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We analyse inclusive scattering of the polarised electron on the polarised
deuteron in the Plain Wave Impulse Approximation (PWIA). Assuming two
kinds of functions for ga(z), e.g. g2 = 0 and go = g3¥", the longitudinal
and transverse asymmetries are calculated versus the electron energy loss
for the different initial electron energy and the scattering angle.

PACS numbers: 25.30.Fj, 24.70.+s

1. Introduction

This paper is the continuation of the previous one [1], where I described
only the quasi-elastic scattering of polarised electrons from the polarised
deuteron in the Plain Wave Impulse Approximation (PWIA). There I cal-
culated the differential cross sections and asymmetries.

The elastic and inelastic electron scattering from nuclei is a powerful and
fruitful method to investigate the nuclear structure. Current experiments of
this kind are so precise that we can observe phenomena connected with spins
of electrons and nuclei. The spin structure of nucleons is now examined very
intensively. There exists a broad experimental program of electron-deuteron
scattering studies at Jefferson Lab and SLAC with the polarised lepton beam
and the deuteron target.

Let us consider inclusive scattering in one photon exchange approxima-
tion. Now we must take into account not only the elastic but also inelastic
channel in the elementary electron collision with quasi-free nucleons in the
nucleus.

The PWIA method used in this paper to calculate the differential cross
section (d.c.s.) in the inclusive scattering of polarised electrons from po-
larised deuterons is based on the assumption that an ingoing lepton inter-
acts with only a single, quasi-free nucleon in the nucleus and ejects it. The
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nucleon leaves the nucleus with a sufficiently high energy that the process
can be treated approximately as having occurred without strong effects from
final-state interactions.

I would like to mention that there exist more refined approaches which
take into account final-state interactions [2| or relativistic effects [3-6] but
such corrections are now smaller than experimental uncertainties in mea-
surements of asymmetries. So I use the de Forest’s recipe for off-shell mod-
ifications to simulate to some extent the neglected interaction effects.

As was shown by de Forest [7], the problem of the lepton-nucleus in-
teraction within the above assumptions is reduced to the more fundamental
lepton—nucleon scattering and to the calculation of the nucleus spectral func-
tion.

The structure of nucleons in that elementary process is described by
the FP(¢?), FY(q?), F'(¢?), F3(q?) elastic structure functions, W/ (z, ¢?),
W3 (x,q%), Wi (z,q?), W(z, ¢?) inelastic structure functions and g} (z, Q?),
b (z,Q%), gt (z,Q%), g5 (z,Q?) polarised inelastic ones.

The elastic and inelastic structure functions are quite well known ex-
perimentally but a lot of effort is now being put into extracting polarised
structure functions from deep inelastic e—p or e—d cross-sections asymme-
try measurements. The PWIA expressions involve independently all proton
and neutron structure functions but the polarised structure functions enter
as a combination g} + ¢ and gb +g%. So we have substituted 2g‘1i72 (1-1.5wp)
for g’i2 +97 5 in the numerical calculations (wp = 0.0577 is a probability that
a deuteron is in a D-state [4]). From the basic point of view we should use
independently known g} , and g1 o but this substitution is done only because
of little experimental kné)wledge of neutron polarised structure functions and
that they are mostly deduced from the deuteron structure functions.

The function go(x, @?) is known experimentally and theoretically with
less accuracy than g;(z, Q%) one. In this paper I calculate the asymmetries
for two theoretically possible forms of go(x, @?): one, assuming go(z, Q%) = 0
and the other for the form predicted by QCD [12]

1
2
5@ = Y = g1, + [ %dzj. 1)

In E143 experiments [8] both cases go = 0 and go = g§"V were consistent
with their data.

In this paper I show that there is a big difference between the calculated
transverse asymmetries A, with g = 0 and go = g5"" for the scattering
angle greater than 10°.
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Transverse asymmetries A are very sensitive to the change of the shape
of go(x) and to the scattering angle 6 so experiments in the kinematical
region where 6 > 10° can determine the values of go(z) with more precision.

The calculations of asymmetries were performed for such kinematical
regions where differential cross section is greater than 0.1 pb/GeV /sr.

The structure of nucleus is described by the nucleon spectral function
P(p,e).

