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We present in this talk the general framework of a method which per-
mits to restore the rotational and particle number symmetries of wave
functions obtained in Skyrme HF+BCS calculations. This restoration is
nothing but a projection of mean-field intrinsic wave functions onto good
particle number and good angular momentum. The method allows also
to miz projected wave functions. Such a configuration mixing is discussed
for sets of HF+BCS intrinsic states generated in constrained calculations
with suitable collective variables. This procedure gives collective states
which are eigenstates of the particle number and the angular momentum
operators and between which transition probabilities are calculated. A test
application to 2*Mg is presented with mean-field wave functions generated
by axial quadrupole constraints. Theoretical spectra and transition prob-
abilities are compared to the experiment. Some preliminary results for
32Mg and 60 are also reported.

PACS numbers: 21.10.Ky, 21.30.—n, 21.60.Jz, 27.30+t

1. Introduction

The cranking method is widely used in nuclear structure calculations to
describe high spin states [1]. In this method, a rotational band is gener-
ated by the rotation of a deformed intrinsic state. The aim of the method
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presented in this talk is to cure two of the main deficiencies of this intrin-
sically semi classical approach. First, cranking states are not eigenstates of
angular momentum, and it is not straightforward to determine transition
rates in nuclei which are not very well deformed. Approximations have been
developed for transitions within a band, but they are only valid when the
structure of the nuclear states are not affected by rotation.

A second limitation of the cranking model occurs in nuclei soft with
respect to the variation of a collective variable. In this case, one expects
that the interference of the zero-point vibrational mode with the rotational
motion will lead to variations in the nuclear structure along the yrast line.

Our aim is to introduce a method in which rotations and vibrations are
taken into account simultaneously in a general and consistent way.

The starting point of the approach is a set of many-body wave functions
generated by constrained Skyrme HF+BCS calculations [2]. The discretiza-
tion of these wave functions on a 3-dimensional Cartesian mesh enables to
describe very general shapes of the nuclear density and to easily write the
effect of a spatial rotation on the mean-field wave functions. This property
permits to restore symmetries with respect to angular momentum [3] and to
the proton and neutron particle numbers [4] in a systematic way.

We present below the general framework of our method together with
a test on a light nucleus for which extensive calculations can be performed.
In the first part, we show how to implement the projection on j, N and Z,
simultaneously. In the second part, we present a test application to the Mg
nucleus and compare our results with experimental data. We then show first
results on *>Mg and on the excited states of 60.

2. Angular momentum and particle number projections
2.1. Principle of the method

A detailed presentation of the method has already been presented in [5].
We recall here its main features.

The starting point of our method is a set of wave functions |®,) generated
by mean-field calculations with a constraint on a collective coordinate «.
Wave functions with good angular momentum and particle numbers are
obtained by restorations of symmetry on |®,):

1 . A
@, TMa) = > gk Pl P7PN|2,,) (1)
K

where N is a normalization factor, PA‘Q,K, PN PZ are, respectively, pro-
jectors onto angular momentum J with projection M along the laboratory
z-axis, neutron number N and proton number Z.
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In the applications shown in this paper, axial symmetry and time reversal
invariance are imposed. Therefore, K can only be 0 and we shall omit the
coefficient g7..

A configuration mixing on the collective variable « is then performed for
each angular momentum:

@, JM) =" fIM|®, TMa). (2)

The weight functions fJM are found by requiring that the expectation value
of the energy:

o _ (W IMIH|V, M) @)
O, JMW,JM)

is stationary with respect to an arbitrary variation df;*. This prescription
leads to the discretized Hill-Wheeler equation [6]:

Z(Ha o T EI;:]MIa a’)fJMk 07 (4)
[0}
in which the Hamiltonian kernel 7M™ and the overlap kernel Z/M are defined
as
HIM = (@IMa|H|DIM), TIY = (IMa|OIMd). (5)

Since the Hamiltonian is rotationally invariant and conserves the number
of particles, one has to restore the symmetries on only one of the two wave
functions entering in each matrix element like Eq. (5). The kernels are
obtained by integration on a single Euler angle, because of axial symmetry,
and two gauge angles of the matrix elements between rotated wave functions.

Besides these kernels, we will calculate transition probabilities between
different eigenstates of the Hill-Wheeler equation. This requires the calcu-
lation of the matrix elements of a tensor of order L, ™ , between projected
states.

