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A technique to calculate the rate of change of the nucleon—nucleon
amplitude phase is given. The results for the nucleon—nucleon potential in
the Gaussian form are consistent with the previous values of phase variation
parameter 7.
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1. Introduction

At 1 GeV energy, Ahmed and Alvi [1] obtained values of the order of
1 (GeV/c)~2 for the nucleon-nucleon amplitude phase variation parame-
ter v [2]. The authors used an effective nucleon—nucleon potential in the
Gaussian form. They obtained the same results in the case of Yukawa po-
tential form. Thus, the authors concluded that the value of v must be
positive and it was not as large as required for fitting a-particle scattering
at 7 GeV/c, where y was in the range 7.5-11.51 (GeV/c) 2 [3]. Therefore,
the phase variation of nucleon—nucleon amplitude alone is not sufficient to
bring the Glauber model calculations closer to the a-particle scattering ex-
periment.

In fact, Ahmed and Alvi [1] used incorrect mathematical technique to
obtain the values of the parameter 7y, see Section 2. Therefore, their results
and conclusions cannot be accepted. In this work we try to present a cor-
rect mathematical technique to obtain the range of the values of . The
Gaussian form of nucleon—nucleon effective potential is used to calculate the
nucleon—nucleon elastic scattering amplitude. The momentum transfer de-
pendence of the nucleon—nucleon amplitude phase and the dependence of
the ratio of the real to the imaginary part of the amplitude are presented
and discussed. The obtained model amplitude is compared to the spin in-
dependent nucleon—nucleon amplitude obtained from experiments on the
nucleon—nucleon scattering.
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2. Ahmed and Alvi technique

Comparing the coefficients of expansions in powers of ¢ of the integral
representation of nucleon—nucleon amplitude [4]
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where k is the incident particle momentum, ¢'is the momentum transfer vec-
tor, o is the nucleon—nucleon total cross section, p is the ratio of the real part
to the imaginary part of the forward scattering amplitude and S is the slope
parameter. The phase shift function in the high-energy approximation [4] is
given by

o
- 1

x0) =~ [ V() dz, @

— 00

where V(7) is the nucleon—nucleon potential, b is the impact parameter

vector, 7 = =b+ kz where k is the unit vector in the z-direction which is
usually taken in the incident direction, v is the incident nucleon velocity and
I'(b) =1—ex®),

At first, we note that, the nucleon—nucleon amplitude obtained from
equation (1) using an effective nucleon—nucleon potential — in general —
has a phase of a variable rate of change. At the same time, the phase
of the nucleon—nucleon amplitude of equation (2) has a constant rate of
change —v/2. Therefore, the authors of Ref. [1] compared the expansions
of two mathematically different functions which were given by equations (1)
and (2). Secondly, the coefficients of the expansion of the right-hand side
of equation (1) were calculated at ¢*> = 0. Therefore, the right-hand side
of equation (3), after dividing it by -2, represents the rate of change of
nucleon—nucleon amplitude phase with respect to ¢? at ¢> = 0 only. Thus,
the obtained result which is represented by equation (3), is correct only at
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q®> = 0. At the same time, —y/2 in equation (2) gives the rate of change of
the phase at any ¢?. Thus, the obtained value for v from the relation (3) is
not correct.

3. The correct technique

Practically, we can consider the nucleon—nucleon elastic scattering am-
plitude f(¢) as a complex function of ¢2. Thus, the phase ¢(q?) of this
function is

¢(¢*) = TmIn f(q). (5)
Then, the rate of change of ¢(¢?) with respect to ¢? is
g d (1 d@
=m0 =1 (5 G ) ©)

To calculate the correct values of the rate of phase variation we must use
equation (6). For convenience we define the phase variation function P, as
follows

(7)

From (1), integrating with respect to the angular part of d2b, we get
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Using the integral representation of zero-order Bessel function of the first
kind Jy
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Thus, from (6)—(8) and (9), we obtain
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which is in agreement with our point of view about the right-hand side of
equation (3).