De Forest proposed the method to describe the scattering of an electron
by an off-shell nucleon. The nucleon is represented by a plane wave. The
energy transfer @ to that bounded nucleon is less than electron energy loss
w for two reasons. One is the binding energy of the nucleon. The other
is the recoil of the remaining nucleus (in our case the remaining nucleon).
Consequently the struck nucleon in the initial state has an energy diminished
by the kinetic energy of the recoiling nucleon and its momentum is opposite
to the remaining nucleon because the deuteron is in the rest. These two
reasons are the cause that the struck nucleon is off-shell.

The framework of my calculations of the d.c.s. is based on the paper
[13,14] by Benhar et al. with the generalisation on the polarised particles.

In Sec. 2 T present the calculations of the differential cross-section of
the considered process within PWIA using relativistic dynamics. In Sec. 3
I define the longitudinal and transverse asymmetries measured in the ex-
periments. In Sec. 4 the calculated transverse asymmetries for two cases,
go =0 and g9 = ggV W " are presented and compared with the experimental
ones in the Fig. 4 for the different ingoing electron energy and scattering
angle versus transfer electron energy.

The asymmetries for a given energy of an ingoing electron and different
scattering angle versus energy loss w and for cases, go = 0 and g3 = g3 W,
are provided in Figs 5,6.

The total differential cross-sections in the same kinematical region are
presented in Fig. 7.

2. Electron-nucleus scattering within PWIA

The differential cross-section for the inclusive reaction

e+ A — € + anything (2)
is given by
d?o? a® E'
v _ = _Luu A

where ¢ is the 4-momentum transfer, F, E' — the energies of the ingoing
and outgoing electron, a = %7, L* and Wlﬁ, are respectively the lepton
and nuclear tensors.
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The nuclear tensor W;‘V describes the structure of a nucleus and in PWIA
is given by [7]

W (g) = / PpdeP(5,€) ZWD, (5.e.) + NWD (Fesa)].  (4)

where the nucleon spectral function P(p, ) represents the probability distri-
bution of removing a particle of momentum p from the nucleus ground state
leaving the residual system with an excitation energy equal to ¢ (including
the recoil energy).

The off-shell proton and neutron tensors Wﬁy, W;}V describe the inter-
action of a virtual photon with an individual, bound nucleon in the nucleus
and are related to the structure functions of the free nucleons.

In PWIA the two channels contribute to the inclusive reaction (2):

— elastic electron-nucleon scattering (Fig. 1)
— inelastic electron-nucleon scattering (Fig. 2).

knocked nucleon

A p=p+q
k=(E, k)

virtual nucleon
p=(§,p) ~
k=(E,E) p=(Ep, 'p)

recoiled nucleon
electron

deuteron

Fig.1. The kinematics of the quasi-elastic electron—deuteron scattering in the
PWIA; E, = \/p?2+ M?, E, =2M — E; — E,.

anything

k=(E, k)

virtual nucleon
k=(E, k)

recoiled nucleon
electron

deuteron

Fig.2. The diagram of the inelastic electron—nucleon scattering in the PWIA.
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Since the scattering process involves a bound nucleon, a fraction of the
energy transferred by the virtual photon goes into the excitation energy and
recoil of the residual (A — 1) nucleus. In Ref. [7] de Forest proposed for
the quasi-elastic scattering to relate Wﬁy, W;}w to the free nucleon structure
functions F1(Q?), F5(Q?) and to the free nucleon spinors u(p) but taking the

energy transfer @ to the struck nucleon of momentum p’ as:

o= \F+q?+ M2 = Vi?+ M2 =w - Eg— (Vi2+ M2 = M), (5)

where ¢, w are respectively electron momentum transfer and energy loss, Ey
is the deuteron binding energy and M is the nucleon mass.

The off-shell current for the elastic photon—nucleon interaction is taken
in the form

in =) | P (") = io™ Gy | ulp) (6)

where ¢ = (@, §).

Whenever one applies the one-body electromagnetic current operator not
to a free nucleon, but to a nucleon bound in the nucleus, one needs to intro-
duce an off-shell prescription. Currently, there exists no unique and obvious
microscopic description of this off-shell behaviour. There are only ad hoc
prescriptions which lead to differing between themselves results (especially
in the cross sections) for certain kinematics. Fortunately, this uncertainties
are less for the ratio of the cross sections as it happens for the asymmetries.
The discussion of these procedures can be found in [6,7].

