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QUADRUPOLE COLLECTIVITY
IN THE Si ISOTOPES AROUND N = 20*
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The angular momentum projected generator coordinate method using
the quadrupole moment as a collective coordinate and the Gogny force as
the effective interaction is used to describe the properties of the ground
and low-lying excited states of the neutron rich light nuclei 32:34-36Gi. Tt is
found that the ground state of the nucleus 34Si is spherical. However, this
is not due only to the N = 20 shell closure, since the ground state of 34Si
contains a significant amount of the intruder f/, neutron orbital. A rather
good agreement with experimental data for many observables is obtained.

PACS numbers: 21.60.Jz, 21.60.—n, 21.10.Re, 21.10.Ky

1. Introduction

In nuclear physics the mean field approximation is always the first step
to understand the properties of the ground and lowest-lying excited states.
The mean field approximation provides the concept of magic numbers as well
as the concept of spontaneous symmetry breaking. For nuclei with proton
and/or neutron numbers close to the magic ones, one expects symmetry-
conserving (i.e., non superconducting and spherical) ground states. On the
other hand, for nuclei away from the magic configurations, one expects
a strong symmetry breaking and an appearance of deformed ground states
that generate, e.g., rotational bands.

The experimental studies of light nuclei away from the stability line
N =Z seem to imply that for those (usually neutron rich) nuclei some of the
properties associated to magic numbers are not preserved. The most striking
example is the experimental evidence towards the existence of quadrupole
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deformed ground states in the neutron-rich nuclei around the magic num-
ber N =20. In addition, the extra binding energy coming from deformation
can help to extend thereby the neutron drip line in this region far beyond
what could be expected from spherical ground states. Among the variety
of available experimental data, the most convincing evidence for a deformed
ground state in the region around N = 20 is found in the 32Mg nucleus
where both the excitation energy of the lowest lying 2% state [1] and the
B(E2,0" — 2%) transition probability [2] have been measured. Both quan-
tities are fairly compatible with the expectations for a rotational state. At
the mean field level, the ground state of 3>Mg is spherical. However, when
the Zero Point Rotational Energy (ZPRE) correction is considered, the en-
ergy landscape as a function of the quadrupole moment changes dramatically
and 32Mg becomes deformed [3-9].

A more careful analysis of the energy landscape including the ZPRE cor-
rection reveals that, in fact, there are two coexistent configurations (prolate
and oblate) with comparable energy indicating thereby that configuration
mixing of states with different quadrupole intrinsic deformation has to be
considered. Therefore, an Angular Momentum Projected Generator Co-
ordinate Method (AMPGCM) calculation with the quadrupole moment as
collective coordinate is called for. We have applied this method in Ref. [10]
to the study of the nuclei 3°=3*Mg . The Gogny force [11] (with the D1S
parameterization [12]) has been used in the calculations. We have obtained
prolate ground states for 3273*Mg indicating that the N = 20 shell closure
is not preserved for the Mg isotopes. Moreover, a good agreement with
the experimental data for the 2% excitation energies and B(E2) transition
probabilities was obtained. The purpose of this paper is to extend those
calculations to the study of the nuclei #2736Si which are obtained by adding
two protons to the 30734Mg nuclei. These nuclei were recently studied exper-
imentally [13], and their ground states seem to be spherical and, therefore,
preserve the N = 20 shell closure. Therefore, our intention is to check
whether our method and interaction is not only able to predict a deformed
ground state in 32Mg (Z = 12) but also to predict a spherical one in 34Si
(Z = 14).

2. Theoretical framework

The AMPGCM with the mass quadrupole moment as generating coordi-
nate is used as the theoretical framework. As we restrict ourselves to axially
symmetric configurations, we use the following Ansatz for the K = 0 wave
functions of the system
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In this expression |p(g2o)) is the set of axially symmetric (i.e. K = 0)
Hartree-Fock-Bogoliubov (HFB) wave functions generated by constraining
the mass quadrupole moment to the desired values qo9 = (©(g20)]
22 —1/2(2? + y?) |¢(g20)). The quasiparticle operators associated to the
intrinsic wave functions |p(go0)) have been expanded in the Harmonic Oscil-
lator (HO) basis containing 10 major shells and with equal oscillator lengths
to make the basis closed under rotations [14]. The operator
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is the usual angular momentum projector with the K = 0 restriction [15]
and fl(ga0) are the “collective wave functions” solution of the Hill-Wheeler
(HW) equation
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In the equation above we have introduced the projected norm

