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The effective mass concept was introduced for small non-local poten-
tials. For Skyrme interactions the effective mass depends on the density
of the system. We parameterised the density by a generalised Fermi dis-
tribution. The parameters of the distribution are fitted with the charge
root mean square radii of spherical nuclei. To test the parameters of the
velocity dependent term of the interaction at high density or temperature,
we studied the behaviour of the effective mass with density and tempera-
ture. The behaviour of the Landau parameter F'1 was also discussed. We
applied this study to most of the well known Skyrme forces. We recom-
mended SKM* and SKS4 as good examples of Skyrme forces as they reveal
small non-locality effects and well behaved functions at high density and
temperature.

PACS numbers: 21.65.+f, 21.30.Fe, 21.10.Ma

1. Introduction

In non-relativistic nuclear physics, the nuclear potential is non-local
(velocity dependent) and energy dependent. For small non-local effects one
might express the velocity dependent potential in a power series in the mo-
mentum. If the quadratic approximation for the momentum is considered,
the Schrodinger equation for non-local potential has the same form as the
local one except for the nucleon mass is replaced by a mass like quantity
m*(r) [1-3]. This quantity is referred to as the effective mass. Thus, the
effective mass idea transforms the non-local potential to a local one. Solv-
ing Schrodinger equation, the equivalent local potential will yield the same
scattering cross section and the single particle energies as the non-local one.
The behaviour of the effective mass in space (r) characterises the locality
of the potential [3]. Also, the empirical value of the effective mass in the
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central region of the nuclear interior characterises the energy dependence of
the potential [4].

Applying Fermi liquid theory to nuclear matter it was shown that [5]:
the key quantity to study the thermal properties of a nuclear system is the
level density parameter which is directly proportional to the effective mass.
So, the thermal properties of a nuclear system are reflected in its effective
mass.

The Landau parameters for Fermi liquids represent the effective particle—
hole interaction at the Fermi surface. It is instructive to relate these Landau
parameters, which are important for the phenomenological description of
nuclear properties, to the underlying nucleon—nucleon interaction. Within
the framework of the Landau Fermi liquid theory, the Landau parameter F'1
is directly related to the effective mass. This relation enables us to study
the behaviour of F'1 in space and also its temperature dependence.

The parameters of Skyrme interaction are fitted with the ground state
properties of finite nuclei. It is important to test these parameters at higher
densities and temperatures. This can be done by studying the behaviour
of the effective mass with density and temperature. It is also important
to study the locality of the potential. This can be done by studying the
behaviour of the effective mass in space.

In the present work we study the dependence of the effective mass (and
also the Landau parameter F'1) on temperature and space using Skyrme
interactions. A brief review of the formalism is presented in Section 2. The
results are shown and discussed in Section 3. Section 4 is devoted to the
summary and conclusions.

2. Formalism

2.1. The effective mass using Skyrme interaction

Skyrme interaction is one of the most convenient and popular interac-
tions. It consists of two-body and three-body zero-range forces. The three-
body terms simulate the density dependence and the velocity-dependent
two-body terms simulate the finite-range expansion of the force. Its zero-
range nature makes the numerical calculations easy and fast. Vautherin and
Brink [3] did the Hartree-Fock (HF) calculations with the Skyrme interac-
tion first. They fitted two sets of parameters (SI and SII) that differ mainly
in the empirical value of the fitted effective mass, i.e. in the strength of
the velocity dependent term. Later four more sets of parameters (SITI-SVT)
were fitted by Beiner et al. [4]. These sets of parameters differ also only in
the effective mass value. Rayet et al. [12] parameterised Skyrme interaction
(RATP) to take into account the available information on neutron-rich nu-
clei (to be suitable for nuclear and neutron matter). All the above sets of the
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Skyrme interactions fit the ground state properties almost equally well for
spherical nuclei ranging from 60 to 2°8Pb. However, there are well-known

setbacks namely:

high value of the nuclear matter incompressibility [6], too

high fission barrier [7] and spin instability [8]. Two sets of parameters (SKM
and SKM*) were fitted by Brack et al. [7] to give an accepted value of the
nuclear matter incompressibility and fitted the fission barrier heights. The
Skyrme interaction they used is:

H(r) =

12 1
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1
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The nucleon effective mass is given by [7|

h? OH (r)
o=, )
mq Tll(lr)
where ¢ refers to a neutron or a proton. This yields:
m 2m 1
— =14+ —<-[pC C 3
mz +h28[p 1+pq Q]a ()
where
C1 = t1(2+x1) +t2(2 + z2)
and
Cy = tg(l + 2152) — tl(l + 2.’1}1) .
The asymmetry parameter z is defined by
~r (4)

p

where p = p,, + pp.
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Using equation (4), we can write

pn = 3p(1+ 1)
and

pp = 3p(1—x). ()

The particle densities are related to their numbers by
4 4 4
N = gﬂ'Ripn, 7 = gﬂ'Rgpp and A= §7TR3,0. (6)

If we neglect the neutron skin, which is basic assumption of the liquid
drop model [9], we can write the asymmetry parameter = as: z = (N —Z2)/A.
This is the neutron excess parameter. The nucleon effective mass is then:

m 2m
=14+_F 7
m* + hQ 1(p) bl ( )

where F(p) = plcl + 1¢2(1 £ z)]. The (+) and (—) sign corresponds to the
neutron and proton effective mass, respectively.

Liu et al. [10] proposed an extended Skyrme-Landau force (SL1) which
includes velocity-dependent three-body forces and a tensor force to overcome
the problems of the high nuclear matter incompressibility and spin instabil-
ity. The contribution of these extra terms to the effective mass is Fs(p).
Thus we get

= 1+ G IR + Bl ®)
where
Fap) = spta® (1 £0)3 £ a(ars — 1)
+ﬁt23p2 [15 + 12393 £ 22(1 + 2z93) — 2°(5 + 4w23)] .

The above Skyrme interactions took into account only the long-range
part of the nuclear interaction and did not consider the short-range part
[11]. This part reflects pairing correlations and is important to explain level
density in the low excitation region, which is highly correlated to the effective
mass. Gomez et al. [11] extended the Skyrme interaction (SKS4) to describe
both mean field and pairing properties of the nuclear effective interaction.

The above Skyrme forces did not reproduce very well the breathing mode
energies [14]. Recently, Farine et al. [14]| overcame this problem and pro-
posed a new version of the force SKM* called SKKM with much improved
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symmetry properties. They introduce a ¢4 term which simultaneously de-
pends on density and momentum. The contribution of this term to the
effective mass is F3(p) and the effective mass becomes

=14 T Filp) + o) + By(p)] 9

where

F(p) = 11_61‘L4l)5+1 2+ @)L £2) + (1 -z (1 £ 2)7

2.2. The dependence of the effective mass on the radial coordinate

For spherical nuclei it is convenient to parameterise the density distribu-
tions by a Fermi function to a power [7,13]

Po

M) = e =T (10)
where R, a and v are the half-value radius, the diffuseness parameter and
the skewness parameter, respectively. This parameterisation has been found
[7,13] to fit a vast amount of experimental data with an excellent accuracy.
The density parameters R, a and v are determined by minimising the energy
of the nucleus with respect to these parameters. This is called the restricted
variational method. In this method the parameters of the density depend
upon the force parameters [7,13].

In our calculations the parameters ¢ and v are determined from fitting
the calculated root mean square (r.m.s.) radius using equation (10) with
the experimental values of spherical nuclei (see Appendix A). The half-value
radius R is determined from the normalisation condition (see Appendix A).
Here, the parameters of the density are independent of the force parameters
(except for pg) and depend only on the nucleus mass number.

2.3. The temperature dependence of the effective mass

Equation (9) shows that the dependence of the effective mass on tem-
perature is only through the density. The nuclear density at temperature T
is related to that at zero temperature by the relation (15):

9o(T = 0) OF
_9(T' =0)dFr ’ (11)
K op
where K is the incompressibility of nuclear matter and Fr is the free energy
part that depends on temperature. The free energy of the system is:

F(p,T) = E(p,T) —TS(p,T), (12)

p(T) =p(T =0) |1
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where S(p,T) is the entropy of the system and E(p,T) is the total energy
of the system.
The total energy of the system E(p,

T)
E(p,T) = )+ /T < ) T'dT" . (13)
0 Pq

Equations (12)and (13) show that the contribution of temperature to the
free energy comes only from the entropy term. In the Thomas—Fermi model,
the entropy density is given by [7]:

1 J3/2(nq) B
a(p) == pg <J1/2(nq) %) ; (14)

q

can be written as [5]:

where J, (1) are the usual Fermi integrals and the parameter 7 is the unique
solution (at constant temperature) of the equation:

Pe=53\ 77 %% Jy/2(ng) - (15)

At low temperatures we can expand the Fermi integrals in a power series
of temperature. This approximation, up to T* terms, was proved [5] to be
reliable up to temperatures T' = 15 MeV. The entropy of the system using
this approximation is given by [5]:

1/3 9
1 372 _ T
S(paT) = 6 <h2 ) < 2 ) p 2/3T2 <1 - ?)