The d.c.s. for the scattering of a polarised electron on a polarised
deuteron based on the above assumptions is given by [15]

d’o . . .
T = [ Epae PG [of 4ot w ot ol] (@
where
2 1
el(inel) /o o ~ o E" M =
Uep(n) ( ) ,(/J,S,S) - qTEE_pLMVWIZLJI(In) (8)

is the off-shell, elementary elastic (inelastic) electron—nucleon d.c.s. for the
moving nucleon with energy E, = p® = (1/p? + M?2), s is the spin of ingoing
electron and partial polarisation 4-vector S of nucleon is defined as

0
St = <H3%,H1,H2,H3pﬁ> , (9)
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with the properties [16]
[I? = (I1')* + (1I°)* + (II°)* < 1,
Sﬂpu =0,
SHSy = —/(IT")? + (I1?)?) + (IT%)?. (10)

In the particle rest frame p = (M,0), S* = (0,5), where S is a unit
3-vector pointing in the direction of the particle spin. The “vector” IT is
called the polarisation vector of the beam.

The deuteron spectral function P(p,e) can be expressed in terms of the
momentum distribution n4(p) of the nucleons in the deuteron [17]

P(p,e) = nqg(|pl)d(e — Eqa — VP?* + M?* + M). (11)

The deuteron momentum distribution is normalised as follows
o0
4W/p2nd(p)dp =1. (12)
0

The nucleon polarisation in the deuteron is equal to the double value of
the spin expectation value (ox) of the nucleon in a deuteron and is given
by the P(S) and P(D) probabilities of the two-nucleon bound state wave
function according to [4]

\IT| = P(S) — 1P(D) =1— 1.5P(D) = 0.9135. (13)

In turn we consider the elementary inelastic scattering of polarised elec-

trons on polarised nucleons. We denote by m the electron mass, by k£ and &'
the initial and final lepton four-momentum. Lepton tensor L, is given by

Lu(k,s,K') = 2LG) (k, k') + 2L (k, 5, k') ,
L) = kuky, + Kk, — gu(k -k —m?),

L) = meuaps®(k — k)7 . (14)

The hadron tensor W, for a free nucleon is defined in terms of four structure
functions as

W (a,p,8) = Wi (q,p) + WD (g, p.S), (15)
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with

1 quqv
mW,ﬁf)(q,p) = (—gﬂﬁ ‘;2 ) Wilp-q,q%)

+[<p _Mq>< _ra, )] Wa(p - 4,4%)
w2 e v M2 ’
oM

S-aq)p?
W;Ef)(%pa S) = ﬂguuaﬂqa{sﬁgl(xaQ2)+[Sﬁ_%] 92($aQ2)} s
(16)

where Q? = —¢% and © = Q?/(2p - q). In the case of the off-shell nucleon we
substitute ¢ = (@, q) for ¢ = (w, g) in the hadronic tensor W,,.

Within the above prescription we impose the requirement of gauge in-
variance

QVW'U‘V((j,p,S) = Wﬂy(d,p,S)Q“ =0 (17)

from which one can eliminate the dependence of the off-shell nucleon tensor
upon the longitudinal current.

The symmetric part of the aier]‘\‘}l, which depends on W&f), was calcu-
el

lated from the analytic expression given in [13]. The elastic d.c.s. gy
and antisymmetric part of aler]‘\‘}l was calculated with the use of (16) imposed

numerically.

3. Asymmetries

Here I define the longitudinal and transverse asymmetries to be calcu-
lated and compared with the experiment. The detail discussion about the
possible polarisations of particles involved in the electron—nucleus scattering
is presented in [18,19]. I give the main points.

Because of the small mass of an electron only longitudinally polarised
electrons are of practical interest in nuclear physics experiments. If we con-
sider experiments where only incident particle polarisation are measured,
then the cross section can be written in the general form

<3—;)h:z_m, (18)

where h is the helicity of an electron (h = s% = £1).
The term A gives the contribution to the unpolarised cross section X
when incident electron helicity is measured.
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The quantity X' and A can be calculated from the cross sections as

follows:
o 1 d_O' -1 N d_O' +1 B d_O' unpol
2 as? ds? —\dn ’
1 do\ * do\ 1
s (B - ()) 1)

To compare the theoretical predictions of the asymmetries with the experi-
mental data I have slightly changed the definition of A (change of the sign)
with respect to my previous paper [1].

The target polarisation direction is specified with respect to the scatter-
ing plane as follows:
L — along the direction of the electron beam,
N — normal to the scattering plane

S — in the scattering plane, normal to the electron beam.
The longitudinal A and transverse A asymmetries are formed as follows:

@) e, m

The (A/X)x ratio is identically zero in our case [18].
4. Results and conclusion

The asymmetries in quasi-elastic scattering of polarised electrons from
the polarised deuteron were calculated in my previous paper [1] and elemen-
tary cross sections for polarised, elastic electron—nucleon scattering can be
found in [20].

