charge Q) is non-vanishing the resulting field has infinite energy,
while in the case of point-like charges q, —q separated by the distance R the
energy is finite, proportional to R49—D/(40+1) " provided that 6 > 1/4.

There are several directions in which one could continue the present work.
First, we have not investigated stability of our Abelian solutions against
fluctuations of gauge fields. Because the derivation of screening phenomenon
given in the standard Yang—Mills case by Kiskis, [16], does not work if § > 0,
one may hope that a presence of the other components of the gauge field
(All“ AZ) will increase the energy. Also, one may ask about stability against
a collapse of the field configuration in the Abelian sector. To answer this
question one would have to investigate time-dependent solutions. It might
turn out that additional terms would have to be included in the Lagrangian
in order to prevent such a collapse, in an analogy to the well-known Skyrme
term in a mesonic effective Lagrangian.

Finally, one could use more refined forms of the 3(g) function in Eq. (4).
The model considered in the present paper should be regarded as the simplest
one compatible with the asymptotic freedom.

All problems mentioned above are important, but in our opinion the
most important and interesting one is to describe physical excitations in the
models of the Pagels—Tomboulis type.
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