_L 2_m 3p*2T4 (1 +$2) ) (16)
4320 \ h?
This gives
1/3 2
_ _i 37T —2/3m12 T
7 2m\* —2r14 2
and

o =g () (5) o (5)

(18)
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2.4. The Landau parameters

The Landau parameters of the Fermi liquids represent the effective par-
ticle-hole interaction at the Fermi surface. Some of the Landau parameters
are related directly to physical quantities [16]. For example, F} is related to

the effective mass by:

m*

1
ﬁ=1+§F{1, (19)

Fp is related to the nuclear matter incompressibility K by:
hQ
K =6K; <—) (1+ Fp) (20)

2m*
and F} is related to the asymmetry energy 8 by:

1 2
6= 357 (g ) 0L+ F0). @

3m3p
2

Thus the effective mass is an important quantity for the Landau param-

eters. In our study, we will concentrate on the Landau parameter F;. We

can write

1/3
where Ky = ( )

Ff:3<m—3—1>. (22)

m

3. Results and discussions

3.1. Density distribution

Equation (10) for the density distribution contains four parameters. The
half-value radius (R) is determined from the normalisation condition as given
in Appendix A. The nuclear matter density (po) is considered as a free pa-
rameter constrained by the Skyrme force type. The skewness parameter (v)
and the diffuseness parameter (a) are determined from fitting the r.m.s. radii
(see equation (A.6)) with the experimental values of spherical nuclei ranging
from 160 to 2%%Pb. We have three sets of fitting parameters corresponding
to three different values of py namely:

For po = 0.15 fm™3, we got

A A
a—0.45+m and V—l.l—f—ﬁ

we refer to this set as pwl.
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For po = 0.16 fm™3, we got

For pg = 0.17 fm 3, we got

In our calculations we neglect the neutron skin and this makes us to
consider the matter r.m.s. radius equal to the charge r.m.s. radius [7].
Table I contains our fitting r.m.s. radii, using the above three sets, together
with the experimental values. For the sake of comparison we presented in
Table I the results of HF calculations using SI and SII of Ref. [3], SKSC4
of Ref. [19], SLI of Ref. [10] and SKKM of Ref. [14]. We also presented the

A
a=05+ 2000

we refer to this set as pw?2.

— 0642
=0T 1000

we refer to this set as pw3.
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A
d =10+ —
an v + 03

and

1.3+ 4
v=1. —
180

results of the Extended Thomas—Fermi model [7] using SKM*.

R.m.s. charge radii (fm). The experimental data all come from de Varies et al.

[17]. See text for notations and references for Skyrme interactions.

TABLE 1

Exp. pwl pw2 pw3 SI  SII SKSC4 SL1 SKKM SKM*
160 273 280 2.79 2.80 2.68 2.75 — 268 2.78 2.78
0Ca | 345 344 343 3.45 341 349 345 344 3.50 3.47
8Ca | 345 360 3.59 3.60 3.46 3.54 3.54 348 3.50 3.54
58Ni | 3.77 3.79 3.77 3.718 — @ — 3.82 — — 3.81
07y 426 428 427 426 4.22 431 428 428 430 4.29
128y | 459 4.56 4.56 4.56 — — 4.59 — 4.57 —
117Qn | 462 4.62 462 461 — @ — 4.62 — — 4.61
1206y | 4.65 4.65 4.65 464 — @ — 4.64 — 4.64 —
124Qn | 4.67 4.70 4.69 4.68 — «@— 4.67 — — —
1449 | 495 492 491 491 — — 4.93 — 4.95 —
148Qm | 499 4.96 4.95 495 — @ — 5.00 — — —
156Gd | 5.07 5.04 5.04 503 — — 5.12 — — —
166Fr | 524 5.13 5.13 513 — — 5.23 — — —
196py | 538 5.39 539 540 — @— 5.41 — — —
196pL | 550 5.49 549 550 544 555 550  5.55  5.49 5.53
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The density distribution Eq. (10) for 0 and 2%®Pb is presented in fig-
ure 1. We note that the distribution is smooth inside the nucleus where shell
corrections are not included.