For inclusive electron—deuteron scattering we must add a contribution
from inelastic electron—nucleon scattering. The sum of these two channels
gives the inclusive electron—deuteron differential cross section.

I use the dipole formula for the elastic structure functions Gg, G\ of
a nucleon. The inelastic structure functions W}, WV were parameterised
to fit the data and are given in [21].

The inelastic polarised structure functions g7 (z, Q?), g7 (x, @?) enter all
considered formulas as a combination ¢} 4+ g7 which expresses itself by the
one deuteron form factor ¢¢ as

2g¢
Pygh=—"2L 21
91+ 5 (1-1,5wp)’ (21)
where wp is a probability that the deuteron will be in a D-state and is equal

wp = 0.05 [8].
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I use the fit of the structure function g¢(x, @?) to the data based on the
following expression [9]

4o o2 — M. Q) F(r.Q?)
g1 (z,Q%) = §$(1 +R(;,Q2))

The parameterisation of the A4, F and R functions are taken as follows:

(22)

Ad(z, Q%) = az®(1 + bz + cz?) [1 + %] (23)
with [8]
a = 1.46 b=1.915 C =0.260
a =249 c=1.376
PG — Al (M)B‘“ (146 o)
e In(Q5/42) Q?
with [10]

A(z) = 29 (1—2)?{az+as(1—z)+as(1—2)> +as(1—2)3+ar;(1—2)*},
B(z) = by + by + b3 /(x + bs) ,

C(z) = c12 + cox® + 32 + cazt, (25)
Q% =20 GeV? A = 0.250 GeV
a1 — —0.04858 by = —0.008 c1 = —1.509
as = 2.863 by = —2.227 co = 8.553
az = 0.8367 bs — 0.0551 c3 = —31.20
ag = —2.532 by — 0.0570 cy = 39.98
as = 9.145
ag —12.504
a7 = 5.473
and [11]
0.0635 Q2 0.1252 0.5747 —0.3534
R(z,0?) = ——22° (1119
(. Q%) = 1 Q2/0.09) < T o2 +$2) Q@ Q' 1009
(26)
The structure function gg(x) is taken either gg = 0 (dotted lines on

the figures) or go = gg(WW) (solid lines) where gg(WW) is the Wandzura—
Wilezek twist-2 contribution (1) [12]. Function gg(WW) is plotted in Fig. 3

for g1(z, Q? = 5 GeV) parameterised as above.
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Fig.3. Twist-2 gg(WW) (z) calculated from (1).

We assume the 100% electron longitudinal polarisation with h = £1 and
100% deuteron polarisation.

The de Forest’s prescription was used to calculate the asymmetries in
Figs 4-6. Since this prescription is not unique we would like to know the
deviations between different prescriptions. For this purpose we compared
asymmetries calculated in two extremely different situations: for off-shell
nucleons and for on-shell ones, i.e. without changing ¢ — ¢. It has appeared
that they are the same in the whole w range except the minimal values of
w where the differences can reach 50%. It shows that other similar pre-

0.40 0.40
E=29.1 GeV E=29.1 GeV
p 1 (0]
o=45° o7
0.20 = 0.20 =
| £|.6 }i p o]
0.00
]
<
0.20 =
-0.40 -0.40

Fig.4. The calculated transverse asymmetries A (solid line for g¢ = gg(WW)

and dotted line for g¢ = 0) in the inclusive electron—deuteron scattering for the
initial electron energy E=29.1 GeV and two scattering angles § compared with the
experimental data (points with statistical errors).
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e=30°
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Fig.5. The longitudinal asymmetries A versus energy loss w for given electron

energy E and scattering angles # (solid line for g¢ :gg(WW), dotted line for g¢ =0).

0.10 4

0.20

0.00

10 %)

-0.20 —

-0.40 —

-0.60 —

Fig.6. The transverse asymmetries A, wversus energy loss w for given electron

energy E and scattering angles # (solid line for g¢

dWW)

=05 , dotted line for g =0).
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scriptions should give comparable results for asymmetries in the case of the
deuteron. The asymmetries were also calculated without the requirement of
gauge invariance of modified structure functions WH¥(q,p, S). Also in that
case the values of asymmetries were practically the same.