N (q20, 330) = (2(q20)| Pelg [ (a30)) (4)
and the projected Hamiltonian kernel
' (g20, a30) = (0(g20)| HPgy |0(30)) - (5)

As the generating states Pl |¢(g20)) are not orthogonal, the “collective am-
plitudes” fI(ga0) cannot be easily interpreted. Instead, one usually intro-
duces [16] the “collective” amplitudes

1o 1/2%

o (am) = [ dain a0V (azn, ) (©
which are orthonormal, [ dga0(g%)*(g20)9% (g20) = 67,1054, and, therefore,
their modules squared have the meaning of probabilities.

The B(E2) transition probabilities are computed using the AMPGCM
wave functions as
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As we are using the full configuration space no effective charges are needed.
Further details of the computational procedure can be found in Ref. [10].
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3. Discussion of the results

In Fig. 1 we show the HFB Potential Energy Surfaces (PES) for the three
nuclei considered (dashed line) along with the projected energies
E' = H(q2,q2) /N (g2, q2) for T = 0,2,4,6 and 8 (full lines). The HFB
PES shows a very pronounced spherical minimum in 34Si, a shallow spherical
minimum in 36Si, and, finally, a very shallow oblate minimum in 32Si. These
results are rather different from the ones obtained for the corresponding Mg
isotopes with the same neutron number [10]. The reason for such differences
is that the Si isotopes have the proton ds/, shell completely occupied and,
therefore, the up-slopping K = 5/2 level of the proton ds /2 orbital prevents
the appearance of the prolate deformation. At the mean field level, we can
say that the Si isotopes around N = 20 retain the closed shell properties
associated to the N = 20 shell closure. However, as it has already been rec-
ognized, the effect of the restoration of the rotational symmetry in the HFB
states can be very important, and it can substantially modify the conclusions
extracted from the mean field results. In the three nuclei considered here,
the Angular Momentum Projected (AMP) PES (Fig. 1) show two minima,
prolate and oblate, for all the angular momenta considered. However, the
prolate and oblate minima lie rather close in energy in almost all the cases
and, therefore, we expect strong mixing of the two configurations. Taking
into account this fact, and also the fact that the amount of mixing is not
only determined by the AMP PES but also by the “collective inertia”, the
amount of mixing can only be disentangled when the configuration-mixing
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Fig.1. The HFB potential energy surfaces for the three nuclei considered
in the present study (dashed lines) together with the projected energies for
I=0,2,4,6 (full lines).
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calculation is carried out. We have also carried out configuration mixing
(in the framework of the GCM) calculations taking into account angular
momentum projected wave functions and the quadrupole constrained HFB
wave functions as generating intrinsic states. The solution of the HW equa-
tion provides us with energies E! and collective wave functions fI(gag). As
mentioned in Sec. 2, the amplitudes f! are not well suited for a physical in-
terpretation and, therefore, one considers the collective amplitudes gi(qgo)
instead. In terms of these amplitudes one can define an “averaged” intrinsic
quadrupole moment (gs0). = [ dgo0 g20 ‘gg q20 ‘ for each of the AMPGCM
solutions.
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Fig.2. Same as in Fig. 1, but with added solutions of the HW equation, see text.

In Fig. 2 we show, along with the angular-momentum projected PES
(plotted again to guide the eye), the energies EL obtained by solving the HW
equation for ¢ = 1 and 2 and angular momenta I = 0,2,4,6, and 8. Each
energy has been placed at the value of the quadrupole moment corresponding
to the “averaged” intrinsic quadrupole moment (gy).. From Fig. 2 we see
that in 32Si the two 0% states shown are spherical, the 2+ and 4”L are oblate
whereas the 2;, 4;, 6; and SfL are prolate deformed states. The 6; state is
almost degenerate in energy with the nearly spherical 6;“ state and this could
explain the anomalous quadrupole moment of the former state. A nearly
identical pattern is also seen in the nucleus 3*Si, except for the position of
the 05 state that lies below the 27 . In the nucleus ®6Si, the ground state is
spherical and a prolate deformed 0; state is obtained. The 2% and 47T states
are all of them almost spherical whereas the 61" and 81" are prolate and the
65 and 85 states are oblate. We observe that in the three nuclei considered,
the ground state is spherical due to the configuration mixing between the
prolate and oblate minima. The rest of the spectra shows rather unclear
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patterns that can only be elucidated by looking at the “collective amplitudes”