Density (fm ™)

Fig.1. The dependence of the proton density p,, the neutron density p,, and the
total density p on the 'O and 2°®Pb nuclei radius.

3.2. The radial dependence of the effective mass

The nucleon effective mass is given by equation (7), for most of Skyrme
interactions. For symmetric nuclei (N = Z) we get the so called isoscalar
effective mass m*. Fig. 2 shows the neutron my, the proton m; and the
isoscalar m* effective masses (in units of m) as a function of the 2%%Ph
radius using SKM* interaction. We note that m* represents the average
between my, and mj. This result is fulfilled for any nucleus except for self-

conjugate nuclei (such as '0 and 4°Ca) where X = 0 and consequently
m, = m, = m*. Since the density inside the 208Ph nucleus is very close
to the nuclear matter density, the behaviour of the effective mass inside
the nucleus determines accurately the non-locality of the interaction (3).
Figure 3 shows the (isoscalar) effective mass m* as a function of the 208Pb
radius. We have important non-locality effects for SLI and RATP (with
m* < 0.75m). Skyrme forces SKM* and SKS4 (with 0.75 < m < 1) are
nearly local. Skyrme force SKSC4 (with m* = m) is local (independent of
velocity). Skyrme forces SKKM and SK220 (with m* > m) are irregular.
The behaviour of SK220 (also SK180 and SK200) is unexpected as seen from
Fig. 3 (see also Fig. 6). The behaviour of the Landau parameter F'1 inside
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Fig.2. The dependence of the neutron effective mass m; /m, proton effective mass
m*/m on the radius of the 2°*Pb nucleus using SKM* interaction.
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Fig.3. The isoscalar effective mass m*/m as a function of the 2°*Pb radius for
different Skyrme interactions.

the nucleus is presented in figure 4. It has exactly the same behaviour as
the effective mass. There is a constraint on F'1, given by Backman et al.
[8], namely —0.75 < F1 < 0 with the sum rule favouring the low value.
The lower value of F'1 corresponds to m* = 0.75m. This value of m* was
confirmed by Mahaux and Sartor [20] in their analyses of neutron 208Pb
mean field at the Fermi surface. This suggests Skyrme forces to be nearly
local (e.g. SKM* and SKS4).
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Fig.4. The same as for figure 3 but for the Landau parameter F'1.

3.3. The dependence of the effective mass on the density

In figure 5 we presented the effective mass m*/m as a function of the
relative density p/pp. We notice that the effective mass decreases with den-
sity for Skyrme forces RATP, SKM* and SKS4. This can be interpreted

=
(=3
1

Effective mass (m*/m)
s S
1 1

S
EN

[NEREBRENUNON|

L e e T

1 2
Relative density

Fig.5. The dependence of the isoscalar effective mass m*/m for different Skyrme
interactions on the relative density p/po.
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as being due to the function Fi(p) (see Eq. (7)) which has a p term only.
This decreasing is controlled by the force parameters included in C1 an
C2 (Eq. (3)). The Skyrme force SKSC4 (with m* = m) is independent
of the density. For the Skyrme force SLI the effective mass decreases for
densities p/pg < 1.5 and then increases. This can be seen from Eq. (8),
where an extra term, Fy(p), contains p? is added to F;. For Skyrme forces
SKKM and SK220 (also SK180 and SK200) the effective mass increases with
density. The parameters of these forces are adjusted to produce m*/m = 1.1
at p = pp and naturally m*/m = 0 at p = 0. This implies an increasing
behaviour of the effective mass with density. We found unexpected behaviour
for SK220 and SK200 forces as seen in figure 6.

40.0 7
SK220

30.0 é

20.0 é
E SK180

10.0

i
o
1l

Effective mass (m*/m)

-20.0 3

-30.0 T e
1

Relative density

Fig.6. The same as figure 5 using SK200 and SK220 potentials.