4. Gaussian potential calculations

As an example, we will consider the effective nucleon—nucleon potential,
as in Ref. [1], in the Gaussian form

2
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where Vg, Wy and o are the potential parameters. From equation (1), using
equation (4), we get
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where x, = —%\/J—Q(Vb —iWy). Tt is easily seen that
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In equation (12) the scattering amplitude is a combination of constant phase

terms and the interference between these terms leads to a variable rate of

change of the scattering amplitude phase.
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Using equations (6), (12) and (13) we can, easily, calculate the phase
variation function P, at any ¢? for the Gaussian potential. To calculate the
results of Ref. [1], we calculate P, at ¢ = 0. Although the amplitude of
equation (2) is a fitting form, and the value of v is an effective value which
gives a good fit with the data, the range of P, values gives some indication
about the possible values of . Equation (2) corresponds to the special case,
where P,(q?)=constant—.

From equation (12) we can obtain the nucleon—nucleon total cross section
o = (4n/k) Imf(0) and the ratio of the real part to the imaginary part of
the elastic scattering amplitude in the forward direction p = Ref(0)/Imf(0)
in terms of xo and o?. The mean values of proton-proton and proton—
neutron experimental data, at 1.75 GeV /c, for o and p are 44 mb and —0.23,
respectively [3]. These values correspond to xo = —0.272 + i0.896 and
a? = 0.041 (GeV /c)? with x? value (of x? method ) equal to 0.15 x 1073,

Our values of xg and a? are clearly different from the previously obtained
values [1], where xo = 0.514 +40.71 and o? = 0.14 (GeV/c)? at the same
energy and for the same values of o and p. Firstly, we believe that the
positive sign of Re x¢ is a written mistake. Secondly, these values give o =
11.23 mb and p = —0.566, which are different from the experimental data.
Finally, with these values of xo and a? we get P,(0) = 0.213 (GeV/c) 2,
while the given value of v = P,(0) in [1] is 0.8 (GeV/c) 2.

From equation (7), using equations (12) and (13), the quantity P, is
calculated using our values of xo and o? at 1.75 GeV/c. The results are
presented in figure 1 (solid curve) in the region 0 < ¢? < 2 (GeV /c)?, where
equation (1) can be used as a good approximation. Firstly, the value of
P, at ¢> = 0 is equal to 0.376 (GeV/c) 2. Secondly, the quantity P, has
a general oscillating behaviour with very sharp peak at ¢? =~ 0.6 (GeV /c)?,
where P, = 27.34 (GeV /c) 2. This oscillating character of P, is consistent
with the variation of phase variation effect on nucleon—nucleus and nucleus—
nucleus scattering with ¢? values. For example, in p-d elastic scattering
at 1.75 GeV /c, this effect can be neglected for ¢> < 0.2 (GeV/c)? [5]. The
function P, has the smaller values in this region. Also, the role of the phase
variation in the region of the first minimum, 0.2 < ¢ < 0.6 (GeV /c)? is im-
portant. In this region the arithmetic mean value of P, is 7.32 (GeV /c)~2.
Taking v = 8 (GeV/c)™2 a good fit with p-d elastic scattering experimen-
tal data at 1.75 GeV/c is obtained [5]. For 1.27 GeV/c incident momen-
tum per nucleon the authors of [3] used approximately the same value
(y = 7.5(GeV/c)~2) to obtain a good agreement with the a—*He elastic
scattering data. Also, they used the value 10 GeV/c) 2 for v to obtain a
good fit with the data of a'H, a-2H, a*He, and a*He at 1.75 GeV /c per
nucleon. For the data of a—*He at 1.08 GeV /¢ per nucleon, the used value
of v is 11.5 (GeV/c) 2 [3]. Finally, the arithmetic mean of P, in the range
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0.2 < ¢ < 1.75(GeV/c)?, where the most experimental nucleon—nucleus
and nucleus—nucleus elastic scattering differential cross sections are avail-
able, is 4.44 (GeV /c) 2. Approximately the same value for  is used by [6]

to obtain an agreement with p—“He elastic scattering experimental data at
1.75 GeV/c.
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Fig.1. P,(¢%) function. Solid and dashed curves correspond to the two sets
of potential parameters (xo = —0.272 + i0.896, a? = 0.041(GeV/c)?) and
(xo = —0.514 +i0.71, a? = 0.0357 (GeV/c)?), respectively. The dot-dashed curve
corresponds to P,(¢*) =y = 10 (GeV/c) 72 [3].