g5 (g20). In Fig. 3, the collective wave functions squared ‘gé(qm)‘2 for the
two lowest solutions ¢ = 1 and 2 obtained in the AMPGCM calculations
are depicted. We also show in each panel the projected energy for the
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Fig.3. The collective amplitudes |gl(ga0)|? (thick lines) for ¢ = 1 (full) and
2 (dashed) and spin values of I = OA,...,8h for the nuclei 32Si, 34Si and 26Si.
The projected energy curve for each spin is also plotted (thin line). The y-axis
scales are in energy units and span an energy interval of 13 MeV. The collective
amplitudes have also been plotted against the energy scale after a proper scaling
and shifting, that is, the quantity EI + 15 x |gI(ga0)|? is the one actually plotted.
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corresponding spin. We observe that the 0] ground state wave functions
of the three nuclei contain significant admixtures of both the prolate and
oblate configurations. Looking into the single particle diagram of *Si (not
shown here) it is observed that the neutron f7/2 shell, that is empty at
q20 = 0 and 5.78 MeV higher than the d3/9, crosses the Fermi surface at the
deformation of gap = —0.5b on the oblate side (the K = 7/2 level) and
g20 = 0.5b on the prolate side (the K = 1/2 level). Therefore, the intrinsic
states with go9 > 0.5b and gg9 < —0.5b have (at least) two particles in
the intruder f;/, orbital. As the ground state collective amplitude in 3G
(and in the other two nuclei) is not negligible in the intervals gg9 > 0.5b
and ¢o9 < —0.5b we conclude that the ground states of the three nuclei
contain significant amounts of the intruder f7,5 neutron configuration in
spite of being spherical. To make the argument more quantitative we have
computed the quantity 1 —f_0'05_5 dqog ‘g[{:O(qQO) ‘2 that gives us an idea of the
percentage of the “collective” amplitude outside the go¢ interval between —0.5
and 0.5b (i.e., the interval where the intrinsic states contain the intruder
f7/2 configuration). This quantity is roughly 0.35 for 0 = 1 in the three
nuclei considered and it corresponds roughly to 0.7 particles in the neutron
f7/2 sub-shell. Therefore, we conclude that the ground state of 34Si does
not correspond to a pure configuration with N = 20 acting as a closed shell.
Similar conclusions have been obtained in shell model calculations [17] and
also in the Shell Model Monte Carlo calculations of [18].

The collective amplitude of the OQL excited state of 34Si is rather unusual,
being concentrated around g9 = 0. This unusual behavior is probably
responsible for the low excitation energy of this state (see below). In the
32Gi and 34Si nuclei and I = 2 and 4 the collective amplitudes are well
located inside the corresponding prolate and oblate minima. For I = 6
we have accidentally coexisting prolate and oblate minima, and for I = 8
the prolate minimum becomes the lowest one. In the nucleus 36Si, at I = 2
and 4 we have shape coexistence between the prolate and oblate minima and,
therefore, the collective amplitudes are equally distributed among them; the
net result being that these states are, on the average, spherical. For I = 6
and 8 the prolate minimum becomes dominant and the collective amplitudes
are localized around the minima.

Now, we want to compare our results with the available experimental
data. The first piece of information we can compare to is the two neutron
and two proton separation energies. The two neutron separation energies
(S(2n)) for 34Si and 36Si are 11.83MeV and 9.6 MeV, respectively. These
numbers have to be compared with the experimental data [19]: 12.018 MeV
and 8.587MeV, respectively. We observe a reasonably good agreement with
experiment for both nuclei. Concerning the two proton separation energies
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(S(2p)) we have used the previous results [10] for the magnesium isotopes
to obtain 28.70, 32.72, and 36.26 MeV for 32736Si, respectively. The cor-
responding experimental values [19] are 29.777, 33.737, and 35.430 MeV.
The agreement between theory and experiment is again rather reasonable.

TABLE 1

Calculated and experimental results for excitation energies (in MeV) and
B(E2,0}, — 2}) transition probabilities (in e*fm"). The columns marked (a),
(b) and (c) correspond to 0 — 2], 0] — 05 and 0] — 27, respectively. The ones
marked (d), (e) and (f) correspond to 0 — 27, 05 — 27 and 0] — 27, respectively.