3.4. The temperature dependence of the effective mass

As we have a little decreasing effect of density with temperatures (see
figure 7), the effective mass has a little increasing effect with temperatures
(see figure 8). The same behaviour was obtained by Friedman and Pandhari-
pande [21] using variational calculations of 14 + TNI model. This means
that as the temperature of the nucleus increases the strength of the non-
local term of the interaction increases. This result is fulfilled for all Skyrme
interactions except for SKKM and SK220 as seen from figure 9. We obtain
unexpected behaviour of the effective mass (again) for SKKM and SK220
with temperatures.



The Effective Mass Using Skyrme Interactions 2201

0.76
] Total density
012 ]
S
fg« Neutrons
ﬁ?o.o&—_
1) ]
(@ ]
¥ ] Protons
A ]
0.04 ]
0.00 -
0

Temperature (MeV)

Fig.7. The temperature dependence of the protons density p,, neutrons density
pn and the total density p of 2°8Pb using SKM*.
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Fig. 8. The same as figure 7 but for the effective masses.
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Fig.9. The temperature dependence of the isoscalar effective mass m*/m of the
208Ph nucleus using different Skyrme interactions.

4. Summary and conclusions

The parameters of Skyrme interactions were fitted with the ground state
properties of finite nuclei. The effective mass characterises the velocity-
dependent terms of the interaction. The thermal properties of a nuclear
system are summarised in its effective mass. Thus, we can test the param-
eters of the velocity-dependent terms of the interactions by studying the
behaviour of the effective mass with density and temperature. The effec-
tive mass depends on the density of the system. We took a general form
of Fermi distribution for the density and fitted the distribution parameters
with the charge r.m.s. radii of spherical nuclei. This fitting gives a density
distribution which rests on an experimental ground rather than on force pa-
rameters. Defining the density distribution (and expanding it in terms of
temperatures), we can study the effective mass and its co-related Landau
parameter F'1. We applied this study for most of the well-known Skyrme
forces. Some Skyrme forces (e.g. SLI and RATP) have high non-locality
effects, some forces (e.g. SKM* and SKS4) have a small non-locality effects
and some forces (e.g. SKSC4) are local. Skyrme forces SKKM, SK200 and
SK220 have unexpected behaviour.
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Since the effective mass concept itself was introduced for small non-local
effects, we recommended SKM* and SKS4 as a good examples of Skyrme
forces. However, SKS4 is more suitable since it takes into account beside
the finite size of nuclei and realistic incompressibility also the pairing corre-
lations, which is highly correlated to the effective mass, and fits the Landau
parameters.

Appendix A

For the density distribution given by equation (10) we need, to calculate
the r.m.s. radius, to evaluate integrals of the form [ pPdr. Following the
method adopted by Srivastava [17], these integrals can be approximated in
the form

/pp(r)dr = 4?71-/0]5 [R® — aR?A1(p) + 6a®RA2(p) + 6a° A3(p)], (A1)

where the coefficients A, (p) are given by:

1

An(p) = (n — 1)'

/[1 e )P (—1) (14 e7) P e, (A2)

The normalisation condition

A= /p(r)df = 4% (R® — aR?Ay(v) + 6a°As(v) — 6a*A3(v))  (A.3)

is inverted to obtain the half-value radius R as:

2
R =reAY? + adi(v) + jf— (A (v) — 24,(v)] A~1/3 (A.4)
0

3

Trpo- The r.m.s. radius is given by :

with 78 =

(2 = [ p(r)r?dr
[ p(rydr -

Using equations (A.1) we get

oy 3R (1—5XA1(r) + 20X Ay(v) — 60X3 A3(v))
) = 5 R3 (1 —=3MA:(v) + 6)\2142(1/) — 6)\3A3(V))

(A.5)

with A = a/R.
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Using equation (A.4) we get
rm.s. = gr§A2/3 + roa <2A1(1/) + gCl) A3

+a? <%(01A1(u) + 02) + 343 (v) — 4A2(y)>

3a?

+? (03 + C1 (A%(l/) — 2A2(l/))) A71/3
0
org org

where

Cl = —2A1 (V) ,

C2 = 14A5(v) — 10.543(v),

C3 = T2A,(v)As(v) — 54A3(v) — 22.5A3 (v),

C4 = 18043 (v)As(v) — 1924 (v) A3(v) — 10243 (v)
and

C5 = 444A5(v)As(v) — 450A1 (V) A3(v) — 27043 (v) A3 (V).
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