At 1 GeV energy there is an uncertainty in the values of the parameters p,
see for example [2,7,8]. The different values of p lead to different values of
the potential parameters xo and o?. The values of P,(q?) are different
for different values of the parameters yo and «?. However, in any case
we have the same oscillating behaviour. Also, the range of P,(¢?) values
leads to the same conclusion. For example, see figure 1 dashed curve, where
xo = —0.514 +40.71 and o? = 0.0357 (GeV /c)?. These values correspond
to 0 = 44mb and p = —0.566. In this case P,(0) = 0.84 (GeV /c) 2 and the
maximum value is equal to 14 (GeV/c) 2 at ¢* = 0.5 (GeV /c)?.
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Thus, all used values for « in the previous works are in the range of P,
values at the used energy. Consequently, the values of the phase variation
parameter y are consistent with the range of P, values for the nucleon—
nucleon potential in the Gaussian form. These results contradict with those
obtained in [1].

The momentum transfer dependence of the phase $(¢?) of the model
amplitude (12) is presented in figure 2. Also, the results for the ampli-
tude (2) are presented in two cases, where v = 0 and vy = 10 (GeV /c)~2. For
q? < 0.5(GeV /c)?, the results of the model amplitude (12) are close to that
of the amplitude (2) with v = 0. This amplitude with v = 0 was obtained
from nucleon-nucleon scattering experiments. With v = 10 (GeV /¢) 2 the
results of ¢(g?) is relatively small. However, we obtained the same order of
values of ¢(¢?) for both amplitudes (12) and (2) using y = 4.4 (GeV/c) 2 in
the last amplitude. This value of v is equal to the mean value of P,(¢?) in
the range 0.2 < ¢% < 1.75 (GeV /c)? and it was used before in [6] to obtain
an agreement with p—*He scattering data at 1.75 GeV /c.
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Fig.2. The phase ¢(q?) of nucleon—nucleon amplitude. The solid, dashed, dot-
dashed and double dot-dashed curves correspond to the amplitude (12) with xo =
—0.272 4+ 0.896 and o = 0.041(GeV/c)?, amplitude (2) with v = 10,0, and 4.44
(GeV/c)™2, respectively.
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The ratio p(¢?) = Ref(q)/Imf(q) is presented in figure 3. In the range
0 < ¢? < 1.8(GeV /c)? except at the singular point, where ¢% =~ 0.6 (GeV /c)?
the results of the model amplitude (12) and of the amplitude (2) with y=0
is approximately of the same order. With v = 10(GeV/¢) 2 the ratio
p(q?) for the amplitude (2) takes absolutely different values and different
behaviours. For the model amplitude (12), the singular point of p(q?) at
q? = 0.6 (GeV/c)? is related to the maximum point of P,(¢?) at the same
value of ¢?, see figures 1 and 3.
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Fig.3. The ratio p(¢?) = Ref(q)/Imf(q). The solid curve represents the results
of amplitude (12) with yo = —0.272 + i0.896 and a? = 0.041 (GeV/c)?. Dashed
and dot-dashed curves represent the results of amplitude (2) with y=10 and 0
(GeV/c)72, respectively.

Finally, the quantity |f(¢)|? in the two cases of equations (12) and (2)
is presented in figure 4. The absolute value of f(¢) means that the phase
variation of amplitude (2) is meaningless in the nucleon—nucleon elastic scat-
tering differential cross section calculations. The model amplitude (12) gives
a correct representation of the diffractive character of high-energy nucleon—
nucleon elastic scattering differential cross section. The quantity In|f(q)|?,
for the amplitude (2), represents a straight line with constant slope —/32.
For the model amplitude (12) the combinations of different Gaussian terms
lead to sequence of maxima and minima.



Nucleon—Nucleon Amplitude Phase Variation 2229

10

0.1

0.001

If (@) mb/sr

0.00001

I x10-7

0 0.5 1 2 25 3

15
o? (GeV/c)?
Fig.4. Nucleon—nucleon elastic scattering differential cross section |f(q)|*>. The
solid and dashed curves represent the results of amplitude (12) with xo =

—0.272 + i0.896, o®> = 0.041(GeV/c)? and amplitude (2), respectively. 3> =
5.6 (GeV/e)™2 [3].

Thus, using nucleon—nucleon potential in Gaussian form, the nucleon—
nucleon elastic scattering amplitude is obtained. For this amplitude, the
phase ¢(q?), the phase variation rate, the ratio p(¢?) and |f(q)|* are calcu-
lated at 1.75 GeV/c. The results are compared to the case of empirical form
of nucleon—nucleon amplitude. Some consistence can be observed between
the results in the two cases.
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