Energies (MeV) Exp. | B(E2)e*fm* Exp.

(a) (b) © | (@ | (d) (e  (f) (d)

32Gi | 2.34 3.60 595 | 1.941 | 82.18 0.01 28.00 | 113+ 33

3Gi | 2.92 2.52 5.62 | 3.327 | 108.99 50.41 76.92 | 85+ 33

36Gi | 2.63 3.24 4.32 | 1.399 | 211.55 65.44 48.81 | 193 + 59

In Table T the energy splittings between different states and the B(E2)
transition probabilities among some of them are compared with the available
experimental data. Concerning the B(E2,0] — 2{) transition probabilities
we find a quite good agreement with the experiment. In fact, our calculation
reproduces the increase of the B(E2) values in going from 34Si to 36Si. The
other transition probabilities are much smaller than the Of — ZT ones except
in 3*Si. On the other hand, the theoretical values for the 21" excitation
energies agree reasonably well with the experimental data for 32Si and 34Si
but show a discrepancy of 1.2MeV in the case of 26Si. This discrepancy can
be attributed to many sources, like not taking into account triaxial intrinsic
configurations or not dealing with pairing correlations in a “beyond mean
field” framework. Another source of the discrepancy could be related to the
fact that our calculation is of the Projection After Variation (PAV) type
instead of a more complete Projection Before Variation (PBV). Usually, the
PBV method yields the rotational bands with moments of inertia that are
larger than those in the PAV method [20,21]. In Ref. [10] we estimated the
effect of considering PBV in calculations similar to the ones performed here
but for some deformed magnesium isotopes. The conclusion was that the
moment of inertia gets enhanced by a factor 1.4 and, therefore, the excitation
energies have to be quenched by a factor 0.7. Unfortunately, the method
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used in [10] for the mentioned estimation cannot be applied here as we are
dealing with spherical ground states as well as with nearly spherical excited
states.

On the other hand, shell model calculations [13,17,22] predict the second
excited 03 state in 31Si with the excitation energy (2MeV in [13], 3 MeV
in [17] and 2.6 MeV in [22|) which is below the excitation energy of the
2] state. In the experimental work of Ref. [13], such excited state was not
observed but it was argued that, with the given experimental setup, it was
quite difficult to detect it. However, in the experiment reported in [22],
the mentioned excited 07 state was observed at a tentative excitation en-
ergy of 2.1 MéV. In our calculations we also observe a second 07 state in
34Gi (spherical in character) which lies at the excitation energy of 2.52 MeV.
Our predicted B(E2) transition probability 0 — 2 is 50.41 e2fm? which is
a factor four smaller than the one obtained in the shell model calculations
of [13,17] and a factor of six smaller than the predicted value of [22]. In
Ref. [22], an experimental indirect estimate of the B(E2) transition proba-
bility of 444(210) e2fm? is given. At this point it has to be recalled that the
B(E2) transition probabilities are more sensitive to the collective wave func-
tions than the excitation energies. Therefore, a relatively small change in the
collective wave functions can alter drastically the transition probabilities. In
our case the collective amplitude of the 05 state (see Fig. 3) is concentrated
around the spherical intrinsic configuration (result which is not consistent
with the shell model expectations of [17,22]). This spherical intrinsic config-
uration has zero pairing correlations in our HFB calculations and, therefore,
it can be expected that the inclusion of pairing correlations in a “beyond
mean field” framework can modify the properties of the quadrupole dynam-
ics around this point. To elucidate this and other deficiencies, a simulta-
neous projection on angular momentum and particle number (like the one
performed in [8] with the Skyrme interaction) is called for.

4. Conclusions

In conclusion, we have performed angular momentum projected genera-
tor coordinate method calculations with the Gogny interaction D1S and the
mass quadrupole moment as the generating coordinate in order to describe
quadrupole collectivity in the nuclei 32Si, 34Si and 3Si. We obtain a spher-
ical ground state in 3*Si (in opposition to the nucleus *?Mg) but it contains
significant admixtures of the intruder configuration with two neutrons in the
f7/2 orbital. We also find in 34Si the first excited 07 state with the excitation
energy of 2.5MeV. In all the nuclei considered the excitation energy of the
lowest 2% state is rather well reproduced. Moreover, the B(E2) transition
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probability from the ground state to the 2T state is also well reproduced in
the three cases. Other quantities like two neutron and two proton separation
energies also compare well with experimental data.
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