1E+5
1E+4 M\Elo GeV
%‘ 1E+3 o | 5°
% 1E+2
S 1En
w
'8 1E+0
- 1E1
S
O 1e2
°
1E-3 o :
1E-4
0
1E+3
1E+2
E=20 GeV
1E+1
%
Q
S 1E+0
£
W 11
g
o
5 1E2 5
o
)
5 1E3
1E-4 ) ° ) o
©=30
10 15 200 250
1S ——T—— T —— T —— T
0 4 8 12 16 20
WIGeV]
1E+3
1E+2
% 1E+1 E=30 GeV
Q
5 1E+0
£
W 1E-1
8
% 1E-2
- 1E-3
O
1E-4 ®=30
5° 15° 20° 25°
1E-5 T T T T T 1
0 10 ¢o[GeV] 20 30

Fig.7. The differential cross section versus energy loss w for given electron energy
FE and scattering angles 6.
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Only the calculated longitudinal asymmetries A and the transverse ones
A, are analysed because the ratio (A/X)x is identically zero.

Fig. 4 shows that for small scattering angles 6 two cases g4 = 0 or

_ AWW)
92 = 99
uncertainties.

The dependence of Aj| asymmetry on go is very small (see Fig. 5).

are consistent with the experimental data within measurement

The drastic difference in A; asymmetries between gg =0 and g0 =
gg(WW) is seen for the scattering angles § > 10°, which is presented in
Fig. 6. The numerical calculations in PWIA show that the main contribution
to the A asymmetry due to the go(x) function comes from the range of z
for individual nucleons greater than 0.1, where function go(z) is negative.
That causes a big negative transverse asymmetry for go = g5V

In Fig. 7 we can see the values of the d.c.s. in the considered regions of
the energy loss for three given incoming electron energies; these values are
not less than 10~ nb.

The above results suggest performing inclusive electron—-deuteron scat-
tering with polarised particles where one can measure the transverse asym-
metries A for the scattering angle 6 greater than 10° and with high electron
energy. In that kinematical region it should be easier to conclude on the
shape of the spin structure function go(x).

The author wishes to thank Prof. O. Benhar for discussions and for pro-
viding computer code for calculating d.c.s. of unpolarised electron—deuteron
collision.

REFERENCES

[1] J. Kragkiewicz, Nuovo Cim. A111, 233 (1998).
[2] S. Jeschonnek, T.W. Donnelly, Phys. Rev. C59, 2676 (1999).

[3] C. Ciofi degli Atti, D. Faralli, A.Yu. Umnikov, L.P. Kaptari, Phys. Rev. C60,
034003 (1999).

[4] R.-W. Schulze, P.U. Sauer, Phys. Rev. C56, 2293 (1997).
[5] S. Jeschonnek, T.W. Donnelly, Phys. Rev. C57, 2438 (1998).
[6] S. Jeschonnek, JJW. Van Orden, preprint nucl-th/9911063.
[7] T. de Forest, Jr., Nucl. Phys. A392, 232 (1983).
[8] K. Abe, et al., Phys. Rev. D58, 1, 11, 2003 (1998).
[9] M. Anselmino, A. Efremov, E. Leader, Phys. Rep. 261 (1995).
[10] M. Arneodo et al., Phys. Lett. B364, 107 (1995).
[11] L.W. Whitlow et al., Phys. Lett. B250, 193 (1990).
[12] S. Wandzura, F. Wilczek, Phys. Lett. B72, 195 (1977).



2220 J. KRASKIEWICZ

[13] O. Benhar, A. Fabrocini, S. Fantoni, G.A. Miller, V.R. Pandharipande, I. Sick,
Phys. Rev. C44, 2328 (1991).

[14] O. Benhar, V.R. Pandharipande, Phys. Rev. C47, 2218 (1993).

[15] A.E.L. Dieperink, T. de Forest, Jr., I. Sick, R.A. Brandenburg, Phys. Lett.
B63, 261 (1976).

[16] F.M. Renard, Basics of Electron Positron Collisions, Front Press 1981.
[17] M. Lacombe et al., Phys. Rev. C21, 861 (1980).

[18] T.W. Donnelly, A.S. Raskin, Ann. Phys. 169, 247 (1986).

[19] T.W. Donnelly, A.S. Raskin, Ann. Phys. 191, 78 (1989).

[20] J. Kraskiewicz, Annales UMCS, Sectio AAA, XLVIII, 111 (1993).
[21] A. Bodek, J.L. Ritchie, Phys. Rev. D23, 1070 (1981).