Such a secular problem based on the configuration mixing defined by
Eq. (2) amounts to a variation after projection in a many-body Hilbert
space built on a limited set of states obtained for different values of the
collective variables a’s.

2.2. Calculation of multipole moments and transition probabilities

The determination of transition probablhtles requires the calculation of
the matrix element of a tensor of order L, T, between eigenstates of the
angular momentum operator.
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In the case of electric quadrupole transitions, the diagonal matrix ele-
ment takes the form:

(JM = 0,8|Q|JM = 0, D)
[ sin B dB dfy (B) (21" Quo )|

[[/sin Bdp dfy (8)(@leiP s )]
Tang | [smBdB ()@l Q)]

= . 6
DEEICEN [ sin B dB ddy (8)(@lei | @)| ©

= (J020|J0)? x [

The transition matrix elements between GCM states are obtained as the
weighted sums of the contributions of the different basis states.

3. Application to 24Mg

The results shown in this section have been obtained using the HF+BCS
wave functions generated with an axial quadrupole constraint. The Lipkin—
Nogami prescription has been used to improve the treatment of pairing cor-
relations. It has indeed been shown that this prescription permits to gen-
erate wave functions which give reasonable approximations of the energies
obtained by a variation after projection on the good particle number [7].
In this way, the lack of a complete variation after projection should be
partly compensated. The mean-field results, which we will present below,
correspond to these HF+BCS+LN calculations.

We have performed calculations with the Sly4 Skyrme parameterization
which has given satisfactory results in the description of rotational bands in
well deformed nuclei [8]. The pairing interaction is a zero range interaction
similar to the ones used in previous studies of nuclei far from stability [9]. We
have slightly decreased the strength of the density-dependent pairing force
from G = 1250MeV fm? to G = 1000 MeV fm?> to take into account that
more correlations are included in the wave functions by the configuration
mixing and the symmetry restorations.

The variation of the energy as a function of prolate and oblate defor-
mations is plotted in Fig. 1. The mean-field curve presents a well deformed
prolate minimum corresponding to a mass quadrupole moment of approxi-
mately 1b and a shoulder at an oblate deformation around 0.5b.

The energies obtained by projecting each of the mean-field wave func-
tions on good particle number and angular momentum are also shown in
the left part of Fig. 1. The abscissa of the projected energies correspond to
the quadrupole moment of the intrinsic wave function. The spherical con-
figuration is a pure 07 state and contributes only to the 0 projected curve.
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Fig.1. (a) Projected energies for 2*Mg as a function of the axial quadrupole mo-
ment. The thick line with asterisks corresponds to the HF+BCS+LN energies. The
energies obtained by projecting on angular momentum (from 0% to 10™) intrinsic
wave functions are plotted in full line as a function of the quadrupole moment
of the intrinsic wave function. The first three energies obtained for each angular
momentum in the configuration mixing calculation are represented by horizontal
bars centered at the value of qo where the respective collective wave functions are
maximum. (b) B(E2) transition probabilities (in e*fm*) for 2Mg. Transition prob-
abilities between the configurations corresponding to the minimum of the projected
energy curves of Fig. 3 are shown on the left-hand-side of this figure and between
the yrast collective states obtained in the GCM calculation (right-hand-side). In
the central part are shown the experimental values [10].

The energy gained by projection in this case is due to the difference between
the Lipkin—Nogami approximation of the energy gain due to projection on
particle number, —\o AN?, and the exact gain. It is of the order of 1 MeV.

The projection on angular momentum increases the energy difference
between the spherical configuration and the minimum of the J = 0" curve
by 3 to 4 MeV. The intrinsic wave function leading to the minimum of this
curve has a quadrupole moment slightly larger than the one corresponding
to the mean-field minimum. For higher angular momenta, the minima are
shifted to higher quadrupole moments.
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The full projection creates an oblate minimum at the position of that
shoulder for .J values ranging from 0 to 67. For greater values of .J,
the weights of the intrinsic wave functions for deformations below —2b are
very small. Consequently, the projected energy curves do not exhibit any
oblate minima. However, the J=0" to 6" minima are probably not stable
against triaxial deformations, since a calculation including triaxial deforma-
tions indicates that the shoulder in the intrinsic curve is a maximum with
respect to 1.

One of the main interests of a restoration of rotational symmetry is the
possibility to calculate transition probabilities without the approximation
involved in a cranking calculation. On the right part of Fig. 1, the tran-
sition probabilities along the yrast line obtained in the GCM calculation
and by considering only the minima of projected energy curves are com-
pared to the experimental data [10]. The transition probability between
the configurations minimizing the projected energy curves is very close to
the experimental value. The configuration mixing causes a spreading of the
collective wave function on the quadrupole moment and decreases slightly
the value of the B(E2). This effect is similar to the effect of quadrupole
vibrations that is sometimes included phenomenologically [11] in the deter-
mination of transition probabilities from intrinsic wave functions. Since for
spin different from 0, the wave functions do not have components at low
quadrupole moment, the configuration mixing does not affect significantly
the transition probabilities. The agreement between both the calculations
and experimental data is excellent in these cases.

4. Applications to 3?Mg and 160

Experimentally, it is now well established that ?>Mg is a well deformed
nucleus: the energy of the first 2% state is much lower than in heavier
N = 20 isotones and the B(E2) transition probability to the ground state is
very large and compatible with a strong deformation. The description of the
disappearance of the N = 20 shell closure is a major challenge for theory,
the difficulty being to account for the changing behavior of this shell closure
as a function of the proton number.

In Fig. 2 are shown the results obtained with the same mean field and
pairing interactions as for 2Mg. The projection and the configuration mix-
ing are clearly not sufficient to cure the deficiencies of the pure mean field
calculation. The excitation energy of the first 27 state is largely overes-
timated. However, the dynamical deformations of both the 0% and the 2+
are large and lead to a B(E2) value which is around 40% of the experimental
one.
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Fig. 2. Same as Fig. 1, but for 32Mg. The experimental values are from [10].

The spectrum of 32Mg is very sensitive to the details of the interactions
that are used in both the mean field and the pairing channel. In Fig. 3, we
show the results obtained with the Skyrme Skm* [12] parametrization and
a volume pairing leading to pairing energies similar to the surface pairing.
The excitation energy of the 27 state is now much more realistic (1.2 MeV)
and the B(E2) value is around 75% of the experimental one. This result
is encouraging and gives hope that the study of this mass region will help
to improve our knowledge on the nuclear interaction. However, much work
still remains to be done, the Skm* interaction having a very bad behaviour
as a function of the isospin.

In Fig. 4 is plotted the HF+BCS and the J = 0 curve obtained for '60.
As expected, the mean field curve shows a very steep minimum at the spher-
ical point, with a shoulder around 15MeV at a mass quadrupole moment
around 100fm?. The curve projected on J = 0 is not more structured and
does not give any indications on excited 07 states. The interesting result is
obtained when a mixing on the axial quadrupole moment is performed. The
ground state is dominated by the spherical configuration, but two excited
states appear with dominant contributions from very deformed state. The
energy and the quadrupole moment of the dominant intrinsic configuration
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Fig.3. Same as the left part of Fig. 1, but for 32Mg and the Skm* interaction and
a volume pairing.
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Fig.4. HF+BCS and J = 0 energy curves obtained for 0. The three first 0
states obtained in the configuration mixing calculation are indicated by bars.

of the first state agrees very well with the first excited 0" state, located
at 6.05MeV and to which a dominant 4p—4h configuration is generally at-
tributed. The characteristics of our second excited 07 state makes it a good
candidate for a linear alpha chain configuration. These results obtained for
160 indicate that our method seems to be well adapted to describe excited
configurations whose structure is very different from the ground state.
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5. Conclusion

In this paper, we have presented and tested a method to introduce corre-
lations beyond mean-field on HF+BCS wave functions. The tests performed
on the Mg nucleus show that the method works with reasonable computing
time.

The first and natural generalization from BCS to full Bogoliubov—Valatin
transformations is under progress. It will allow a better treatment for pairing
correlations. If no significant improvements for even—even nuclei close to the
stability line are to be expected, HFB is essential to treat correctly nuclei
near the drip lines.

The generalization to many-body wave functions breaking time reversal
invariance is a necessary next step towards a description of odd nuclei. It will
also make possible to project wave functions generated for each spin by
cranking calculations. As it has already been shown theoretically [1], the
use of cranking wave functions is the first order of a variation after projection
on angular momentum. Numerical applications [3] have confirmed that the
projection of cranking wave functions improves the energy obtained for each
angular momentum and compresses the spectra. Such an effect would correct
the too spread spectra obtained in the present study.

This research was supported in part by the PAI-P3-043 of the Belgian
Office for Scientific Policy.
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